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Abstract 

We describe an extension of the pseudo maximum likelihood (PML) estima-
tion method developed by Skinner (1989) to multistage strati¯ed cluster sampling 
designs, including ¯nite population and unequal probability sampling. We con-
duct simulation studies to evaluate the performance of the proposed estimator. 
The estimator is also compared to the general estimating equation (GEE) method 
for linear regression implemented in SUDAAN. We investigate the distribution of 
the likelihood ratio test (LRT) statistic based on the pseudo log-likelihood value 
and describe an adjustment that gives correct chi-square distribution. The per-
formance of the adjusted LRT is evaluated with a simulation study based on the 
Behrens-Fisher problem in a strati¯ed cluster sampling design. 
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1 Introduction 
Estimation of simple statistical models such as linear and logistic regres-
sions with survey data is well established and widely used. These models 
are however inadequate for analyzing large multivariate data sets that are 
being made available by governmental agencies and other research institu-
tions. Increasingly analysts are turning to advanced multivariate models 
to better penetrate these complex data structures. Simultaneous regression 
equations, structural equation models, time series models, log-linear models, 
mixture models, mixed models, latent class models, latent variable models 
and combinations of these are frequently the analysts' choice. Methods for 
estimating such models however with data obtained by multistage survey 
designs are not well established. Frequently analysts use methods designed 
for simple random sampling followed by an ad-hoc adjustment for variance 
estimation, see Stapleton (2005) for a review of such methods. These meth-
ods however are somewhat arbitrary and their theoretical properties are not 
well known. Until recently many statistical packages implemented such ad 
hoc methods as well, see Asparouhov (2005a). 
Skinner (1989) introduced the pseudo maximum likelihood (PML) method 

which can be used to estimate any general multivariate parametric model 
with data from a complex survey design which includes strati¯cation, cluster 
sampling, and unequal probability sampling with replacement. This method 
is in fact applicable to a more general sampling design which includes strati-
¯ed multistage sampling with unequal probability sampling with replacement 
at the primary sampling stage while allowing for with and without replace-
ment unequal probability sampling on subsequent stages. This sampling 
design is known as the WR sampling design and is pioneered and imple-
mented in the software package SUDAAN (RTI, 2002). SUDAAN however 
is based on the general estimating equations (GEE) methodology and is only 
capable of estimating simple univariate models such as linear and logistic 
regression. Mplus, Version 3 (Muthen & Muthen, 1998-2004), implements 
the PML method for the WR design and many multivariate models with 
normal, discrete and other parametric distributions for observed and latent 
variables. More information on Mplus modeling capabilities can be obtained 
at www.statmodel.com. Other multivariate modeling packages, such as LIS-
REL (SSI, 2005) have recently adopted the PML method as well. 
The three fundamental sampling designs, WR, WOR and WORUNEQ, 

pioneered in SUDAAN,  are  widely  used in  practice  and  are  being  adopted  
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in other software packages. The WOR design is a strati¯ed multistage sam-
pling design with equal probabilities without replacement sampling at the 
PSU level and equal probabilities with or without replacement sampling at 
the subsequent stages. The WORUNEQ is a strati¯ed multistage design 
with unequal probabilities without replacement sampling at the PSU level 
and with or without replacement equal probabilities sampling at subsequent 
stages. 
The contributions of this paper are as follows. In Section 2, we expand 

Skinner's (1989) PML method to the WOR and WORUNEQ designs. We 
also discuss the asymptotic properties of the PML estimator. It is surprising 
that this °exible estimation method has not been developed yet for these 
common sampling designs. In Section 3 we conduct a simulation study on a 
factor analysis model estimated from a two-stage WOR design. In Section 
4  we evaluate the  performance of four d i®erent  estimators  for  samples  with  
small number of PSUs. The four estimators are PML, implemented in Mplus, 
the GEE method implemented in SUDAAN, the GEE with exchangeable 
correlation method implemented in SUDAAN and the bias corrected PML 
method we propose in this article. In Section 5 we investigate the distribu-
tion of the likelihood ratio test statistic based on the pseudo log-likelihood 
value and describe an adjustment that gives a correct chi-square distribution. 
The e®ects of various complex sampling features on the distribution of the 
LRT statistic are illustrated with a simulation study based on the Behrens-
Fisher problem in a strati¯ed cluster sampling design. All computations are 
performed with Mplus, Version 3 (Muthen & Muthen, 1998-2004), unless 
explicitly noted. 

