Measuring the Digital Economy at BLS: Focus on Price Index Programs

David Friedman
U.S. Bureau of Labor Statistics
Federal Economic Statistics Advisory Committee
December 15, 2017
Overview

“Digital economy” meaning still evolving – at BLS focus more on various issues that are often mentioned when others talk about digital economy (high-tech goods/services, Gig economy, etc.)

Focus of this presentation on efforts in PPI and CPI programs

► Background/context
► PPI quality adjustment research and improvement for various high-tech goods/services
► CPI – prevalence of e-commerce & recent quality adjustment efforts
Price indexes “in the trenches”

Goal
- Best possible monthly indexes of price changes that meet measurement objectives and the needs of data users

Constraints on methodology
- Compatible with resources
- Computable and reviewable in 20 days
- Preserve respondent confidentiality
- Avoid undue burden on respondents
- Changes must reduce bias certainly & significantly
Methods to account for new and improved goods and services

<table>
<thead>
<tr>
<th>Method</th>
<th>Requires demand estimation</th>
<th>Based on characteristics, product or other</th>
<th>In production</th>
<th>Reason not in production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality adjustment from producer</td>
<td>No</td>
<td>Characteristics</td>
<td>Yes; PPI, MXP, CPI***</td>
<td></td>
</tr>
<tr>
<td>Input from other surveys</td>
<td>No</td>
<td>Characteristics</td>
<td>Yes; primarily PPI</td>
<td></td>
</tr>
<tr>
<td>Explicit hedonic quality adjustment</td>
<td>No</td>
<td>Characteristics</td>
<td>Yes; CPI*, PPI**, MXP**</td>
<td></td>
</tr>
<tr>
<td>Time dummy hedonic index</td>
<td>No</td>
<td>Characteristics</td>
<td>No#</td>
<td>Restrictive assumptions</td>
</tr>
<tr>
<td>Imputed hedonic index</td>
<td>No</td>
<td>Characteristics</td>
<td>No</td>
<td>Requires larger sample sizes</td>
</tr>
<tr>
<td>Discrete choice</td>
<td>Yes</td>
<td>Characteristics</td>
<td>No</td>
<td>High computational intensity and cost; poor timeliness</td>
</tr>
<tr>
<td>Consumer surplus</td>
<td>Yes</td>
<td>Product</td>
<td>No</td>
<td>Endogeneity problems (under investigation); high cost</td>
</tr>
<tr>
<td>Disease-based price indexes</td>
<td>No</td>
<td>Treated disease</td>
<td>Partial; BEA and BLS experimental indexes</td>
<td>Do not yet adjust for differences in outcomes</td>
</tr>
</tbody>
</table>

* See https://www.bls.gov/cpi/quality-adjustment/home.htm for CPI items that are quality adjusted using hedonic models.
** PPI and MXP do explicit hedonic quality adjustment for computers.
*** For example, this is done for new vehicles in the CPI and PPI.
#PPI is currently working on first use of time dummy variable in building hedonic QA model
PPI Quality Adjustment Research & Improvements

- Microprocessors – research & development (but almost ready for first use in production)
- Broadband Services - in production since January 2017
- Cloud computing services – in research & development
PPI Microprocessors - Motivations

- Price trends in PPI for microprocessors (matched model methodology)
 - 2000-2009: -33.66 percent per year
 - 2009-2014: -6.28 percent per year

- Industry changes in recent years present measurement challenges

- Byrne, Oliner, Sichel (BOS) work using two-year overlapping time-dummy models found -42 percent per year price change, on average, from 2009-2013
PPI Microprocessors – R & D

- First replicated BOS model with data available to PPI
- Used data set to explore BOS results
- Looked at other product characteristics besides performance benchmark focused on by BOS
- Developed PPI microprocessor hedonic model
 - Based off BOS methodology
 - Use quarterly data for 2009-2017
 - Replace SPEC benchmarks with PassMark benchmark
 - Modified BOS use of “early prices” to include all microprocessors introduced within 15 months of a given quarter
Results: Counterfactual indexes – Microprocessors

Microprocessors

- Min BIC
- Min MSE
- Official PPI
Results: Counterfactual indexes – Semiconductors

