FESAC: Measurement of The Digital Economy

Patrick Bajari
VP and Chief Economist Amazon
12/15/2017

Outline

- 1. What is the Digital Economy
- 2. Productivity and Data Collection
- 3. e-Commerce Definitions
- 4. Quality Adjustments
- 5. Recommendations

New Technologies

- The Digital Economy is best understood as a set of technologies
- Examples: Internet, mobile phones, apps, gps/mapping, machine learning, cloud computing, virtual reality, advanced logistics, autonomous driving, artificial intelligence/robotics
- These technologies will be deployed in almost all industries
 - -Agriculture: Tractors controlled via GPS/Satellites to more efficiently plant seed and spread fertilizer. Optimized with ML.
 - -Automotive: Tesla uses connectivity, data, ML/AI, advances in computing for autonomous driving
 - -Retail: Target and Shipt. Personal shoppers fulfill online orders made on your cell phone from local retailer in hours.

Economic Importance

- 1. Connect and communicate with customers
 - -Improves information that customers have about product
 - -Allows firms to continuously improve and personalize the product
 - -Creation of liquid marketplaces
- 2. Efficiency and the scientific method
 - -ML, AI, etc... are fundamentally about building models using data
 - -Remove magic numbers, rules of thumb and other heuristics from software
 - -Replaced with rational decision making and the scientific method

Diffusion

- Much like the tech wave of the 1990's, new technologies take time to diffuse
- Most important barrier- management
- Need to move from a world where core decisions are guided by science instead of heuristics
- How can you manage software guided by machine learning and OR without fluency in these fields?
- Business schools are seeing MBA programs shrink at the margin and analytics grow
- This tech wave may diffuse more slowly than the last

Misconceptions

- The digital economy is not an industry
- These technologies will be adopted by all industries
- Much like the diffusion of faster CPUs, cheaper storage and better software in the 1990s
- "Tech" firms are early adopters because they tend to have more scientifically literature management
- The benefits of improved connectivity and efficiency are common to all industries

Misconceptions

- The economic benefits when we look back in 20 years may be relatively small in tech
 - -Deadhead loads in trucking
 - -Data driven HR to improve retention and productivity
 - -Food wasted between field and consumer in agriculture
 - -Enabling small businesses to reach consumers at scale (400K US jobs associated with merchants on Amazon alone)
 - -More rational decisions in millions of firms using the scientific method to improve worker productivity

Role for agencies

- What technologies are being used and by whom
- Improve measures of the capital stock and use of technologies at the firm level
- Are firms hiring workers with training in ML, Stats, OR
- Relate these technologies to productivity at the firm level
- We are at risk of making bad policy
- Agencies should document the diffusion of these technologies and their relationship to output and efficiency

E-commerce definitions

- Treating e-commerce separate from the rest of retail feels very 1990's and is at odds with how industry is evolving
- All of retail is quickly innovating to use these new technologies in ways that blur a simple division between online and offline
 - -Using voice search in my auto's nav system to find store, gas or restaurant
 - -Ordering coffee in my Starbucks app to avoid the long lines
 - -Using virtual reality to visualize and size a piece of clothing to purchase from a retailer
 - -Pop up store fronts: Indochino (made to measure suits) or Warby Parker (glasses). Showroom with inventory managed using an e-commerce model.
 - -Instore pickup and returns for online sales (e.g. Home Depot reported this year that more than 40% of the company's U.S. online sales are picked up in store)
 - Using delivery service to get goods from physical stores within hours. Amazon Restaurant, Instacart, Shipt, Google Express.
 - Mobile Apps for faster in store checkout (Target) and returns (Walmart)
- Traditional retailers have seen the largest and fastest growing online sales, boosted by their physical locations: according to eMarketer Walmart, the Home Depot, Best Buy, Macy's, and Costco are among top 10 online retailers and have all seen double-digit annual percentage growth in online sales (Walmart was up 47%, Best Buy 30%, and Home Depot 28%).

E-Commerce Definitions

- With Amazon, we are unable to replicate Census's e-commerce sales figures using internal or publicly available sources
- Michael Mandel has shown problems with employment estimates
- Diversion ratios between "e-commerce" and "offline" retail are close to -1 in Forrester Data
- Billion price project shows identical retail "online" and "offline" prices
- Comscore, NPD, Argus, and numerous surveys- clear that customers multihome
- Fails common sense tests for a separate industry

Quality Adjustments

- Adapt technique from the private sector and modernize data collection infrastructure
- Data is increasingly ubiquitous
 - -Augment the CEX with an app that allows agencies to capture credit card, Amazon purchase history, Google search history data
 - -Go behind firms firewalls to build quality adjusted price indices or demand models
 - -Scrape the web for product data.
 - -Create regressors from text using Natural Language Processing
 - -Use image processing for pictures

Quality Adjustments- Hedonics

- Imagine you have daily data on prices
- Let *i* denote a product and *t* time
- $p_{i,t}$ an unbalanced panel of prices
- $x_{i,t}$ time varying product features

Hedonic Price Regressions with Quality Adjustments

Model:

$$\ln(p_{i,t}) = \alpha + x'_{i,t}\beta_t + \gamma'_i f_t + \varepsilon_{i,t}$$

- Regressors $x_{i,t}$ with time varying implicit prices β_t
- Vector of unobserved product attributes γ_i .
- ullet We can interpret f_t as time varying implicit prices on unobserved attributes
- $\varepsilon_{i,t}$ idiosyncratic error
- Ideally with daily data

Hedonic Price Adjustments

- Berry (1994), Berry, Levinsohn and Pakes (1995), Nevo (2001)
- Unoberved product attributes are often quantitatively as important as observed attributes
- We should also use more modern data sources NLP and Image Processing
- Factor Augmented Regression- Bernanke et al(2004), Bai(2009) and Hastie et. al.
- Benkard and Bajari (2005) apply this model to computers to adjust price indexes
- We can use the same specifications for demand systems e.g. quantity or discrete choices are the dependent variable

Hedonic Price Adjustments

- Pooling data across retailers could help to adjust for the unobserved quality associated with new technologies deployed by different retailers (outlet substitution bias)
- Micro-econometric models can learn what is important to customers rather than an approach based on applying ad hoc judgments and dated distinctions such as "online" and "offline"
- We can learn these using observed characteristics or by relating latent factors SKU/retailer differences
- Amazon would volunteer to use a decade of daily price data on millions of products to demo this for the agencies

Summary and Recommendations

- 1. Think of the Digital Economy as a technology, not an industry
- 2. Define what technologies are likely to have economic importance
- 3. Focus on measuring how these technologies are diffused through the economy through software, employment patters capital stock, etc...
- 4. Modernize your data collection
 - -Behind company firewalls
 - -App for collection of consumer panels
- 6. Quality Adjustments and Hedonics
 - -Microeconometric and panel models
 - -Unobserved Product Attributes
 - -Data from NLP, Image Processing and new data sources
- 7. Amazon is willing to help