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Abstract

We propose a new seasonal adjustment method based on the regularized singular value
decomposition (RSVD) of the matrix obtained by reshaping the seasonal time series data.
The method is flexible enough to capture two kinds of seasonality: the fixed seasonality that
does not change over time and the time-varying seasonality that varies from one season to
another. RSVD represents the time-varying seasonality by a linear combination of several
seasonal patterns. The right singular vectors capture multiple seasonal patterns, and the
corresponding left singular vectors capture the magnitudes of those seasonal patterns and how
they change over time. By assuming the time-varying seasonal patterns change smoothly over
time, the RSVD uses penalized least squares with a roughness penalty to effectively extract
the left singular vectors. The proposed method applies to seasonal time series data with a
stationary or nonstationary non-seasonal component. The method also has a variant that can
handle that case that an abrupt change (i.e., break) may occur in the magnitudes of seasonal
patterns. Our proposed method compares favorably with the state-of-art X-13ARIMA-SEATS
method on both simulated and real data examples.

Key Words: Seasonal adjustment, regularized singular value decomposition, X-13ARIMA-
SEATS
JEL Classification: C14, C22.



1 Introduction

Seasonal adjustment of economic and business time series data is of great importance in

economic analysis and business decisions. Proper use of seasonal adjustment methodology

removes the calendrical fluctuations from the seasonal time series, while minimizing distortions

to other dynamics in the data, such as trend. Seasonally adjusted time series data can be used

to evaluate and study the present economic situation (e.g., by examining the business cycle),

and therefore helps policy-makers and economic agents make correct and timely decisions.

Moreover, seasonally adjusted time series data can be entered into time series econometric

models that analyze the non-seasonal dynamic relationships among economic and business

variables. A fairly recent overview of seasonal adjustment methodology and software is given

in Findley (2005).

Generally speaking, there are two approaches for seasonal adjustment, the model-based

approach and the empirical-based approach. The model-based approach directly incorporates

seasonality in the econometric model and jointly studies the seasonal and non-seasonal

characteristics in time series data. It can be argued that the seasonality in one economic

variable can be related to other economic variables, or to the non-seasonal components within

the same variable, and therefore seasonality should not be regarded as a single and isolated

factor; see Lovell (1963), Sims (1974), and Bunzel and Hylleberg (1982), among others.

There are many different modeling strategies of seasonal component, which can be generally

categorized into several types. One modeling strategy treats seasonality as deterministic

linear (nonlinear) additive (multiplicative) seasonal components; see, for example, Barsky

and Miron (1989), Franses (1998), and Cai and Chen (2006). Another popular modeling

strategy considers seasonality as stochastic, where seasonality can be defined as the sum of a

stationary stochastic process and a deterministic process (Canova, 1992), a nonstationary

process with seasonal unit roots (Hylleberg et al., 1990; Osborn, 1993), a periodic process in

which the coefficients vary periodically with seasonal changes (Gersovitz and MacKinnon,

1978; Osborn, 1991; Hansen and Sargent, 1993), or an unobservable component in a structural

time series model (Harrison and Stevens, 1976; Harvey, 1990; Burridge and Wallis, 1990;

Harvey and Scott 1994; Proietti, 2004). Because of the direct specification and estimation of
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the seasonal component in an econometric model, the model-based approach is statistically

more efficient than the empirical-based approach. The disadvantage of the model-based

approach is that the extracted seasonal component can be sensitive to the dynamic and

distributional specifications that are imposed on the econometric model.

The empirical-based approach uses ad hoc methods to extract or remove seasonality and

delivers plausible empirical results with real data. One example is the X-11 method proposed

by the U.S. Census Bureau (Shiskin, Young, and Musgrave, 1965), which uses weighted

moving averages to remove seasonality. This simple empirical method can be criticized for

its inflexibility, lack of support from statistical theory, and possible distortions of those

non-seasonal components in the time series, which subsequently causes misinterpretations of

dynamic relationships across different time series. In order to correct the drawbacks of X-11,

researchers have proposed various improved empirical-based methods, such as X-11-ARIMA

(proposed by Dagum (1980)) and X-12-ARIMA (proposed by the U.S. Census Bureau, and

described in Findley et al., 1998). These improved methods pre-treat the time series data with

ARIMA model to eliminate outliers and (ir)regular calendar effects, and perform forecasting

and backcasting techniques to complete the data points at both ends of the time series before

the weighted moving averages of X-11 are applied to remove seasonal fluctuations.

Given the availability of many seasonal adjustment methods, many national statistical

agencies prefer the empirical-based approach because of its simplicity and nonreliance on model

assumptions. In this paper, we adopt the empirical-based approach and propose a flexible

and robust seasonal adjustment method based on regularized singular value decomposition

(RSVD; Huang, Shen, and Buja, 2008, 2009). We first transform the vector of seasonal

time series data into a matrix whose rows represent periods and columns represent seasons.

Then we perform the RSVD on this matrix, the obtained right singular vectors represent

seasonal patterns and left singular vectors represent the magnitudes of the seasonal patterns

for different periods. RSVD applies regularization to ensure that the extracted seasonal

patterns changes over time slowly. Such regularization improves stability of the extracted

seasonal patterns and their magnitudes. Our new method has merits in the following aspects.

First, it is flexible enough to handle both fixed and time varying seasonality, with or without
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abrupt changes in seasonality. Second, it can accommodate both stationary and nonstationary

stochastic non-seasonal components. Third, because the regularization parameter is fully

data-driven by generalized cross validation, it is robust and applicable to some irregular

seasonal data for which popular seasonal adjustment methods may fail to deliver reasonable

results.

The remaining part of this paper is organized as follows. Section 2 brief reviews the

RSVD. Section 3 introduces some notations for the matrix representation of seasonal time

series. Section 4 gives our basic seasonal adjustment method when non-seasonal component

is stationary. Sections 5 and 6 extend our basic seasonal adjustment method to accommodate

stochastic trend and abrupt changes in seasonality. Simulation results under different data

generating processes (DGPs) are reported in Section 7, and three real data examples are

provided in Section 8. Section 9 concludes.

2 A brief review of regularized SVD

Regularized singular valued decomposition (RSVD) is a variant of singular value decomposition

that takes into account the intrinsic smoothness structure of a data matrix data (Huang,

Shen and Buja 2008, 2009). The basic idea of RSVD is quite intuitive. The data matrix is

considered as discretized values of a bivariate function with certain smoothness structure

evaluated at a grid of design points. To impose smoothness in singular value decomposition,

RSVD imposes roughness penalties on the left and/or right singular vectors when singular

value decomposition is implemented on the data matrix.

Consider a n× p dimensional data matrix X = (xij) whose column mean is zero. The first

pair of singular vectors, u and v respectively, solves the following minimization problem,

(û, v̂) = arg min
u,v

‖X− uvᵀ‖2F , (2.1)

which does not assume any smoothness structure of the data matrix. In contrast, RSVD

explores such smoothness structure by imposing roughness penalties on singular vectors u

and v. In the context of seasonal adjustment, the seasonal time series can be represented as
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a matrix whose each row represents one period of all seasons. We later argue that the data

matrix should have smooth changes across rows, and thus the changes in left singular vector

u are expected to be smooth. Therefore, a relevant RSVD solves the following minimization

problem,

(û, v̂) = arg min
u,v

‖X− uvᵀ‖2F + αuᵀΩu (2.2)

where is Ω is a n×n non-negative definite roughness penalty matrix, α is smoothing parameter,

and vᵀv = 1 for identification purpose.