2 Pseudo Maximum Likelihood Estimation in 
Multistage Sampling 

In this section we describe the pseudo maximum likelihood estimation for a 
general parametric model and the three sampling designs WR, WOR, and 
WORUNEQ. Suppose that the log-likelihood for individual i is Li and the 
model parameters are µ. Let T i be the vector of ¯rst derivative of Li with 
respect to µ. Suppose that wi are the weights produced by the complex 
sample design, i.e., wi = 1=pi, where p i is the probability that individual i 
is included in the sample. Let n be the size of the sample population and 
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N be the size of the whole target population. The true model parameters µ0 
are de¯ned as the unique values that maximize the likelihood of the target 
population 

NX 
L0 = Li: 

i=1 

 ^The PML estimates µ are de¯ned as the parameters that maximize the 
weighted sample log-likelihood 

nX 
L = wiLi: 

i=1 

These estimates are obtained by solving the weighted score equations 
nX 
wiTi = 0: 

i=1 

For large sample size the weighted sample score equation is an approximation 
to the total score equation 

n NX X 
wiTi ¼ Ti = 0: 

i=1 i=1 
(1) 

^ which is solved by  the  true  parameter µ 0. Thus t he P ML e stimate µ  is a con-
sistent ^ estimate of µ. The asymptotic variance of µ is given by the asymptotic 
theory for maximization estimators (see Amemiya (1985), Chapter 4) 

(L00)¡1V ar(L0)(L00)¡1; (2) 

where 0 and 00 denote the ¯rst and the second derivatives of the weighted sam-P 
ple log-likelihood. The middle term V ar(L0) = V a r( n

i=1 wiTi) is computed 
according to the formulas for the variance of the weighted estimate of the 
total described in Cochran, Chapter 11 (1977) or RTI (2002) taking the ap-
propriate design into account. To describe V ar(L0) we index the individual 
observations by membership in each of the sampling stages. That is, individ-
ual i1; i2; i3::: is individual in strata i1, PSU i 2, secondary sampling unit i3, 
etc. Let ni1:::il be the number of sampling subunits in sampling unit i1:::il, 
i.e., ni1 is the number of PSUs in strata i1, ni1i2 is the number of secondary 
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sampling units in PSU i2 in strata i1, etc.  Let Z i1:::ir = wi1:::ir Ti1:::ir and let 
r be the total number of sampling stages. X X 

Zi1:::il = Zi1:::il il+1 = Zi1:::ir ; 
il+1 il+1;:::;ir 

1¹Zi1:::il = Zi1:::il ; ni1:::il X 
¹ ¹si1:::il = (Zi1:::il+1 ¡ Zi1:::il )

T (Zi1:::il+1 ¡ Zi1:::il ): 
il+1 

Suppose that ½ 
fi1:::il f ¤ = i1:::il 

if the sampling in the i1:::il unit is WOR 
o therwise  0

For the WR design, regardless of the number of sampling stages, the variance 
of the score is given by X n

V ar(L0) =  i1 s : 
n ¡ 1 i1 
i1i1 

For the WOR design, for compactness, we describe the variance of the score 
for a strati¯ed 3 stage sampling design 

V ar(L0) =  V1 + V2 + V3; 

where 

nX ¤ i1i2V2 = (1 ¡ f )fi
¤ 
1 

si1i2i1i2 n ¡ 1i1;i2 i1i2 

X n
V1 = (1 ¡ f ¤ ) i1 si1i1 n ¡ 1i1i1 

¤ ¤ 1 2 3V3 = (1 ¡ fi1i2i3 
)fi1 
fi
¤
1i2 

si1i2i3 n ¡ 1i1;i2;i3 i1i2i3 

X n i i i 

For the WORUNEQ design we describe the variance of the score again for a 
strati¯ed 3 stage sampling design. The probability that PSU i2 in stratum 
i  
1 is selected is denoted by pi2 i1 . The probability that both PSUs i2 and i0j 2 
in stratum i1 are selected in the sample is denoted by pi2i0 ji12

V ar(L0) =  V1 + V2 + V3; 
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where 

X 

XX X 
V1 = 

pi2ji1 pi0 2ji1 ¡ pi2i0 2ji1 
(Zi1i2 ¡ Zi1i0 2 

)2 

pi2i0 2ji1i1 i2 i0 2>i2 X ni1i2V2 = (1 ¡ f ¤ )pi2ji1 si1i2i1i2 ni1i2 ¡ 1i1;i2 

ni1i2i3f ¤ V3 = (1 ¡ f ¤ )pi2ji1 si1i2i3 :i1i2i3 i1i2 ni1i2i3 ¡ 1i1;i2;i3 

The above estimation method hinges on the approximation (1) of the 
total score, which can be achieved if the number of PSU units is large and the 
residuals of the score estimation within each PSU units satisfy Lindeberg's 
extension of the central limit theorem (see Feller, 1968). If the number of PSU 
units is small however the PML parameter estimates can be substantially 
biased. 

