Best Prices: Price Discrimination and Consumer Substitution Judith A. Chevalier¹ Anil K Kashyap² ¹Yale University and NBER ²University of Chicago Booth School of Business, FRB Chicago and NBER May 2016 #### Motivation - Pervasive Increase in IT-enabled price discrimination - Ellickson and Misra (2008) - Basker (2013) - Nakamura (1998,1999) - How do we aggregate prices and measure inflation when a multi-product retailer is actively price-discriminating? - Relative prices of different brands of the same good can be quite volatile - Massive high-frequency substitution into discounted/promoted products - Must confront the heterogeneity that motivates the price discrimination #### Outline - Price Aggregation issues - Introduce a model of price discrimination - Will highlight the role of the "best price" - Oata - Results - Test store level predictions - Study implications for inflation - Implications/Discussion Points for FESAC ## Price aggregation methodologies at - Cost of living benchmark - Exact index tracks the cost of obtaining a given level of utility at different points in time. - Challenging to construct in modern retail environment. - Price discrimination strategies imply consumer heterogeneity. - Time horizons and stockpiling divorce purchases from consumption ## Simple price aggregation methodologies varieties of the same good - Fixed weight (Laspeyres) - Appropriate if elasticity of substitution is zero - Geometric Mean - Appropriate if elasticity of substitution is one between varieties - Constant Elasticity of substitution - Appropriate for constant elasticity of substitution between varieties - Unit values - Appropriate if consumers view goods as perfect substitutes - Tornquist ## Empirical issues with standard methodologies - If we are looking at different varieties of peanut butter or coffee, the elasticity of substitution is *much* greater than one - Purchases are concentrated in the ordinally lowest priced branded product in the category. - Price discrimination renders the relative prices of the varieties very volatile. - Must confront consumer heterogeneity; representative consumer is the microfoundation of aggregation methodologies - Each consumer (typically) purchases no more than one variety; CES models not a microfoundation - Tornquist/Unit Values require real time quantity data/ not possible with enumerator methodologies #### Model overview - Simple model of sales - Similar in spirit to Varian (1980), Salop and Stiglitz (1982), Sobel (1984) and Pesendorfer (2002). - Some consumers are active shoppers who chase discounts, use storage. - Other consumers are passive "Loyals" - Retailer controls pricing of multiple substitute products - Average "price paid" very different from average "price posted". ## Model Implications - Derive implications from our model for price indices - Depending on the functional form of storage costs, unit values aggregated over time are (or approach) the exact index. - Introduce the notion of the "best price" - Aggregate can be approximated by the appropriately weighted average of the "best price" and a fixed weight price aggregate. ## Model Assumptions - Single retailer - Two substitute differentiated products, A and B, with marginal cost of c. - Measure 1 of consumers, each have unit demand per period - $\alpha/2$ of customers value A at V^H and B at V^L . "A Loyals" - $\alpha/2$ of customers value B at V^H and A at V^L "B Loyals" - 1-lpha customers value both at $V^M=\left(V^L+V^H\right)\big/2$. "Bargain Hunters" - Can shop for N periods - Bargain Hunters may strategically engage in storage, incur storage disutility of $\delta(k)$, number of periods over which units are stored. $\delta'(k) > 0 \& \delta''(k) \ge 0$. - All consumers form rational expectations about future prices. ## Storage decision - Following