A simple variant of the power algorithms in Huang et al. (2008, 2009) gives the following

Algorithm 1 for solving the problem (2.2).

Algorithm 1 (Regularized singular value decomposition of X).

Step 1. Initialize u using the standard SVD for X.

Step 2. Repeat until convergence:

(a) v← Xᵀu

‖Xᵀu‖
.

(b) u ← (In + αΩ)−1Xv with α selected by minimizing the following generalized cross-

validation criterion,

GCV(α) =
1

n

‖[In −M(α)]Xv‖2(
1− 1

n
tr{M(α)}

)2 , (2.3)

where In is the n× n identity matrix, and M(α) = (In + αΩ)−1 is the smoothing matrix.

The derivation of the generalized cross-validation criterion used in (2.3) is similar to Huang

et al. (2008, 2009) and can be found in the supplementary materials. The difference of

Algorithm 1 from previous algorithms is that, in Huang et al. (2008) the roughness penalty

is imposed only on v and in Huang et al. (2009) on both u and v. If there is no penality,

i.e., α = 0, the algorithm is essentially the power algorithm for standard SVD and solves the

problem (2.1).

In general, the regularized SVD attempts to find a rank-r decomposition (r ≤ p) such

that X = UVᵀ, where U is a n × r matrix, and V is a p × r matrix. The j-th column in

matrix U and V is called the j-th left and right regularized singular vector of matrix X
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respectively. Algorithm 1 finds the first regularized singular vector pair. The subsequent

regularized singular vector pairs can be obtained by repeatedly applying Algorithm 1 to

the residual matrix X− ûv̂ᵀ. Below, we propose some variants of Algorithm 1 for different

scenarios of seasonal adjustment.

3 Matrix representation of seasonal time series

For a seasonal time series {xt : t = 1 · · · , T} with p seasons, we can represent it (c.f., Buys

Ballot (1847)) as a matrix with p columns, whose each row represents one period of the

seasons, as follows

X =



x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p

· · · · · · · · · · · ·
... xi(t),j(t)

...
...

· · · · · · · · · · · ·

xn,1 xn,2 · · · xn,p


=



x1·

x2·
...

xi·
...

xn·


,

where the 1× p row vector xi· denotes the i-th row of matrix X. Hence, the T × 1 column

vector form of time series xt can be written as

XT ≡ Vec(Xᵀ) = (x1, · · · , xt, · · · , xT )ᵀ = (x1·, · · · ,xi·, · · · ,xn·)ᵀ,

where the function Vec(·) converts a matrix into a column vector by stacking the columns of

the matrix. The subsecripts of the elements in the matrix representation can be obtained

using a mapping of the one-dimensional time subscript t ∈ N to the two-dimensional time

subscripts, (i, j) ∈ N2, denoting the j-th season in the i-th period,

I : N 7→ N2 (3.1)

t → (i(t), j(t)) ≡ (dt/pe, t− bt/pcp),
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Let n ≡ T/p denote the total number of time span included in the time series, so that we

have that 1 ≤ i ≤ n, 1 ≤ j ≤ p, and t = (i(t)− 1)p+ j(t).1

For later use of notations, let ip and 0p denote the p× 1 column vector of ones and zeros

respectively. Moreover, let Qn denote the n-dimensional column-wise de-meaning matrix,

i.e., Qn ≡ In − ini
ᵀ
n/n so that Qna = a − ā, for a vector a = (a1, . . . , an)ᵀ, where ā = ā in,

and ā =
∑

1≤n ai/n.

Let ∆ be the first order difference operator such that,

∆ ≡


−1 1

−1 1
. . . . . .

−1 1


(n−1)×n

. (3.2)

Then the second order difference operator ∆2 is,

∆2 ≡


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1


(n−2)×n

.

Using these difference operators, one widely used choice of the penalty matrix in (2.2) can

take the form Ω ≡ (∆2)ᵀ∆2.

4 Basic seasonal adjustment

This section discusses seasonal adjustment when the non-seasonal component of a time series

is stationary.

1Here we assume that T/p is an integer for simplicity of exposition.
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4.1 Motivation of using regularized SVD for seasonal adjustment

We decompose the seasonal time series {xt}Tt=1 into the deterministic seasonal component st

and stochastic non-seasonal component et in the additive form,

xt = st + et, t = 1, . . . , T, (4.1)

where the non-seasonal component et is a stationary process. Using the mapping I defined in

(3.1), we rewrite (4.1) as

xi,j = sij + ei,j,

where the seasonal component satisfies
∑p

j=1 si,j = 0 for identification. The decomposition

can also be written in matrix from,

X = S + E. (4.2)

When the seasonal effects are fixed, that is, the seasonal pattern does not change from

period to period, st = fj(t), the seasonal component S can be represented as

S = in · fᵀ =


1

1
...

1


n×1

[
f1 f2 · · · fp

]
1×p

=


f1 f2 · · · fp

f1 f2 · · · fp
...

...
...

f1 f2 · · · fp


n×p

. (4.3)

In this case, a single seasonal pattern (f1, f2, · · · , fp) repeats itself in each period. In general,

the seasonal effects may change over time, we use a rank-r reduced SVD of (S− in · fᵀ) to
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represent the time-varying seasonality:

S = in · fᵀ + UVᵀ

=


1
...
...

1


n×1

[
f1 · · · fp

]
1×p

+



u1,1 · · · u1,r

· · · · · · · · ·

· · · ui(t),k · · ·

· · · · · · · · ·

un,1 · · · un,r


n×r



v1,1 · · · v1,p
...

...
...

... vk,j(t)
...

...
...

...

vr,1 · · · vr,p


r×p

(4.4)

where U is a n × r matrix, and V is a p × r matrix with VᵀV = Ir and r ≤ p. For

identification, we require the columns of U to be orthogonal to in or, Uᵀin = 0, which is

equivalent to Qᵀ
nU = U. The second term in the decomposition (4.4) provides an intuitive

explanation for the seasonality. The j-th column vector vj in V represents the j-th seasonal

pattern; and the corresponding j-th column vector uj in U is called pattern coefficients,

since its elements delineate how the j-th seasonal pattern changes across different periods.

Equations (4.2) and (4.4) comprise our basic seasonal adjustment method.

Now we argue that there is intrinsic smoothness in the seasonal signal that warrants using

the regularized SVD. For notational simplicity, assume the fixed seaonality term is void. The

i-th row of S, denoted by si, represents the seasonal behavior of series xt during the i-th

period, which is a linear combination of all the seasonal patterns in V with the i-th row of U

as the coefficients, i.e.,

si = uiV
ᵀ =

p∑
j=1

ui,jvj.