3 Factor Analysis Simulation Study 
In this section we will evaluate the performance of the PML estimator for a 
two-stage WOR design for a factor analysis model. The model is described 
as follows 

Yij = ¹ j + ¸j ́  i + " ij (3) 

where i = 1; :::; n, n is the sample size, and j = 1; :::;  5, i.e., the observed vec-
tor for each individual is of dimension 5. Here ¹j  is the intercept parameter, 
¸j is the loading parameter, ´i  is the factor variable, and " ij is the residual 
variable. The variables ´i  and " ij are normally distributed zero-mean vari-
ables with variances Ã and µj respectfully. The parameters we use for this 
simulation study are as follows 

£ = (¹ 1; :::; ¹5; ¸1; :::; ̧ 5; µ1; :::; µ5; Ã) =  (4)  

(2; 2:7; 3:3; 4:5; 5:5; 1; 0:7; 1:3; 1:5; 0:5; 1; 1; 1; 1; 1; 1:2): 

First we describe the target and the sample populations. We generate a mul-
tivariate target population of 50000 individuals with 5 normally distributed 
outcomes with mean and variance given by model (3) with parameter values 
given by (4). We impose the following two-level population structure on the 
target population. We group the observations into 140 PSUs, the ¯rst 120 
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Table 1: Bias of PML Parameter Estimates for Factor Analysis Model 

n m ¹ 3 ¸3 µ3 Ã 
200 20 0.054 0.045 -0.028 -0.129 
500 50 0.007 0.009 -0.011 -0.035 
1000 100 0.001 -0.003 -0.004 0.003 
1400 140 0.003 -0.001 -0.001 0.003 

are of size 250 and the remaining 20 are of size 1000. The observations are 
not placed at random in the PSUs. They are placed according to an ordering 
based on a function f . That is, the ¯rst 250 observations with the highest val-
ues of f are placed in PSU 1, the second highest 250 are placed in PSU 2, etc. 
After all 120 PSUs of size 250 are formed we form the remaining 20 PSUs of 
size 1000 again according to the order given by the f function. This method 
of constructing target population was used in Smith and Holmes (1989). The 
choice of f is to some extent critical to the type of sampling we get. Suppose 
that f is instead a random function independent of Y . The m ulti-stage s am-
pling will then be equivalent to simple random sampling (SRS). In a model 
with dependent variable Y and independent variable X , a function f that 
depends only on X but not on Y produces non-informative random sampling. 
The only way to produce informative sampling is to choose f which depends 
on Y in addition to perhaps other variables. In this target population we P 
choose fi = j Yij, which clearly induces informative sampling. 
The target population is sampled with a two-stage WOR design. Equal 

probability sampling is used at each stage. We vary the number m of PSUs 
included in the sample while the number of units sampled from the i¡th 
PSU remains constant, ni = 10. The total sample size is thus n = 10m. 
The ratio between the sampling weights in the large PSUs and the sampling 
weights in the small PSUs is 4. We use 500 replications, i.e., we sample the 
target population 500 times and calculate the PML estimates and their 95% 
con¯dence intervals. 
Table 1 shows the bias of the PML parameter estimates and Table 2 shows 

the coverage of the PML con¯dence intervals. We see that the performance of 
the PML method is very good, bias is almost non-existent and the coverage 
for the con¯dence intervals is in line with expectation. The only exception 
is the estimation of the Ã parameter which has larger bias and consequently 
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Table 2: Coverage of PML 95% Con¯dence Intervals for Factor Analysis 
Model 

n m ¹ 3 ¸3 µ3 Ã 
200 20 0.882 0.908 0.912 0.746 
500 50 0.940 0.924 0.928 0.850 
1000 100 0.950 0.950 0.946 0.926 
1400 140 0.954 0.948 0.968 0.952 

lower con¯dence interval coverage for samples with small number of PSUs. 
In the next section we explore further the bias that arises in model estimation 
from samples with small number of PSU. 