Semiconductors - Primary Products

- Min BIC
- Min MSE
- Official PPI
PPI Microprocessors – Next Steps

- Results shown today reflect updates from CRIW summer workshop feedback & subsequent discussions
- Made some adjustments in approach but nothing major
- Getting ready to introduce new hedonic model for microprocessors in production soon
- Novel approach for PPI and BLS
 - First use of a time dummy hedonic model & application of statistical learning methods in PPI
 - Potential template for hedonic QA for other industries that see rapid technological change
PPI – Broadband Services

- With release of PPI data for December 2016, began using hedonic QA for broadband items with PPI for internet access services (DSL, cable, & fiber optic services)
- Rapid technological change – need to determine VQA for increased broadband download or upload speed
- Hard to get information from survey participants so developed and now use hedonic model to estimate
- Plan to re-estimate model annually
PPI – Cloud Computing

- R & D on hedonic QA model for cloud computing
- Use product & price data from Amazon Web Services (AWS), Microsoft Azure, & Google Cloud
- Impacts PPI for Hosting, ASP, & other IT infrastructure provisioning services
- So far developed preliminary linear model to derive MSE for several price determining characteristics
CPI – E-Commerce Statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter</th>
<th>Retail Sales (Census)</th>
<th>TPOPS Sample Frame*</th>
<th>CPI C&S Initiation Sample (Feb and Aug)</th>
<th>Initiation Sample Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Q4</td>
<td>7.5%</td>
<td>8.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Q1</td>
<td>7.8%</td>
<td>9.6%</td>
<td>8.1%</td>
<td>Feb16</td>
</tr>
<tr>
<td>2016</td>
<td>Q2</td>
<td>8%</td>
<td>9.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Q3</td>
<td>8.2%</td>
<td>8.7%</td>
<td>9.2%</td>
<td>Aug16</td>
</tr>
<tr>
<td>2016</td>
<td>Q4</td>
<td>8.2%</td>
<td>8.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Q1</td>
<td>8.5%</td>
<td>10.2%</td>
<td>8.3%</td>
<td>Feb17</td>
</tr>
<tr>
<td>2017</td>
<td>Q2</td>
<td>8.9%</td>
<td>9.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Q3</td>
<td>9.1%</td>
<td>8.5%</td>
<td>10.9%</td>
<td>Aug17</td>
</tr>
</tbody>
</table>

*TPOPs value is a percentage of eligible outlets reported (denominator excludes garage sales, commissaries, etc. that are not eligible in CPI).

Percent of CPI Field Collected Data that is collected via the Web (Oct 2015 - Nov 2017)

- 2015: 7.5%
- 2016 Q1: 7.8%
- 2016 Q2: 8%
- 2016 Q3: 8.2%
- 2016 Q4: 8.2%
- 2017 Q1: 8.5%
- 2017 Q2: 8.9%
- 2017 Q3: 9.1%

Data collected via the Web from Oct 2015 to Nov 2017.
CPI Quality Adjustment Research & Improvements

- Collaboration with BEA – focus on new data sources/ division of labor
- Wireless telephone services
- Cell phones
- Cable, internet, & landline (“wireline services”)
CPI: Wireless Telephone Services

- Refined quality adjustment process in early 2017, reducing the rate of non-comparable substitution
 - Better estimation of price of data plans with included data amounts not offered to customers in previous period using data from Whistle Out site
- Work with JD Household data shared by BEA
 - Potential to guide field item selection procedures & substitution frequency
- Research Whistle Out data for potential data collection replacement
CPI: Cell Phones

- Using datasets from BEA, BLS built a new QA hedonic model—targeted for introduction in production starting in January 2018
- Directed substitutions 2x/year, as major new smart phone models are released (5/2018 for first)
- QA hedonic models will be updated twice yearly to correspond with release dates
CPI: Cable, Internet, & Landline (“wireline services”)

- Researching alternative data set shared by BEA
 - Cover standalone and triple-play bundled versions of these wireline services
 - Potential for development of QA models if viable
 - Potential for replacing/supplementing data collection

- JD Household data may be helpful here too
 - Improve field procedures (item selection & substitution frequency)
Conclusions

- One potential drawback – offer prices vs. transaction prices in data sources
- Many similar challenges to use of other alternative data sources (cost of data to refresh models, can be labor intensive, etc.)
- Obtaining corporate data may still be the best answer if possible
- Will continue efforts to improve our price measurement of digital economy-related areas
Contact Information

David Friedman
Associate Commissioner for Prices & Living Conditions

www.bls.gov/bls/inflation.htm
202-691-6307
Friedman.David@bls.gov
Other Slides supplementing main presentation in case they are needed
Overview of BLS Price Indexes