A necessary condition for seasonality is persistence of a seasonal pattern from one year to

the next; for a stochastic approach, persistence is assessed through correlation, whereas in

a deterministic context the concept of smoothness is used instead. Essentially, seasonality

imposes that the ui’s, or, ui,j’s for fixed j (i.e., the elements in each column of matrix U)

change smoothly with i. Based on this smoothness on the decomposition of seasonal matrix

S, we deem that the roughness of each column in the observed data matrix X is due to the
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“contamination” of the stochastic non-seasonal component E in (4.2). This smoothness also

suggests the use of regularized SVD for finding the decomposition (4.2) with a roughness

penalty applied on the columns of U. On the other hand, it is usually not appropriate to

apply a roughness penalty on the columns of V, since seasonal behaviors usually have sharp

increases and falls within a period.

There are two reasons that prevent direct application of Algorithm 1 to the data matrix X

for seasonal adjustment. First, because of the existence of fixed seasonality, it is unrealistic to

restrict the sample mean of each column of X to zero, i.e., to simply subtract the mean from

each column. Instead, the fixed seasonality f should be explicitly estimated in the seasonal

adjustment procedure. Second, for identification, the sum of seasonal terms within a period

should be zero, i.e.,
∑p

j=1 si,j = 0 for each i = 1, · · · , n. (Otherwise, the seasonal component

would incorporate part of the overall level of the series.) Next, taking all these into account,

we develop a procedure that is based on a modification of Algorithm 1.

4.2 Seasonal adjustment procedure

Our basic seasonal adjustment procedure has three steps: 1. Estimate the seasonal pattern

coefficients in U using a modified version of Algorithm 1 to satisfy the zero-sum restriction on

seasonal effects; 2. Estimate the fixed seasonal pattern f and the time-varying seasonal pat-

terns in V; 3 (optional). Estimate the parameters of the stationary non-seasonal components.

The three steps are elaborated below.

Step One: estimating seasonal pattern coefficients in U

To apply Algorithm 1, we first eliminate the fixed seasonal effects in (4.4) by pre-multiplying

the column-wise de-meaning matrix Qn to data matrix X to obtain X̃ = QnX. Since

Qnin = 0n and QnU = U,

X̃ = QnS + QnE = Qn(in · fᵀ + UVᵀ) + QnE

= UVᵀ + Ẽ.
(4.5)
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The resulting column-centered data matrix X̃ does not have a fixed seasonality. To guarantee

the zero-sum seasonal effects requirement S · ip = 0n, we enforce the sufficient conditions of

zero-sum seasonal patterns, fᵀip = 0 and Vᵀip = 0r. Combining above gives the following

modified version of Algorithm 1.

Algorithm 2.

It is the same as Algorithm 1 except that

(1) the data matrix X is replaced by X̃ = QnX, and

(2) the updating equation in Step 2(a) now becomes,

v← QpX̃
ᵀu

‖QpX̃ᵀu‖

In Step 2(a) of this algorithm, pre-multiplication with Qp ensures vᵀip = 0 for the zero-sum

of seasonal pattern requirement, and the normalization is to ensure vᵀv = 1 for identification.

Applying Algorithm 2 we obtain the first pair of estimated right singular vector, denoted

as ṽ, and the left singular vector, denoted as û. The subsequent pair of singular vectors can

be extracted by applying Algorithm 2 to the residual matrix X̃− ûṽᵀ, in which the preceding

effect of the first pair of singular vectors is subtracted from data matrix X̃. Applying this

procedure r times sequentially, we obtain r pairs of regularized singular vectors, concatenating

them into the n × r matrix Û = (û1, · · · , ûr) and the p × r matrix Ṽ = (ṽ1, · · · , ṽr). We

keep Û for use in the next step.

Step Two: estimating fixed/time-varying seasonal patterns in f and V

Recall that XT = Vec(Xᵀ). Given the estimates of seasonal pattern coefficients Û in

Step One, and that the pattern coefficients of fixed seasonal pattern f all take value 1, the

estimates of the time varying seasonal patterns in V and fixed seasonal pattern f can be

obtained jointly by solving a constrained least squares problem,

(f̂ , V̂) = arg min
f ,V

[
XT − Vec(f · iᵀn + VÛᵀ)

]ᵀ [
XT − Vec(f · iᵀn + VÛᵀ)

]
, (4.6)

such that fᵀ · ip = 0, and Vᵀ · ip = 0r.
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Note that the minimization problem in (4.6) can be rewritten as,

β̂ = arg min
β

(XT − Zβ)ᵀ(XT − Zβ) with Rβ = 0r+1, (4.7)

where

Z ≡
[
in ⊗ Ip û1 ⊗ Ip · · · ûr ⊗ Ip

]
,

β ≡ (fᵀ,vᵀ
1, · · · ,vᵀ

r)
ᵀ,

R ≡ Ir+1 ⊗ iᵀp.

Then the estimate β̂ can be written explicitly as,

β̂ ≡ (f̂ᵀ, v̂ᵀ
1, · · · , v̂ᵀ

r)
ᵀ = b− (ZᵀZ)−1Rᵀ[R(ZᵀZ)−1Rᵀ]−1Rb,

where b is the unconstrained least squares estimate for the problem (4.7), i.e.,

b = (ZᵀZ)−1ZᵀXT .

Given the estimates of fixed and time-varying seasonal patterns in f̂ and V̂ obtained from

the constrained least squares regression, we obtain the estimated seasonal component as,

Ŝ = inf̂
ᵀ + ÛV̂ᵀ.

Step Three (optional): estimating ARMA parameters in non-seasonal compo-

nent E

In the second step, we obtain the estimated seasonal matrix Ŝ, which can be re-written

in vector form as {ŝt}Tt=1. Correspondingly, the estimated non-seasonal component can be

extracted by subtracting ŝt from the original time series xt, i.e., êt ≡ xt− ŝt. If the stochastic

component of xt is assumed to follow a stationary ARMA(p, q) process

et ∼ ARMA(p, q), t = 1, . . . , T, (4.8)

the ARMA parameters can then be obtained by fitting the ARMA model to êt. (This is a

“nuisance” model; other stationary models could be used without affecting the methodology.)
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Based on the fitted ARMA model, a feasible GLS estimation can be obtained by weighting

the least squares in (4.6) with the inverse of estimated variance-covariance matrix of the

stochastic non-seasonal component êt. Although such an iterated procedure could potentially

improve estimation accuracy, the gain is quite limited. Thus we recommend to use the

unweighted ordinary least squares estimation in (4.6). This also has the benefit of avoiding

the additional computation burden. Moreover, as the ARMA model is usually not of particular

interest for seasonal adjustment, this step can be omitted from the procedure.

5 Seasonal adjustment when there is stochastic trend

The basic seasonal adjustment assumes that the non-seasonal component of a seasonal time

series is stationary. This section discusses the situation more commonly encountered in

economic data, wherein the non-seasonal component is nonstationary and has a stochastic

trend. More specifically, we assume the non-seasonal component et in the decomposition (4.1)

xt = st + et is an integrated process, i.e., the first difference process of et is stationary.