4 Small Number of PSUs 
In this section we explore di®erent estimation techniques for dealing with 
bias that arises in small number of PSUs samples. We conduct a simulation 
study similar to the simulation study conducted in the previous section. For 
simplicity we use a two-stage WR design on a smaller target population. Here 
again equal probability sampling is used at each stage. The target population 
of size 10000 is generated as in the previous section and 14 PSUs are formed, 
12 of size 500 and 2 of size 2000. The sample population again has a varying 
number m of PSUs while the number of units sampled from the i¡th PSU 
remains constant, ni = 50. The total sample size is n = 50m. We use 500 
replications in this simulation study as well. To be able to compare various 
estimating techniques we choose a basic regression model for Y1 and Y2 

Y1 = ® + ¯Y2 + ": 

Using the whole target population we get the true values of the parameters 
as ® = 0:56 and ¯ = 0:54. The variance parameter of the residual " is not 
included in this investigation because the methods implemented in SUDAAN 
do not provide an estimate for this parameter. We compare four di®erent 
estimation methods. The ¯rst method is the PML method implemented in 
Mplus. The second method is the GEE method implemented in SUDAAN. 
This method is based on general estimating equations which are identical to 
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the PML score equations and as our simulation study con¯rms the results 
produced by the two methods are identical. This observation is valid also 
for other models such as logistic regression. The third method is the GEE 
method with exchangeable correlation implemented in SUDAAN. We denote 
this method by GEE-Ex. The RSTEPS parameter that this method depends 
on did not a®ect the results in our simulation signi¯cantly and thus we only 
report the results we obtained with the default RSTEPS=1. 
The forth estimation method we examine in this simulation study is a 

bias corrected PML method (BC) that we describe here. The ¯rst step of 
the BC estimation method is to construct estimates for the mean and the 
variance/covariance of Y1 and Y2, by estimating the bias of the PML mean 
and variance/covariance estimates. We illustrate this for a single Y variable. 
The PML estimate for the mean is P 

i wiYi¹̂PML  = P : 
i wi 

The BC  estimate for  the mean  is  then  
 
i wiYi ^¹̂BC = P ¡ C0; 
i wi 

P

^where C0 is an estimate for the bias C0 of the PML estimate, i.e., if ¹ is the 
mean of Y µP ¶

i wiYiC0 = E P ¡ ¹: 
i wi 

The term C0 is of the form 

Ẑ1 E(Ẑ1)
C = ¡ :

Ẑ2 E(Ẑ2) 

Formula 6.33 in [C] provides a method for estimating such a quantity. An 
asymptotic estimate for C is Ã ! 

1 Ẑ1
V ar(Ẑ2) ¡ Cov(Ẑ1; Ẑ2) : 

Ẑ2 ^
2 Z2 

Both Z1 and Z2 are estimates of the total quantity for the variables Y and 
the constant variable 1. Thus the variance/covariance terms above can be 
estimated just as the variance/covariance of the total score estimates given 
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in Section 2. These estimates take into account the sampling design. The 
PML estimate for  the variance is  P ÃP !2 

i wiY 2 
i wiYii v̂PML  = P ¡ P : 

i wi i wi 

The BC  variance estimate is  P ÃP !2 
i wiY 2 

i wiYi ^v̂BC = P i ¡ P ¡ C1; 
i wi i wi 

^where C1 is an estimate of the second order moment bias of the ¯rst term P  2 P
i wiYi = i wi constructed just as the bias estimate for the mean. The co-

variance term is estimated from the multivariate version of the above formula. 
Once the mean and the variance/covariance estimates for Y1 and Y2 are con-
structed, we estimate the parameters µ=(®,¯) by minimizing the quasi ML 
¯t function 

F (µ) =  tr(v̂BC  v(µ)
¡1) ¡ log jv̂BCv(µ)¡1j +(¹̂ BC ¡ ¹(µ))T v(µ)¡1(¹̂ BC  ¡ ¹(µ)); 

where ¹(µ) and v (µ) are the vector mean and variance of the (Y1; Y2) vector  
expressed in terms of the model parameters µ and the following auxiliary 
parameters: the mean Y2, the v ariance  of  Y2, and the variance of the residual 
in the above regression equation. 
We study the properties of these four estimators for samples with small 