- **Consumer Price Index (CPI)**—prices paid by urban consumers

- **Producer Price Index (PPI)**—prices received by domestic producers

- **Import and Export Prices (MXP)**—prices related to trade between US & rest of world
Impact of estimated biases to Personal Consumption Expenditures deflators on measured real GDP growth, 2000-2015

<table>
<thead>
<tr>
<th>Expenditure Category</th>
<th>Share of GDP</th>
<th>Lebow-Rudd est. bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical care:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prescription drugs</td>
<td>1.3% 1.6% 1.9% 2.3%</td>
<td>1.20%</td>
</tr>
<tr>
<td>Nonprescription drugs</td>
<td>0.2% 0.2% 0.3% 0.3%</td>
<td>0.50%</td>
</tr>
<tr>
<td>Medical care services*</td>
<td>9.8% 10.9% 12.2% 12.5%</td>
<td>0.76%</td>
</tr>
<tr>
<td>PC services (incl. internet)**</td>
<td>0.2% 0.2% 0.4% 0.6%</td>
<td>6.50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medical care:</th>
<th>Contributions to real GDP growth (percentage points per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescription drugs</td>
<td>-0.02 -0.02 -0.02 -0.03</td>
</tr>
<tr>
<td>Nonprescription drugs</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>Medical care services</td>
<td>-0.07 -0.08 -0.09 -0.09</td>
</tr>
<tr>
<td>PC services (incl. internet)</td>
<td>-0.01 -0.01 -0.03 -0.04</td>
</tr>
<tr>
<td>All other PCE categories</td>
<td>-0.10 -0.10 -0.10 -0.09</td>
</tr>
<tr>
<td>All PCE categories</td>
<td>-0.20 -0.22 -0.24 -0.26</td>
</tr>
</tbody>
</table>

* Bias estimate for medical care services has been adjusted based on data from AHRQ (2017).
** Bias estimate for PC services (including internet) is based on Greenstein and McDevitt (2011).
NOTE: Total for All PCE categories may not add exactly to the sub-components shown in the columns due to rounding.
Impact of estimated biases to Private Fixed Investment deflators on measured real GDP growth, 2000-2015

<table>
<thead>
<tr>
<th>Equipment type</th>
<th>Share of GDP</th>
<th>Byrne, Fernald, and Reinsdorf estimated bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication equipment</td>
<td>1.2%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Computers and peripherals</td>
<td>1.0%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Other info. systems equipment</td>
<td>0.7%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Software</td>
<td>1.8%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

Contributions to real GDP growth (percentage points/year)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication equipment</td>
<td>-0.07</td>
<td>-0.04</td>
<td>-0.03</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computers and peripherals</td>
<td>-0.08</td>
<td>-0.05</td>
<td>-0.04</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other info. systems equipment</td>
<td>-0.05</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>-0.03</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| All PFI categories | -0.23| -0.17| -0.16| -0.15| | |

Note: The contributions to GDP growth for 2000 and 2005 are calculated using the bias estimates for 1995–2004; the contributions for 2010 and 2015 use the bias estimates for 2004–2014. Total for All PFI categories may not add exactly to sub-components shown in columns due to rounding.
A PPI Perspective: Growth in NAICS 454110

454110 Electronic and Mail Order Shopping Value of Shipment (VOS) Data

<table>
<thead>
<tr>
<th></th>
<th>454110 VOS</th>
<th>Retail Trade VOS</th>
<th>% of Retail Trade VOS</th>
<th>In Scope VOS</th>
<th>% of In Scope VOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>$122,409,558</td>
<td>$1,206,742,161</td>
<td>10.1438%</td>
<td>$23,397,286,985</td>
<td>0.5232%</td>
</tr>
<tr>
<td>2007</td>
<td>$87,547,853</td>
<td>$1,175,745,286</td>
<td>7.4462%</td>
<td>$21,793,963,662</td>
<td>0.4017%</td>
</tr>
</tbody>
</table>
CPI – Prevalence of E-Commerce

- For first five months of 2017, 12.1% of item/price data collected by field was from the internet ("Web") – compared with 11.9% for all twelve months in 2016
- ??% of data collected in National Office was also from "Web"
- As of Q3 2016, E-COMM percent in TPOPS Sample Frame was 8.0%, 8.1% in C&S Initiation Sample

(NOTE: This info is preliminary – subject to update by FESAC meeting.)