To see why the basic adjustment procedure can not be applied in this situation, suppose,

for example, et =
∑t

l=1 εl with white noise εl. Re-index using the mapping I introduced

in Section 3 and rewrite et’s into an n × p matrix E, we can easily see that the matrix E

also has a stochastic (nonstationary) trend in each column. Considering the first column in

matrix E, (e1,1, e2,1, . . . , en,1)
ᵀ, we have

e1,1 = ε1,1,

e2,1 = e1,1 +

p∑
j=2

ε1,j + ε2,1,

e3,1 = e2,1 +

p∑
j=2

ε2,j + ε3,1,

...

en,1 = en−1,1 +

p∑
j=2

εn−1,j + εn,1.

Defining v1,1 = ε1,1 and new white noise vi,1 ≡
∑p

j=2 εi−1,j + εi,1 for i ≥ 2 and e0,1 ≡ 0, we
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have

ei,1 = ei−1,1 + vi,1,

which means that the first column of matrix E also follows an I(1) process. Similarly, it can

be shown that all the p columns of the matrix have stochastic trends.

Existence of a stochastic trend in each column of E invalidates the use of regularized SVD

in the basic adjustment procedure, as examination of (4.2) indicates. When the non-seasonal

component is stationary, there is no clear smooth pattern in each column of E, while the

seasonal component changes smoothly in each column of S; therefore the regularized SVD

can separate S from E. However, if there is a stochastic trend in E, the trajectory of each

column of E also looks smooth and thus the regularized SVD will fail to separate S from

E. Moreover, the nonstationarity of the non-seasonal component also invalidates the use

of the least squares in Step Two of the basic adjustment procedure. Our new procedure

is a modification of the basic procedure to address these issues. It also has three steps, as

elaborated below.

Step One: estimating seasonal pattern coefficients in U

We first remove the stochastic trend in the non-seasonal component and then apply the

regularized SVD. To this end, we take the first order column difference of matrix X. This

differencing removes the stochastic trend in E but will not change the column-wise smoothness

of the seasonal component matrix S.

Let p× (p− 1) dimensional matrix ∆c be the transpose of ∆ given in (3.2), i.e.,

∆c ≡



−1

1 −1

1
. . .

. . . . . .

1 −1

1


p×(p−1)

.

It works as a right-hand-side first order difference operator: multiplying a matrix with ∆c
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from the right hand side gives the first order difference of the columns.

Define

X† = X∆c =


x1,2 − x1,1 · · · x1,p − x1,p−1
x2,2 − x2,1 · · · x2,p − x2,p−1
· · · · · · · · ·

xn,2 − xn,1 · · · xn,p − xn,p−1

 ,

S† = S∆c =


s1,2 − s1,1 · · · s1,p − s1,p−1
s2,2 − s2,1 · · · s2,p − s2,p−1
· · · · · · · · ·

sn,2 − sn,1 · · · sn,p − yn,p−1

 ,

and

E† = E∆c =


e1,2 − e1,1 · · · e1,p − e1,p−1
e2,2 − e2,1 · · · e2,p − e2,p−1
· · · · · · · · ·

en,2 − en,1 · · · en,p − en,p−1

 ,

so that right multiplication of (4.2) by ∆c yields

X† = S† + E†. (5.1)

As in the basic adjustment procedure, we represent the seasonal component matrix using

a reduced SVD as in (4.4), that is, S = inf
ᵀ + UVᵀ. Then

S† = S∆c = (inf
ᵀ + UVᵀ)∆c ≡ inf

ᵀ† + UVᵀ†, (5.2)
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where

fᵀ† =
[
f2 − f1 · · · fp − fp−1

]
, Vᵀ† ≡ Vᵀ∆c =


v1,2 − v1,1 . . . v1,p − v1,p−1
v2,2 − v2,1 . . . v2,p − v2,p−1

...
...

vr,2 − vr,1 . . . vr,p − vr,p−1

 .

Equations (4.4) and (5.2) show that the seasonal matrix S and its first order column-differenced

matrix S† share the same left singular matrix U, as the first order differencing operates from

the right side of the matrix. The first order column-difference on E removes the nonstationary

trend in ARIMA(p, 1, q), so that E† is weakly stationary.

We eliminate the fixed seasonal effects in (5.2) by pre-multiplying the column-wise de-

meaning matrix Qn by the first order column-differenced data matrix X† to obtain X̃† = QnX
†.

Since Qnin = 0n and QnU = U,

X̃† ≡ QnS
† + QnE

† = Qn(in · fᵀ† + UVᵀ†) + QnE
†

= UVᵀ† + Ẽ†.
(5.3)

We repeatedly apply Algorithm 1 r times to the matrix X† (or the residual matrices) to

sequentially extract the regularized left singular vectors. Here, unlike in the basic procedure

of the previous section, there is no need to enforce the zero-sum seasonal effects requirement

on the right singular vectors, since we are working on the column differenced data matrix.

Denote the so-extracted U matrix as Û, for use in Step Two.

Step Two: estimating fixed/time-varying seasonal patterns in f and V

Given the estimated left singular vectors in Û, we estimate the fixed and time-varying

seasonal patterns in f and V jointly by solving a constrained least squares problem. In

contrast to the basic adjustment procedure, we need to work with the differenced series to

remove the effect of nonstationarity.

Let ∆XT denote the first difference of XT = Vec(Xᵀ), where ∆ is the differencing operator.
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The constrained least squares problem is

(V̂, f̂) = arg min
V,f

[
∆XT −∆ Vec(f · iᵀn + VÛᵀ)

]ᵀ [
∆XT −∆ Vec(f · iᵀn + VÛᵀ)

]
,

such that Vᵀip = 0r and fᵀ · ip = 0. (5.4)

This minimization problem in (5.4) can also be written as,

β̂ = arg min
β

(∆XT −∆Zβ)ᵀ(∆XT −∆Zβ) with Rβ = 0r+1, (5.5)

where

Z ≡
[
in ⊗ Ip û1 ⊗ Ip · · · ûr ⊗ Ip

]
,

β ≡ (fᵀ,vᵀ
1, · · · ,vᵀ

r)
ᵀ,

R ≡ Ir+1 ⊗ iᵀp.

After solving the constrained least squares problem above, we obtain the estimated seasonal

component as Ŝ = inf̂
ᵀ + ÛV̂ᵀ.

Step Three (optional): estimating parameters in non-seasonal component E

If we assume that the non-seasonal component xt follows the dynamics of an ARIMA(p, 1, q)

process, then the ARIMA parameters can be obtained by fitting an ARIMA model to the

residual series êt = xt− ŝt. Based on the fitted ARIMA model, a feasible GLS estimation of f

and V can be obtained by weighting the least squares in (5.4) with the inverse of the estimated

variance-covariance matrix of the differenced non-seasonal component ∆êt. Although such an

update (or its iterative version) could potentially improve estimation accuracy, the gain is

quite limited and thus in this paper we only consider the unweighted ordinary least squares

estimation in (5.4). In general, the ARIMA model is not of interest for seasonal adjustment,

and this step can be omitted from the procedure.
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6 Seasonal adjustment when there is abrupt change to

seasonality

In previous discussions, it is assumed that the elements in each column of matrix U (represent-

ing the magnitude of a seasaonal pattern in one period) changes smoothly across periods. This

has two implications. First, the magnitude of each seasonal pattern only changes in a smooth

fashion. Second, all seasonal patterns appear in all periods. In reality, these assumptions

may be violated due to sudden changes of statistic criteria (such as sampling method and

scope) or social economic environment (such as economic policies and enforcement of laws

affecting behavior). Hence, seasonal patterns do not necessarily prevail all the time in a time

series: some seasonal patterns may transiently exist with nonzero magnitudes, and abruptly

vanish. Moreover, the change in magnitude of seasonal pattern does not necessarily have

the same “smoothness” across all time spans: the magnitudes of seasonality may present

mild changes for early periods, and then have sharp changes in other periods. This section

discusses how to perform seasonal adjustment to handle these complicated scenarios.