Salop and Stiglitz (1982), consumers will only buy units for storage if their net utility of doing so is positive. - Example: BH enters penultimate period N-1 with no inventory and expects $P^A=P^B=V^H$ in the final period, then the Bargain Hunter will purchase two units in period N-1 if $P^A< V^M-\delta(1)$ or $P^B< V^M-\delta(1)$ but only one unit if $P^A=V^M$ or $P^B=V^M$. - Note that if the price posted is low enough to induce storing for k periods, then the net utility from buying k units is (at least weakly) higher than buying any fewer than k units. ## Possible retailer pricing strategies - Always charge high prices and only service Loyals - Charge a low price for one good each period and serve both types of customers. - Iterate between high and low prices to capture demand from BH while exploiting the willingness to pay of Loyals. • We will focus on parameter values for which (iii) is optimal. ## Equilibrium Definition - An equilibrium consists of a sequence of prices for both goods A and B from period 1 onwards announced at date 1 by the retailer and demand functions for both type of consumers, such that: - The consumers' demand functions maximize their expected utility taking the prices as given - The retailer's profit is maximized at announced prices taking the consumers' demand functions as given - The retailer doesn't want to deviate from the announced prices at any later date ## Model Properties - For $V^H V^L$ large enough, it is never optimal for the retailer to charge less than V^H for both A and B in the same period. - When will the retailer want to induce the bargain hunters to consume every period? - Roughly, when V^M is big enough relative to V^H , marginal cost is not too high, and α is not too big. - When does the retailer wants to do this by inducing the bargain hunters to store? - Basically, depends on the storage cost function - Show that "surprises" are not optimal. ## Retailer profits from holding periodic sales $$N\frac{k-1}{k}\alpha\left(V^{H}-c\right) + \frac{N}{k}\frac{\alpha}{2}\left(V^{M}-\delta(k)-c\right) + \frac{N}{k}\frac{\alpha}{2}\left(V^{H}-c\right) + N(1-\alpha)\left(V^{M}-\delta(k)-c\right)$$ Here, the prices are clearly always some combination of V^H and $V^M - \delta(k)$, but the seller will choose k to maximize profit. In the paper, demonstrate optimal k for two functional forms of $\delta(k)$: linear storage costs and a discrete storage capacity. For linear storage costs, the optimal k is: $$k = \frac{\sqrt{(V^H - V^L)\alpha}}{2\sqrt{(1-\alpha)\delta}}$$ #### Observations - "Price plan" is the full sequence of high and low prices that prevail over N periods. - k is the key strategic choice variable - For unchanging cost and demand parameters, prices iterate. - Contrast to Kehoe and Midrigan (2010), Eichenbaum et al (2011), Pesendorfer (2002) (where there is no price discrimination motive) - In those models, prices for close substitute products would tend to be positively correlated. - Contrast to Guimaraes and Sheedy (2011) - Consistent with Klenow and Willis (2007), Wong and Nevo (2014), Kryvtsov and Vincent (2014) findings that regular prices, sale prices, and the frequency of sales are responsive to shocks. - Quantity purchased varies each period despite stable demand. ## Implications for price measurement If storage costs are zero or small, measurement of changes in unit values over the k period cycle is the appropriate measures of changes in utility. - Intuition: due to the strategic second degree pricing behavior of the retailer, the loyal customer never buys the "wrong" product. - Otherwise the storage costs create a wedge between price and utility gain Weighted average prices paid when storage for k periods is free: $$\alpha \left(\frac{1}{2k} V^M + \frac{2k-1}{2k} V^H \right) + (1-\alpha) V^M$$ - Because