The Interplay Between Research Innovation and Federal Statistical Practice

Stephen E. Fienberg
Department of Statistics
Center for Automated Learning & Discovery
Carnegie Mellon University
Pittsburgh PA

Some Themes

- Methodological innovation comes from many places and in different colors and flavors.
- Importance of cross-fertilization.
- Cycle of innovation.
- Examples: Bayesian inference, Log-linear models, Missing data and imputation, X-11-ARIMA.

Some Themes (cont.)

- Statistical thinking for non-statistical problems:
 - e.g., disclosure limitation.
- Putting several innovations to work simultaneously:
 - New proposal for census adjustment.
- New challenges

Methodological Innovation in Statistics

- Comes from many places and in different colors and flavors:
 - universities:
 - statisticians.
 - other methodologists.
 - government agencies.
 - Private industry.
 - nonprofits, e.g., NISS.
 - committees at the NRC.

Role of Statistical Models

- "All models are wrong, but some models are useful." John Tukey?
- Censuses and surveys attempt to describe and measure stochastic phenomena:
 - 1977 conference story.
 - U.S. census coverage assessment:
 - "Enumeration".
 - Accuracy and Coverage Evaluation (ACE) survey.
 - Demographic Analysis.

Importance of Cross-Fertilization

- Between government and academia.
- Among fields of application:
 - e.g., agriculture, psychology, computer science
- Between methodological domains e.g., sample surveys and experimental design:

 Jan van den Brakel Ph.D. thesis, EUR
- Using other fields to change statistics e.g., cognitive aspects of survey design:

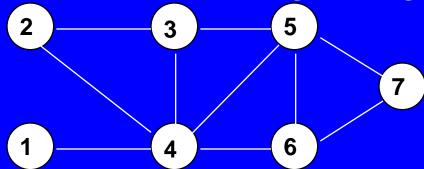
Krosnick and Silver; Conrad and Shober

Cycle of Innovation

- Problem need
- Formal formulation and abstraction
 - implementation on original problem
- Generalizations across domains
- General statistical theory
- Reapplication to problem and development of extensions
 - reformulation

Example 1: Bayesian Inference

- Laplace
 - role of inverse probability.
 - ratio-estimation for population estimation.
- Empirical Bayes and shrinkage (borrowing strength) hierarchical models.
- NBC election night prediction model.
- Small area estimation.
 - Elliott and Little on census adjustment Singh, Folsom, and Vaish


Example 2: Log-linear Models

- Deming-Stephan iterative proportional fitting algorithm (raking).
- Log-linear models and MLEs:
 - margins are minimal sufficient statistics.
 - implications for statistical reporting.
- Some generalizations: generalized IPF, graphical models, exponential families.
- Model-based inference for raking.

Graphical & Decomposable Log-linear Models

• Graphical models defined in terms of simultaneous conditional independence relationships or absence of edges in graph.

Example:

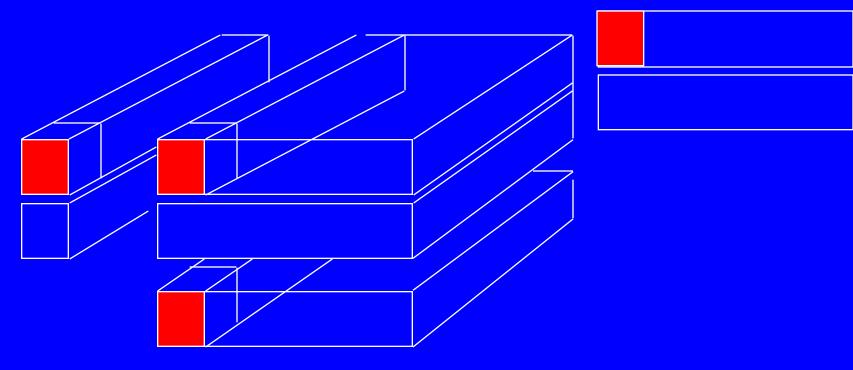
 Decomposable models correspond to triangulated graphs.

Example 3: Missing Data and Imputation

- Missing data problems in survey and censuses.
 - solutions: cold deck and hot deck imputation
- Rubin 1974 framework representing missingness as random variable.
- 1983 CNSTAT Report, Madow et al (3 vol.).
- Rubin (1997) Bayesian approach of multiple imputation.
 - NCHS and other agency implementations session on imputation and missing data

Example 4: X-11-ARIMA

- BLS seasonal adjustment methods:
 - X-11 and seasonal factor method (Shishkin et al., 1967)
- ARIMA methods a la Box-Jenkins (1970):
 - Cleveland and Tiao (1976).
 - -X-11 + ARIMA = X-11/ARIMA (Dagum, 1978).
- Levitan Commission Report (1979).
- X-12-ARIMA.