To address abrupt changes (also referred to as breaks or change points) in seasonality,

our method is a modification of procedures presented in the previous two sections. We take

the procedure from Section 5 as an example to show how to modify it. The basic seasonal

adjustment procedure in Section 4 can be modified in a similar manner.

In Section 5, the seasonal adjustment procedure has three steps. To handle the abrupt

seasonality change, we only need to modify Step One. It is sufficient to allow for at most one

abrupt change for each seasonal pattern but the timing of break may be different for each

seasonal pattern. Step One of the previous procedure is based on (5.3), which is

X̃† = UVᵀ† + Ẽ†.

By assuming each column of U is smooth, the previous procedure extracts the columns of U

using the regularized SVD. Since the columns of U are sequentially extracted, we only need

to discuss how to modify the procedure for one column of U, denoted as u, corresponding to

a seasonal pattern v.
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Now, suppose a non-smooth change of seasonality happens after ` seasonal periods and

` = 0 if there is no break. The period index ` separates the entire time span into two portions:

one part starts from the beginning and ends at period `, and the second part contains the rest.

If we know `, the timing of the break, we can apply the following modification of Algorithm

1 to extract u. Since the change point naturally separates u into two parts u1 and u2, the

modified algorithm updates these two parts separately using different smoothing parameters.

Algorithm 3.

It is the same as Algorithm 1 except that

(1) the data matrix X is replaced by X̃† = QnX∆c, and

(2) the updating equation in Step 2(b) now becomes two equations that update u1 and u2

separately by applying the Step 2(b) of the original algorithm to the first ` rows and the last

n− ` rows of X̃† respectively.

In Algorithm 3, using different smoothing parameters for the first ` elements and last n− `

elements of u enhances the flexibilty of the procedure to handle abrupt changes in seasonal

behaviors across time spans. After applying this algorithm r times to sequentially extract the

columns of Û, Step Two of the procedure in Section 5 can be used to obtain f̂ , V̂. Including

the dependence on ` in our notation, we can obtain the estimated seasonal component matrix

Ŝ(`) = inf̂(`)ᵀ + Û(`)V̂(`)ᵀ.

In practice, we don’t know ` and so we need to specify it using data. Since the roughness

penalty involves second order differencing, we have 3 ≤ ` ≤ n− 3. Including the no-break

case of ` = 0, there are (n − 5 + 1) possible values of ` for each seasonal pattern. For r

seasonal patterns, the set of all configurations of breaks is L = {` = (`1, . . . , `r)}, and the

total number of all possible configurations is #(L) = (n− 5 + 1)r.

Next we discuss how to specify the timing of the breaks. We select the optimal specification

of the change points ̂̀ by minimizing the following criterion:

̂̀ = arg min
`∈L

1

T − 1

T∑
t=2

[∆xt −∆ŝt(`)]2, (6.1)
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Note the criterion equals

1

T − 1

T∑
t=2

[∆st −∆ŝt(`)]2 +
1

T − 1

T∑
t=2

∆e2t +
2

T − 1

T∑
t=2

[∆st −∆ŝt(`)]∆et. (6.2)

Here, by taking a first order difference of the times series (i.e., ∆xt and ∆ŝt(`)), we avoid

working with a nonstationary series and the associated difficulties. By the ergodic theorem,

on the right hand side of (6.2), the second term converges to a constant and the third term

converges to zero. Thus, minimizing this criterion essentially finds the best configuration by

matching the extracted seasonal component with the true seasonal component (i.e., focusing

on the first term).

7 Simulation

In this section, we use simulated monthly time series data to evaluate the finite sample

performance of our proposed seasonal adjustment methods and compare them with one

state-of-art method used by U.S. Census Bureau. The benchmark for our comparison is the

X-13ARIMA-SEATS (U.S. Census Bureau, 2016), which is a hybrid program that integrates

the model-based TRAMO/SEATS software developed at the Bank of Spain, described in

Gómez and Maravall (1992, 1997) and the X-12-ARIMA program developed at the U.S.

Census Bureau. In this section and the next, we abbreviate our seasonal adjustment methods

as RSVD (since RSVD plays a critical role in our procedure) and X13, which refers to the use

of the TRAMO/SEATS methodology within the X-13ARIMA-SEATS program. The data

generating processes follow (4.1), and include seasonality with and without abrupt breaks

and stationary/nonstationary ARIMA error terms.

7.1 Seasonality without abrupt breaks

We consider a deterministic monthly seasonal component

sot ≡ soi,j = biaj
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where i = 1, . . . , n and j = 1, . . . , 12 indicate year and month respectively, and the elements

in vector b = (b1, . . . , bn)ᵀ and a ≡ (a1, . . . , a12)
ᵀ take following values,

b = (1 + 1/10, · · · , 1 + i/10, · · · , 1 + n/10)ᵀ,

a = (−1.25,−2.25,−1.25, 0.75,−1.25,−0.25, 2.75,−0.25, 0.75,−0.25, 0.75, 1.75)ᵀ.

The vector a represents the reoccurring variation within each seasonal period. The

magnitude of the seasonal component, captured by the multipliers in b, increases slowly

every year in linear fashion. The seasonality can be also expressed in matrix form as follows,

So = baᵀ ≡ in · fᵀ + uvᵀ (7.1)

where v = a, f = b · aᵀ, u = b− b, with b = n−1
∑n

i=1 bi. In Figure 1, we plot fixed/time-

varying seasonal patterns f and v in upper-left panel, fixed/time-varying pattern coefficients

in and u in upper-right panel, fixed/time-varying seasonality inf
ᵀ and uvᵀ in lower-left panel,

and total seasonality So in lower-right panel.

[INSERT FIGURE 1]

For non-seasonal component, we consider three different data generating processes for

stochastic non-seasonal component et:

• DGP1: et ∼ i.i.d.N(0, 1), for all t,

• DGP2: et ∼ ARMA(1, 1), with φ = 0.8 and ψ = 0.1 with N(0, 1) innovations.

• DGP3: et ∼ ARIMA(1, 1, 1), with φ = 0.8 and ψ = 0.1 with N(0, σ2) innovations and

σ2 = 0.04.

In DGP1 and DGP2, the non-seasonal component is stationary with standard normally

distributed innovations. In DGP2, there exists ARMA(1,1) linear time dependence in et,

while there is no time dependence in DGP1. Given the nonstationarity of DGP3, we set the

variance of innovation in DGP3 to be small so that the sample unconditional variance of

simulated series et is not too large (practically infinite) in finite sample.