BH store in response to discounts, the unit value must be calculated as an average over the k period sale cycle - It is a weighted average of the fixed weight index and the "best price", with the shares of the BH and Loyals as the weights. ## Model summary: - Two type model of "bargain hunters" and "loyals" - Bargain hunters willing to stockpile and value all brands equally - Loyals have a favorite brand. - Creates retailer incentives to price discriminate. - In equilibrium: - Bargain hunters stockpile and purchase cheapest item in category. - Loyals purchase the product to which they are loyal. - Retailers use occasional temporary discounts to price discriminate #### Results and Testable Predictions - Unit value (nearly) traces the cost of achiceving a given level of utility over time. Outcome of price discrimination. - ② A disproportionate fraction of goods are sold at temporary discounts. - A unit value price index should be well-approximated by a linear combination of a fixed weight index and the best available price. The weights are the the shares of each type. - A geometric mean aggregation will not adequately account for the migration of consumers to the 'best price'. #### Data - IRI marketing data set, 2001 to 2011 - Choose products where IRI classification matches a BLS classification: peanut butter, ground coffee. - Reasonably representative. Median IRI category has 37 of volume sold on deal. Coffee 40.8%, 32.9% peanut butter. - Also have an agricultural commodity as primary input - Part 1: data from 9 cities, one from each of 9 Census divisions. Typically sample from largest chain. - String together UPC fragments and aggregate - Define "sales" using modified Kehoe-Midrigan definition - Part 2: partially mimic BLS procedures and construct national price aggregates - 23 products # Confirmation that discount prices are disproportionately important for determining amounts sold Share of Ounces Sold and Share of Weeks at Regular and Sale Prices: Totals for Sample Cities | Product | | Ounces
Regular price | sold
Sale price | Regular price | Weeks
Sale price | Average Disc | |---------------|--------------------|-------------------------|--------------------|---------------|---------------------|--------------| | | Charlotte | 60.03% | 39.97% | 75.91% | 24.09% | 17% | | j. | Chicago | 33.92% | 66.08% | 59.17% | 40.83% | 21% | | Ť. | Hartford | 50.08% | 49.92% | 92.45% | 7.55% | 27% | | butter | Houston | 63.49% | 36.51% | 74.57% | 25.43% | 12% | | q | Knoxville | 65.24% | 34.76% | 73.19% | 26.87% | 11% | | Peanut | Los Angeles | 49.49% | 50.51% | 65.83% | 34.17% | 13% | | 5 | New York | 37.49% | 62.51% | 78.63% | 21.37% | 21% | | a | St Louis | 34.88% | 65.12% | 67.73% | 32.27% | 26% | | a | West Tx-New Mexico | 46.26% | 53.74% | 68.60% | 31.40% | 19% | | 4 | AVERAGE | 48.99% | 51.01% | 72.89% | 27.11% | 19% | | | Charlotte | 31.51% | 68.49% | 54.23% | 45.77% | 9% | | | Chicago | 43.272% | 56.73% | 52.01% | 47.99% | 13% | | | Hartford | 18.56% | 81.44% | 49.01% | 50.99% | 12% | | Coffee | Houston | 42.89% | 57.11% | 57.83% | 42.17% | 6% | | \mathcal{U} | Knoxville | 44.59% | 55 41% | 56.10% | 43.90% | 7% | | Ö | Los Angeles | 41.48% | 58.52% | 50.42% | 49.58% | 14% | | \mathcal{C} | New York | 13.16% | 86.84% | 43.79% | 56.21% | 16% | | | St Louis | 31.88% | 68.12% | 52.71% | 47.29% | 11% | | | West Tx-New Mexico | 40.32% | 59.68% | 50.98% | 49.02% | 9% | | | AVERAGE | 34.18% | 65.82% | 51.90% | 48.10% | 11% | ### Summary Statistics-City Data | | Charlotte | Chicago | Hartford | Houston | Knoxville | Los Angeles | New York | St Louis | West Tx | |---|--|--|---|--|--|--|---|--|--| | | | | | Pe | eanut buti | ter | | | | | Unit Value Price
Fixed Weight Price
Monthly Best Price
Geometric Mean Price
Total Ounces Sold
Observations | 0.116
0.119
0.101
0.118