Burck and Salama

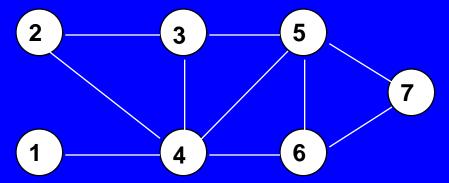
Statistical Thinking for Non-Statistical Problems

- Disclosure limitation was long thought of as non-statistical problem.
- Duncan and Lambert (1986, 1989) and others explained statistical basis.
- New methods for bounds for table entries as well as new perturbation methods are intimately linked to log-linear models.

NISS Disclosure Limitation Project - Karr and Sanil

Query System Illustration (k=3)

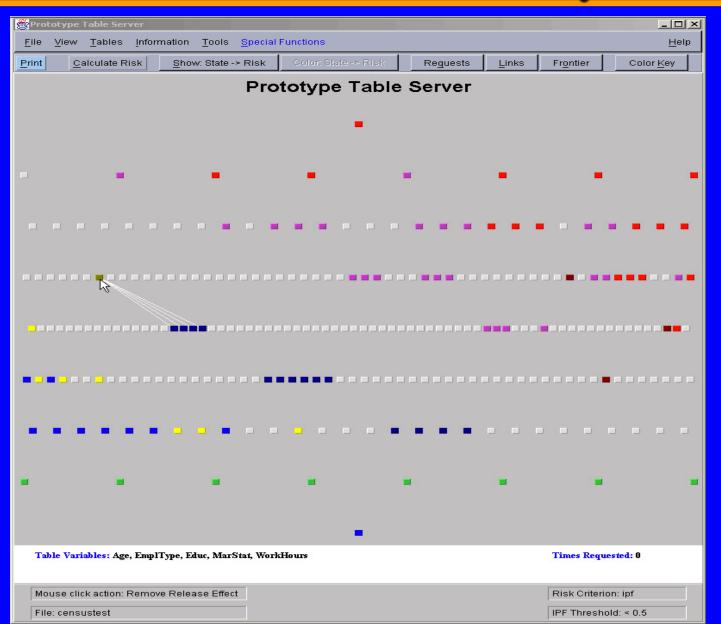
Challenge: Scaling up approach for large k.


Bounds for Entries in k-Way Contingency Table

- Explicit formulas for sharp bounds if margins correspond to cliques in decomposable graph. (Dobra and Fienberg, 2000)
 - Upper bound: minimum of relevant margins.
 - Lower bound: maximum of zero, or sum of relevant margins minus separators.

Example:

cliques are {14}, {234},{345}, {456}, {567}


separators are {4}, {34},{45}, {56}

More Bound Results

- Log-linear model related extensions for
 - reducible graphical case.
 - if all (k-1) dimensional margins fixed.
- General "tree-structured" algorithm. Dobra (2000)
 - Applied to 16-way table in a recent test.
- Relationship between bounds results and methods for perturbing tables.
- Measures of risk and their role.

NISS Table Server: 8-Way Table

Census Estimation

- 2000 census adjustment model uses variant of dual systems estimation, combining census and ACE data, to correct for
 - omissions.
 - erroneous enumerations (subtracted out before DSE is applied).
- DSE is based on log-linear model of independence.
 - UK and US papers on DSE adjustment methods

Dual Systems Setup

Sample

		In	Out	Total			
Census	In	a	b	n_1			
	Out	c	<i>d</i> ??	$N-n_1$			
	Total	n_2	N - n_2	N??			
$\hat{N} = n_1 n_2 / a$							

Putting Several Innovations to Work Simultaneously

- Third system for each block based on administrative records *StARS/AREX*
- Log-linear models allow us to model dependence between census and ACE:
 - in all K blocks have census and AREX data.
 - in sample of k blocks also have ACE data.
 - missing data on ACE in remaining *K-k* blocks.

Triple System Approach

• Example of small minority stratum from 1988 St. Louis census dress rehearsal.

		Adı	mınıstra	ative List		
		P	P Sample		A Sample	
		San				
		P	Ā	P	Ā	
Census	P	58	12	69	41	n = 268
	A	11	43	34	_	

New Bayesian Model

- Bayesian triple-systems model:
 - correction for EEs in census and administrative records.
 - missing ACE data in *K-k* blocks.
 - dependencies (heterogeneity) among lists.
 - smoothing across blocks and/or strata using something like logistic regression model.
- Revised block estimates to borrow strength across blocks *and* from new source.

New Challenges

Challenges of Multiple-Media Survey Data

- Example: Wright-Patterson A.F. Base Sample Survey
 - Demographic data PLUS three 3-dimensional full-body laser surface scans per respondent.
 - Interest in "functionals" measured from scans.
- Ultimately will have 50 MB of data for each of 10,000 individuals in U.S. and The Netherlands/Italy.

Some Methodological Issues With Image Data

- Data storage and retrieval.
- Data reduction, coding, and functionals:
 - design vs. model-based inference.
- Disclosure limitation methodology.

Standing Statistics On Its Head