After the original seasonal component sot and non-seasonal component et are generated, we
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scale the original seasonal component sot by w, to obtain the working seasonal component st,

st = wsot ≡ κ

√
var(et)

var(sot )
sot ,

so as to control the sample unconditional standard deviation ratio
√

var(st)/ var(et) of

simulated time series data xt = st + et to be exactly κ in each replication of DGPs. For

stationary DGP1 and DGP2, we choose κ = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2 in our

simulation setups; for nonstationary DGP3, we choose κ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1 in our simulation setups. For each combination of DGPs and κ values, we simulate

monthly time series data with sample size T = 600 (i.e., n = 50 and p = 12). We repeat the

simulation B = 500 times for each setup.

We use two evaluation criteria to compare our proposed seasonal adjustment methods

with the X13 method on the accuracy of estimation of the seasonal component. They are the

mean square errors (MSE) and mean percentage errors (MPE):

MSE = E[(ŝt − st)2], MPE = E

∣∣∣∣ ŝt − stst

∣∣∣∣× 100%,

where ŝt is the estimated seasonal component, and they capture absolute and relative losses

respectively. From the simulation, the average values of these two criteria are calculated by

AMSE =
1

B

B∑
b=1

(
1

T

T∑
t=1

(ŝ
(b)
t − st)2

)
, AMPE =

1

B

B∑
b=1

(
1

T

T∑
t=1

∣∣∣∣∣ ŝ(b)t − stst

∣∣∣∣∣
)
× 100%,

where b is the b-th replication and B is the total number of replications.

[INSERT TABLE 1]

Table 1 reports the comparison results between X13 and our RSVD methods. Several

findings are in order. First, for all three DGPs, the absolute loss (AMSE) of the X13 method

keeps increasing as the ratio κ increases, while that of our RSVD method keeps decreases to

a stable value. Second, for all three DGPs, the relative loss (AMPE) of both the X13 and our

RSVD methods keeps decreasing as κ increases, and AMPE of our RSVD method decreases

faster. Third, for stationary DGP1 and DGP2 cases the X13 method has smaller losses of

AMSE and AMPE. However, as κ increases, our RSVD method outperforms X13 in both
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AMSE and AMPE criteria; for nonstationary DGP3 cases, our RSVD method uniformly

dominates the X13 method by delivering smaller losses of AMSE and AMPE regardless of κ

values.

7.2 Seasonality with abrupt breaks

Now we consider a deterministic monthly seasonal component with a non-smooth break

sbt ≡ sbi,j = biaj

where i = 1, . . . , n and j = 1, . . . , 12 indicate year and month respectively, and the elements

in vector b = (b1, . . . , bn)ᵀ and a = (a1, . . . , a12)
ᵀ take the following values,

bi =

 1 + i/10, if 1 ≤ i ≤ n/2,

1 + (n+ 1− i)/5, if n/2 + 1 ≤ i ≤ n.

a = (−1.25,−2.25,−1.25, 0.75,−1.25,−0.25, 2.75,−0.25, 0.75,−0.25, 0.75, 1.75)ᵀ.

The vector a represents the reoccurring variation within each seasonal period, which is

the same as that in Section 6.1. The magnitude of the seasonal component, captured by the

multipliers in vector b, increases slowly in the first n/2 years linearly, doubles at n/2 + 1

year, and then decreases slowly in the last n/2 years linearly. The seasonality can be also

expressed in matrix form so = baᵀ = inf
ᵀ + uvᵀ where the terms are defined the same way in

(7.1). In Figure 2, we plot fixed/time-varying seasonal patterns f and v in upper-left panel,

fixed/time-varying pattern coefficients in and u in upper-right panel, fixed/time-varying

seasonality inf
ᵀ and uvᵀ in lower-left panel, and total seasonality so in lower-right panel.

[INSERT FIGURE 2]

For the non-seasonal component, we only consider the nonstationary ARIMA(1,1,1) process

in DGP3: et ∼ ARIMA(1, 1, 1), with φ = 0.8 and ψ = 0.1 with N(0, σ2) innovations and

σ2 = 0.04. The results of stationary cases for DGP1 and DGP2, which are similar to the

nonstationary DGP3, are omitted here.

After the seasonal component sbt and non-seasonal component et are generated, we use the
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following formula to obtain simulated time series data

xt = st + et ≡ κ

√
var(et)

var(sbt)
sbt + et,

and the sample unconditional standard deviation ratio
√

var(st)/ var(et) is fixed to be exactly

κ in each replication of DGPs. For nonstationary DGP3, we choose κ = 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1 in our setups. For each combination of DGP3 and κ values, we simulate

monthly time series data with sample size T = 600 (i.e., n = 50 and p = 12). We repeat the

simulation B = 500 times for each setup.

[INSERT TABLE 2]

Table 2 reports the comparison results between X13, RSVD without break, and RSVD

allowing for break. Both RSVD methods outperforms X13 by delivering smaller absolute and

relative losses, and the RSVD allowing for break has the smallest errors among the three

methods. The absolute loss (AMSE) of RSVD and X13 increases as the ratio κ increases,

while that of RSVD allowing for break decreases and stabilizes. The relative loss, AMPE,

of the three methods decreases as κ increases, and that of the RSVD allowing for break

decreases most quickly among the three methods.

8 Real data

In the section, we use some real time series data with seasonal behaviors to compare our

proposed RSVD seasonal adjustment method with the X13 method. They are (i) monthly

retail volume data (henceforth retail), (ii) quarterly berry production data of New Zealand

(henceforth berry), and (iii) daily online submission counts (henceforth counts). The three

empirical examples showcase that our proposed seasonal adjustment method could produce (i)

similar seasonal components as the X13 method does; (ii) better seasonal components when

X13 fails; and (iii) seasonal components for other than quarterly and monthly frequencies,

such as daily and weekly.

We apply X13 to the first two time series data sets, and also employ RSVD method with 3
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seasonal patterns (r = 3), allowing for a non-smooth break in each of the three corresponding

left singular vectors with roughness penalties for all the three time series data sets.

8.1 Retail volume data (retail)

We first examine the monthly series of Motor Vehicle and Parts Dealers published by the U.S.

Census Bureau’s Advance Monthly Sales for Retail and Food Services, covering the period

from January 1992 through December 2012.

[INSERT FIGURE 3]

[INSERT FIGURE 4]

Figure 3 and 4 show and compare the seasonal adjustment results of the retail time series

data using both the X13 and RSVD methods. In Figure 3(a) and (b), we plot the fixed and

time-varying seasonal patterns in f and V = (v1,v2,v3) and their corresponding time-varying

pattern coefficients in U = (u1,u2,u3). The red, green, and blue vertical lines in Figure 3(b)

represents the abrupt break detected in u1, u2, and u3 respectively. Figure 3(c) presents the

fixed seasonality in · fᵀ and the time-varying seasonality
∑3

r=1 urv
ᵀ
r . In Figure 3(d), we plot

the two seasonal components extracted by X13 and the RSVD method. Finally, Figure 4

shows the original time series and seasonal adjustments by the X13 and RSVD methods.