8,073
129 | 0.140
0.151
0.118
0.150
4,277
129 | 0.126
0.140
0.108
0.138
12,898
129 | 0.118
0.121
0.104
0.121
2,414
127 | 0.118
0.120
0.108
0.120
4,501
129 | 0.162
0.165
0.141
0.164
4,576
129 | 0.123
0.240
0.101
0.139
9,218
129 | 0.117
0.129
0.097
0.128
9,233
129 | 0.138
0.148
0.113
0.147
2,692
121 | | | | | | | Coffee | | | | | | Unit Value Price
Fixed Weight Price
Monthly Best Price
Geometric Mean Price
Total Ounces Sold
Observations | 0.248
0.257
0.214
0.256
3,431
129 | 0.315
0.328
0.250
0.325
1,221
129 | 0.224
0.266
0.186
0.264
10,522
129 | 0.274
0.277
0.245
0.276
2,538
127 | 0.248
0.253
0.220
0.252
2,800
129 | 0.325
0.341
0.258
0.338
6,339 | 0.221
0.279
0.177
0.275
15,538
129 | 0.275
0.288
0.239
0.286
3,339
129 | 0.314
0.321
0.252
0.319
1,391 | Structural Estimates of Price Coefficients | | Charlotte | Chicago | Hartford | Houston | Knoxville | Los Angeles | New York | St Louis | West Tx
New Mexico | |------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-----------------------| | | | | | Peanut | butter coe | fficients | | | | | FWI* | 0.804
(0.024) | 0.542
(0.032) | 0.484
(0.044) | 0.646
(0.045) | 0.664
(0.037) | 0.687
(0.047) | 0.414
(0.037) | 0.808
(0.073) | 0.669
(0.067) | | Best price | 0.234 (0.022) | 0.548
(0.039) | 0.587
(0.029) | 0.319
(0.030) | 0.289
(0.032) | 0.316
(0.032) | 0.590
(0.040) | 0.403
(0.045) | 0.401
(0.044) | | cons | -0.0038
(0.002) | -0.006
(0.003) | -0.005
(0.004) | 0.0065
(0.004) | 0.007 (0.003) | 0.0042
(0.004) | 0.005
(0.004) | -0.0258
(0.007) | -0.007
(0.007) | | | | | | Coi | ffee coeffici | en ts | | | | | FWI | 0.737
(0.038) | 0.648
(0.031) | 0.437
(0.035) | 0.831
(0.017) | 0.678
(0.028) | 0.716
(0.038) | 0.348
(0.043) | 0.646
(0.023) | 0.915
(0.031) | | Best price | 0.292
(0.040) | 0.386
(0.042) | 0.667
(0.038) | 0.206
(0.017) | 0.306
(0.031) | 0.291
(0.033) | 0.697
(0.047) | 0.375
(0.020) | 0.183
(0.026) | | cons | 0.0040
(0.004) | 0.0058
(0.006) | 0.0162
(0.005) | 0.007
(0.002) | 0.0086
(0.002) | 0.0053
(0.008) | 0.0009
(0.008) | 0.002
(0.003) | -0.0257
(0.006) | ^{*}Fixed Weight Index • Model predictions: 1) Sum of fixed weight and best price ≈ 1 ; 2) Constant close to 0; 3) High R^2 . Note there are lots of reasons why these could fail to hold. Geometric Mean vs. Best Price | | Charlotte | Chicago | Hartford | Houston | Knoxville | Los Angeles | New York | St Louis | West Tx
New Mexico | |------------|--------------------|-------------------|--------------------|------------------|----------------|-------------------|---------------|-------------------|-----------------------| | | | | | Peanut | butter coe | fficients | | | | | Geomean | 0.827 | 0.593 | 0.503 | 0.683 | 0.689 | 0.732 | 0.441 | 0.825 | 0.726 | | | (0.024) | (0.033) | (0.045) | (0.044) | (0.038) | (0.046) | (0.038) | (0.070) | (0.066) | | Best price | 0.209 | 0.493 | 0.571 | 0.290 | 0.270 | 0.276 | 0.567 | 0.373 | 0.353 | | | (0.022) | (0.039) | (0.030) | (0.030) | (0.032) | (0.032) | (0.039) | (0.045) | (0.044) | | cons | -0.0037
(0.002) | -0.007
(0.003) | -0.0053
(0.004) | 0.005
(0.004) | 0.006 (0.003) | 0.0029
(0.004) | 0.004 (0.004) | -0.024
(0.006) | -0.009
(0.007) | | | | | | Coi | ffee coefficie | en ts | | | | | Geomean | 0.743 | 0.694 | 0.453 | 0.863 | 0.699 | 0.756 | 0.373 | 0.672 | 0.937 | | | (0.039) | (0.031) | (0.036) | (0.017) | (0.028) | (0.038) | (0.044) | (0.023) | (0.030) | | Best price | 0.284 | 0.336 | `0.649´ | 0.173´ | 0.285 | 0.248 | `0.668´ | 0.346´ | 0.146 | | | (0.041) | (0.042) | (0.039) | (0.017) | (0.032) | (0.033) | (0.048) | (0.020) | (0.026) | | cons | -0.003 | `0.005´ | 0.0162 | -0.007 | 0.0086 | 0.0051 | 0.0005 | -0 0016 | -0.022 | | | (0.003) | (0.005) | (0.005) | (0.002) | (0.002) | (0.007) | (0.008) | (0 003) | (0.006) | Confirmation that substitution patterns are not well captured: 1) Best price still matters controlling for geometric mean; 2) Best price coefficients are almost the same as with the fixed weight index. Best Fit CES Specifications (x being elasticity parameter) | | Charlotte | Chicago | Hartford | Houston | Knoxville | Los Angeles | New York | St Louis | West Tx New Mexico | |---------------------|---|--|--|--|--|--|---|---|---| | | Peanut butter coefficients | | | | | | | | | | CES × Best price | 4.5