number of PSUs. Tables 3 and 4 show the bias and the MSE of the four 
estimators on samples with 5, 10, 15, and 20 PSUs. The PML method and 
the GEE method, as expected, produce identical results not only on average 
but in individual replications as well and are reported in the same column. 
The bias of the PML/GEE estimator is present for both the intercept and the 
slope even for m = 20 but as expected this bias decreases as the number of 
PSUs increases. The bias of the BC estimator is almost non-existent except 
for m = 5. The BC method outperforms the PML/GEE estimator in terms 
of both MSE and bias in this simulation. The BC method, however, may 
not outperform the PML method in all situations. Examples in Cochran 
(1977) show that sometimes this method reduces the bias while increasing 
the MSE of the estimates. The estimator GEE-Ex performs very poorly. 
This method produces large bias for both parameters and large MSE. It 
seems also that this bias does not disappear as the number of sampled PSUs 
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Table 3: Bias and Mean Squared Error for the Intercept in Linear Regression. 

m 
PML/GEE 
Bias 

PML/GEE 
MSE 

GEE-Ex 
Bias 

GEE-Ex 
MSE 

BC 
Bias 

BC 
MSE 

250 5 0.434 0.632 1.576 2.855 0.179 0.442 
500 10 0.220 0.281 1.634 2.889 0.016 0.211 
750 15 0.132 0.185 1.664 2.902 -0.028 0.157 
1000 20 0.103 0.131 1.675 2.917 -0.026 0.111 

Table 4: Bias and Mean Squared Error for the Slope in Linear Regression. 

n m 
PML/GEE 
Bias 

PML/GEE 
MSE 

GEE-Ex 
Bias 

GEE-Ex 
MSE 

BC 
Bias 

BC 
MSE 

250 5 -0.237 0.130 -0.672 0.466 -0.133 0.123 
500 10 -0.125 0.063 -0.656 0.440 -0.036 0.059 
750 15 -0.072 0.040 -0.642 0.419 -0.002 0.038 
1000 20 -0.061 0.027 -0.649 0.427 -0.004 0.024 

increases. A simulation study based on a logistic regression model produced 
the same results. The PML/GEE method performed well as the number 
of PSUs increases for logistic regression as well. In contrast the GEE-Ex 
method produced large bias regardless of the number of PSUs in the sample. 

5 Likelihood Ratio Test in Multistage Sam-
pling 

Hypotheses involving several parameters are frequently tested in multivariate 
modeling. Wald's test can be used for such testing if the asymptotic vari-
ance/covariance of the parameter estimates is available. Wald's test however 
requires additional calculations, which sometimes are quite complex. One 
such example is the test of a factor analysis model against an unrestricted 
covariance model. When maximum-likelihood estimation is performed how-
ever the likelihood ratio test (LRT) can be obtained without additional com-
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putations and this test is frequently used for complex hypothesis testing. 
In this section we show how the pseudo maximum likelihood can be used 
to perform LRT for multistage sampling designs. The distribution of the 
LRT statistic  based on the  maximized weighted log-likelihood  value  is not  
a chi-square distribution. This distribution depends on the sampling design 
just as the asymptotic covariance of the parameter estimates depends on the 
sampling design. Here we describe an adjustment of the LRT statistic which 
takes into account the sampling design and produces a test statistic with a 
chi-square distribution. This adjustment is constructed similarly to the ad-
justments of the Yuan-Bentler (2000) and the Satorra-Bentler (1988) robust 
chi-square tests for mean and variance structures. Similar ¯rst and second 
order adjustments are described also in Rao-Thomas (1989) for contingency 
tables. 
We assume a general hypothesis testing for two nested models M1 and 

^M2. Let µ i be the true parameter  values and µi the parameters estimates for 
model Mi that maximize the pseudo log-likelihood function Li. Let d i be the 
number of parameters in model Mi. The corrected LRT statistic is 

T ¤ = c ¢ 2(L1 ¡ L2); (5) 

where c is the correction factor 

Tr((L00 1)¡1V ar(L10 )) ¡ Tr((L00 2)¡1V ar(L0 2)) 
c = d1 ¡ d2 

: (6) 