First, in Figure 3(c) we find that the fixed seasonal component is larger than the time-

varying seasonal component. Second, the seasonal component st extracted via X13 and RSVD

are very similar for this retail volume time series. The three breaks detected in the three

time-varying pattern coefficients u1, u2, and u3 segment the time series into four periods,

see Figure 3(d) and Figure 4. In the period between red and blue vertical lines, the RSVD

seasonal component is slightly more volatile than the X13 seasonal component, and the RSVD

seasonal adjusted series is slightly smoother than the X13 seasonal adjusted series. In the

other periods, the RSVD seasonal components and adjusted time series are almost the same

as their X13 counterparts.
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8.2 Berry production data of New Zealand

We next examine the quarterly series of New Zealand constant price exports of berries,

covering the period from 1988Q1 to 2005Q2.

[INSERT FIGURE 5]

[INSERT FIGURE 6]

Figure 5 and 6 show and compare the seasonal adjustment results of the berry production

time series data using both X13 and RSVD. In Figure 5(a) and (b), we plot the fixed and

time-varying seasonal patterns in f and V = (v1,v2,v3) and their corresponding time-varying

pattern coefficients in U = (u1,u2,u3). The fixed seasonal pattern has a much larger scale

than the time-varying seasonal patterns, so it is associated with the right vertical axis. The

red, green, and blue vertical lines in Figure 5(b) represents the abrupt break detected in u1,

u2, and u3 respectively. Figure 5(c) presents the fixed seasonality in · fᵀ and the time-varying

seasonality
∑3

r=1 urv
ᵀ
r . In Figure 5(d), we plot the two seasonal components extracted by

X13 and the RSVD method. Finally, Figure 6 shows the original time series and seasonal

adjusted ones by the X13 and RSVD methods.

Because of the strong seasonal behavior of the New Zealand agricultural industry, the

actual berry production in the fall quarter is very close to zero. It turns out that the

X13 method does not deliver a stable and plausible seasonal component: the X13 seasonal

component in Figure 5(d) is excessively negative at certain periods, and therefore the X13

seasonal adjusted series in Figure 6 is excessively high at those periods. In contrast, the RSVD

method produces much more reasonable seasonal component, and the seasonal adjusted series

is much more smoother than the original time series. Moreover, just like the retail volume

data, the fixed seasonal component is much more salient than the time-varying component,

and dominates the seasonality.
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8.3 Online submission count data

Lastly, we study a daily time series of submission counts for 2015 Census Test, covering March

23 through June 1. The Census Test is described in www.census.gov/2015censustests.

Submissions cover both self-responses and responses taken over the telephone at one of

the Census Bureau telephone centers. In this case, the seasonal component to the data

corresponds to day-of-week dynamics, and it is of interest to know whether certain days have

systematically higher activity.

[INSERT FIGURE 7]

[INSERT FIGURE 8]

Figure 7 and 8 show the seasonal adjustment results of the submission counts time series

data using the RSVD method. In Figure 7(a) and (b), we plot the fixed and time-varying

seasonal patterns in f and V = (v1,v2,v3) and their corresponding time-varying pattern

coefficients in U = (u1,u2,u3). The red, green, and blue vertical lines in Figure 7(b)

represents the abrupt break detected in u1, u2, and u3 respectively. Figure 7(c) presents the

fixed seasonality in · fᵀ and the time-varying seasonality
∑3

r=1 urv
ᵀ
r . In Figure 7(d), we plot

the seasonal component extracted by the RSVD method.

Figure 8 plots the seasonal adjustment results of the daily online submission count data in

logarithms. Because the data occurs at a daily frequency, the X13 software cannot be applied,

although in principle model-based approaches could be used. However, the seasonal pattern

(i.e., the weekly pattern) is very dynamic, and hence presents a challenge for parametric

models. In contrast, our proposed RSVD method is still well applicable to the daily data

with weekly seasonality. In Figure 7(c), the fixed and time-varying seasonal components have

similar magnitude. In Figure 7(d), the RSVD seasonal component shows that the seasonal

behavior is quite different at the beginning, middle, and end of the time series. In Figure 8,

the seasonal adjusted series is much smoother than the original series: the submission counts

series increases and reaches its peak in the first week, decrease in the second week, and first

increase and then decrease in the third week. Then, the adjusted series keeps decreasing and

reaches its trough in the sixth week. After that, the adjusted series increases again but with
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more fluctuations.

9 Conclusion

The bulk of seasonal adjustment methodology and software is divided between the model-

based and empirical-based approaches, each with their own proponents among researchers and

practitioners. The empirical-based methods all rely upon linear filters, and therefore struggle

to successfully adjust highly nonlinear seasonal structures. The model-based methods are more

flexible, yielding a wider array of filters, but the methods (whether based on deterministic or

stochastic components) still tend to be linear. When seasonality evinces structural changes

(perhaps a response of consumers to a change in legislation), systemic extremes (perhaps

due to high sensitivity to local weather conditions), or very rapid change (perhaps due to a

dynamic marketplace, where new technologies rapidly alter cultural habits) the conventional

paradigms tend to be inadequate. While it’s possible to specify ever-more complex models,

it is arguably more attractive to devise nonparametric (or empirical-based) techniques that

automatically adapt to a variety of structures in the data – this approach is especially

attractive to a statistical agency involved in adjusting thousands of series each month or

quarter, because devising specially crafted models for each problem series requires excessive

manpower.

The methodology of this paper is empirical in spirit, utilizing a nonparametric method

to separate seasonal structure from other time series dynamics. Like X-12-ARIMA, which

combines nonparametric filters with model-based forecast extension, our RSVD method

combines stochastic models of nuisance structures with the regularized elicitation of seasonal

dynamics. The advantages over purely model-based approaches are an ability to avoid model

misspecification fallacies, allow for structural change in seasonality, handle seasonal extremes,

and capture rapidly evolving seasonality. Moreover, the RSVD method is computationally

fast and almost automatic (the ARIMA specification does require choices of the user), and

hence is attractive in a context where individual attention to thousands of series is a logistical

impossibility. An admitted downside is that RSVD does not quantify the estimation error
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in the seasonal component. With market demands for more data – higher frequency, more

granularity – coupled with tightening budgets, the necessity of automation in data processing

must drive future research efforts; RSVD takes a substantial step in that direction.

Finally, we mention that there are many fruitful directions for extensions to RSVD: use

of the U and V singular vectors to detect seasonality; multivariate modeling, where U

vectors may be common to multiple time series; handling multiple frequencies of seasonality

(e.g., daily time series with weekly and annual seasonality) through an extension of matrix

embedding to an array (tensor) structure. Any of these facets would greatly assist the massive

data processing task facing statistical agencies.
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Table 1: Evaluation of estimates of seasonal component
with no break

AMSE×10−2 AMPE(%)

κ X13 RSVD X13 RSVD

So
t and

DGP1:
et ∼ i.i.d.
N(0, σ2).