0.893
(0.027)
0.136
(0.025)
-0.0027
(0.002) | 8
0.899
(0.040)
0.167
(0.044)
-0.006
(0.003) | 10
0.624
(0.052)
0.456
(0.036)
-0.0066
(0.004) | 8.5
0.852
(0.049)
0.123
(0.034)
0.0053
(0.003) | 8
0.818
(0.044)
0.171
(0.036)
0.0031
(0.003) | 6.5
0.85
(0.050)
0.15
(0.037)
0.0036
(0.004) | 9.5
0.692
(0.053)
0.377
(0.047)
-0.0057
(0.004) | 10
0.778
(0.063)
0.252
(0.051)
-0.009
(0.005) | 7
0.925
(0.066)
0.105
(0.051)
-0.0027
(0.005) | | | | | | Co | ffee coeffici | en ts | | | | | CES x
Best price | 2
0.748
(0.041)
0.276 | 7
0.98
(0.031)
0.026 | 10
0.562
(0.042)
0.525 | 5
0.998
(0.019)
0.032 | 8.5
0.873
(0.035)
0.118 | 4.5
0.844
(0.041)
0.128 | 10
0.484
(0.047)
0.523 | 4.5
0.755
(0.031)
0.239 | 3.5
0.993
(0.033)
0.0544 | | cons | (0.043)
-0.0021
(0.004) | (0.039)
0.0052
(0.004) | (0.045)
-0.013
(0.005) | (0.019)
-0.0066
(0.002) | (0.039)
0.0068
(0.002) | (0.036)
0.014
(0.007) | (0.053)
0.009
(0.006) | (0.029)
0.0075
(0.003) | (0.029)
-0.0158
(0.006) | Confirmation that substitution patterns are not well captured: 1) Best price also is significant controlling for the optimal CES elasticity of substitution; 2) Tornquist is significantly related to best price, even when controlling for geometric mean. #### Results - Our "structural" model fits well. - The unit value is approximated by the fixed weight and the best price - Coefficients nearly summing one - Constant = 0. - The geometric mean is not a sufficient statistic for the unit value. - Even the best fit CES index is not a sufficient statistic for the unit value (except for coffee in Chicago). See Shapiro and Wilcox, 1997. #### National inflation - Possible that our findings matter in levels, but aren't that informative about rates of change. - High frequency price variation strategies constant through time, shopping behavior constant through time, etc. - Kryvstov and Vincent (2014), Wong and Nevo (2014), Handbury Watanabe and Weinstein (2013), and Basker (2013) make us suspect this isn't true. - Constructed price aggregations by following BLS sampling procedures as closely as possible for 23 grocery products in our data. ### Estimation for 23 products $$ln(unitvalue_t) - ln(unitvalue_{t-1}) = \gamma + ln(\alpha fixed weight agg_t + (1-\alpha)best price_t) - ln(\alpha fixed weight agg_{t-1} + (1-\alpha)best price_{t-1}) + \epsilon_t$$ ## Estimation for 23 products If our strategy well-approximates the unit value changes: - ullet lpha should be between 0 and 1 and represent the share of loyals - \bullet γ should be zero - Fit should be good #### Results: - Alpha coefficients range from 0.2 to 0.7 - Constant terms are small - Explanatory power is high - Implies that unit value is tracked very well by our simple formulation. ### Implications for price measurement- Discussion for FESAC - Our empirics/model highlight the outsized importance of the ordinally lowest price/promoted price in a narrow product category. - Scanner data is used to parameterize as simple substitution model, but our ongoing methodology relies on enumerator collecting TWO prices for an item per outlet. - The sampling selected product the enumerator would ordinarily collect - The best special or deal in the product category - Proposed methodology similar to (my understanding of) BLS airline ticket methodology - Particularly important if promotional intensity/frequency varies over the cycle/ across outlets aimed at different demographics