0.2 3.8027 4.6657 170.5288 254.4890
0.4 3.6791 4.1408 102.6348 121.0693
0.6 4.1825 4.0750 76.0336 81.0652
0.8 4.5937 3.9338 60.7023 59.8170
1.0 4.9999 3.8731 51.2793 47.4248
1.2 5.2961 3.7851 44.5730 38.9227
1.4 5.9294 3.8602 40.0335 33.5560
1.6 6.1705 3.7273 36.1888 29.4866
1.8 6.3099 3.6876 33.1291 25.8607
2.0 6.8946 3.7938 31.1219 23.5752

So
t and

DGP2:
et ∼
ARMA(1,1),
φ = 0.8,
ψ = 0.1,
and N(0, 1)
innovations.

0.2 3.3401 5.0410 133.2620 174.1002
0.4 4.2161 4.4404 79.2533 83.2970
0.6 5.3341 4.2963 59.7956 54.9942
0.8 6.0918 4.1395 48.3261 41.0960
1.0 6.8841 4.1380 41.5572 32.8152
1.2 7.5151 4.0523 35.7913 26.6444
1.4 8.2039 4.0463 32.4293 23.1987
1.6 9.4137 4.2533 30.3949 20.8738
1.8 9.9428 4.1257 27.6120 17.9895
2.0 10.5706 4.1151 25.5900 16.3031

So
t and

DGP3:
et ∼
ARIMA(1,1,1),
φ = 0.8,
ψ = 0.1,
and
N(0, 0.04)
innovations.

0.1 1.5272 0.3819 39.5679 21.5201
0.2 2.3386 0.3826 25.3175 11.0715
0.3 3.2513 0.3863 19.4587 7.1949
0.4 4.0294 0.3957 16.1756 5.5927
0.5 4.7071 0.3983 14.0200 4.3952
0.6 5.8034 0.4003 12.5008 3.6737
0.7 6.3456 0.3735 11.2921 2.9698
0.8 6.9465 0.3679 10.3224 2.5888
0.9 7.2107 0.3870 9.6452 2.4161
1.0 7.8357 0.3777 9.1788 2.1820
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Table 2: Evaluation of estimates of seasonal component with break

AMSE×10−2 AMPE(%)

κ X13 RSVD RSVD-b X13 RSVD RSVD-b

Sb
t and

DGP3:
et ∼
ARIMA(1,1,1),
φ = 0.8,
ψ = 0.1,
and
N(0, 0.04)
innovations.

0.1 2.5198 0.6291 0.5677 52.0431 22.6619 22.8086
0.2 4.2578 0.9121 0.5423 31.5513 10.6038 10.5901
0.3 5.7358 1.4183 0.5526 24.0914 7.3358 7.1500
0.4 6.9938 2.0564 0.5681 19.9925 5.7384 5.5052
0.5 8.3978 3.0317 0.5648 16.5410 4.5683 4.2532
0.6 10.3549 3.8793 0.5442 14.9055 4.0221 3.6791
0.7 11.3345 5.0405 0.5470 13.0074 3.5411 3.1538
0.8 13.0095 6.7009 0.5380 11.3756 3.1185 2.6947
0.9 14.9500 8.6697 0.5431 10.1673 2.7676 2.3334
1.0 16.9045 9.5812 0.5511 9.7780 2.6702 2.2164
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Figure 1: Simulated seasonal component without break
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Figure 3: Time series plots of (i) original and seasonal adjusted data, (ii) estimated seasonal components, (iii) left singular
vectors u’s, and (iv) right singular vectors v’s.

35



Time

10
.2

10
.4

10
.6

10
.8

11
.0

11
.2

1992M12 1996M12 2001M12 2006M12 2011M12

Orignal time series
RSVD seasonal adjusted
X13 seasonal adjusted

Figure 4: Time series plots of (i) original and seasonal adjusted data

36



1 1 1

1

Quarter

2 2 2

2

3

3 3

3
−

4
−

2
0

2
4

F

F
F

F

1 2 3 4

−
20

00
0

20
00

40
00

60
00(a) Fixed and time−varying seasonal pattern

F
1
2
3

fixed pattern
first pattern
second pattern
third pattern

1
1

1

1 1
1

1
1

1

1
1

1

1

1 1 1
1

−
40

00
−

20
00

0
20

00
40

00
60

00

Year

2 2 2 2 2 2 2 2 2 2 2 2 2 2
2

2

2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1988 1992 1997 2002

(b) Time−varying pattern coefficients

1
2
3

first time−varying pattern coefficients
second time−varying pattern coefficients
third time−varying pattern coefficients

−
40

00
−

20
00

0
20

00
40

00
60

00

Time

1988Q4 1992Q4 1997Q4 2002Q4

(c) Fixed and time−varying seasonality

fixed seasonality
time−varying seasonality

Time

−
60

00
0

−
40

00
0

−
20

00
0

0

1988Q4 1992Q4 1997Q4 2002Q4

(d) Seasonality from X13 and RSVD

X13 seasonality
RSVD seasonality

Figure 5: Time series plots of (i) original and seasonal adjusted data, (ii) estimated seasonal components, (iii) left singular
vectors u’s, and (iv) right singular vectors v’s.

37



Time

0
50

00
10

00
0

15
00

0

1988Q4 1992Q4 1997Q4 2002Q4

Orignal time series
RSVD seasonal adjusted
X13 seasonal adjusted

Figure 6: Time series plots of (i) original and seasonal adjusted data

38



1 1 1 1 1 1 1

1 2 3 4 5 6 7

−
20

0
20

40
60

Seven days in a week

2 2 2 2 2 2 23
3

3
3

3

3

3

F F F F F F F

(a) Fixed and time−varying seasonal pattern

F
1
2
3

fixed pattern
first pattern
second pattern
third pattern

1 1 1 1 1
1 1

1

1

1

2 4 6 8 10

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Week

2

2

2

2
2 2

2 2 2 2

3 3 3 3 3 3 3 3 3 3

(b) Time−varying pattern coefficients

1
2
3

first time−varying pattern coefficients
second time−varying pattern coefficients
third time−varying pattern coefficients

0 10 20 30 40 50 60 70

−
0.

5
0.

0
0.

5

Day

(c) Fixed and time−varying seasonality

fixed seasonality
time−varying seasonality

Week

2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

(d) Seasonality from X13 and RSVD

RSVD seasonality

Figure 7: Time series plots of (i) original and seasonal adjusted data, (ii) estimated seasonal components, (iii) left singular
vectors u’s, and (iv) right singular vectors v’s.

39



Week

2 4 6 8 10

5
6

7
8

9

Orignal time series
RSVD seasonal adjusted

Figure 8: Time series plots of (i) original and seasonal adjusted data

40


	Introduction
	A brief review of regularized SVD
	Matrix representation of seasonal time series
	Basic seasonal adjustment
	Motivation of using regularized SVD for seasonal adjustment
	Seasonal adjustment procedure

	Seasonal adjustment when there is stochastic trend
	Seasonal adjustment when there is abrupt change to seasonality
	Simulation
	Seasonality without abrupt breaks
	Seasonality with abrupt breaks

	Real data
	Retail volume data (retail)
	Berry production data of New Zealand
	Online submission count data

	Conclusion