The statistic T ¤ has approximately a chi-square distribution with d1 ¡ d2 
degrees of freedom. The components Tr((L00 )¡1  

i V ar(L0i)) are easily available 
since they are part of the asymptotic covariance for the parameter estimates 
given in (2). Justi¯cation for this approximation is given in the Appendix. 
We demonstrate the importance of the LRT adjustment with a simple 

simulation study which incorporates both cluster and strati¯ed sampling. For 
simplicity we use a single outcome variable and compare the mean and the 
variance of this outcome across two groups. Each of the two groups contains 
three strata. Within each stratum we sample at random entire clusters. For 
example the two groups can be private and public schools, the strata can 
be di®erent regions in the country, the clusters can be the classrooms and 
the students can be the individual observations. While in this example the 
groups actually contain entire strata and clusters, this doesn't necessarily 
have to be the case. For example the grouping variable could be gender 
which is not nested above the strata and the cluster variables. 
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All six strata in our simulation study have equal size and we sample 200 
observations from each by cluster sampling. Within each stratum the clusters 
are of equal size. We denote the size of the clusters in stratum s in group g 
by nsg. The cluster sizes in the six strata are as follows n11 = 5,  n21 = 10,  
n31 = 20,  n12 = 10,  n22 = 20,  n32 = 40. The distribution of observations i in 
cluster j in stratum s in group g is described by 

Yijsg = ¹ sg + ´ jsg + " ijsg 

where ´js g and " ijsg are zero mean normally distributed variables with vari-
ance 1, and the parameters ¹ sg are as follows ¹11  = 1,  ¹21  = 2,  ¹31  = 3,  
¹12  = 0,  ¹ 22 = 2,  ¹32  = 4. Given our choice of parameters the total mean 
in the two groups is 2. The total variance of y is, however, larger in the 
second group. We test two hypotheses by LRT. The ¯rst hypothesis T1 is 
that the means in the two groups are equal and is also known as the Behrens-
Fisher problem, see Sche®e (1970). The second hypothesis T2 is that both the 
means and the variance parameters are equal in the two groups. The ¯rst 
test should not reject the hypothesis because the means are indeed equal. 
The second test should, however, reject the hypothesis because the variances 
are not equal. In addition the test statistic T1 should have a chi-square dis-
tribution with 1 degree of freedom because it tests just one constraint. Test 
statistic T2 has two degrees of freedom because it tests two constraints. The 
null hypothesis for the second test is not correct however and therefore the T2 
test statistic is not expected to have a chi-square distribution with 2 degrees 
of freedom. This test statistic is expected to be su±ciently large so that the 
test is rejected. 
To evaluate the e®ect of strati¯cation and clustering on the test we com-

pare ¯ve di®erent methods for computing the LRT statistic. These methods 
are as follows. 

² Method A. Adjusted robust LRT which takes both the clustering and 
the strati¯cation into account. 

² Method B. Adjusted robust LRT which takes only the clustering into 
account and ignores the strati¯cation. 

² Method C. Adjusted robust LRT which takes only the strati¯cation into 
account and ignores the clustering. 

² Method D. Adjusted robust LRT which ignores both the clustering and 
the strati¯cation. 
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² Method E. Unadjusted LRT. 

The results o f t he simulation s tudy a re presented i n T able 5.  We r eport  
the average values of the T1 and T2 test statistics over 500 replications and the 
rejection rates for the two tests based on the 5% rejection level. As expected 
method A performs correctly producing a test statistic T1 with an average 
value of approximately 1 and rejection rate of approximately 5%, while all 
the other methods produced erroneous results. From the table we clearly 
see that including the strati¯cation information results in an increase of the 
LRT statistic and the rejection rates, while including the cluster information 
decreases the LRT statistic and the rejection rates. The result of not includ-
ing the strati¯cation information in the ¯rst test is that there are virtually 
no rejections, while the result of not including the cluster information is that 
the test rejects the null hypothesis incorrectly an additional 47% of the time 
above the nominal 5% level. Methods D and E both produce rejection rates 
that are too high and in our simulation the results of the two methods are 
quite close. 
The most important e®ect of strati¯cation is actually seen in the second 

test. Methods C, D and E all have in°ated power largely because the cluster-
ing information is ignored. Method A rejects 76% of the time for this sample 
size. As the sample size increases this rejection rate converges to 100%. Not 
including the strati¯cation information in method B results in a decrease of 
power. As a result of that, method B does not reject the second hypothesis 
as it should an additional 26% of the time. 
It is clear from Table 5 that the sampling features in complex sampling 

designs can a®ect dramatically the distribution of the LRT statistics and 
erroneous conclusions can be reached if the sampling features are not ac-
counted for. The adjusted LRT statistic provides an e®ective solution for 
hypothesis testing with complex sampling data. The LRT adjusted statistic 
is implemented in Mplus, Version 3 (Muthen & Muthen, 1998-2004) for a 
wide variety of models and complex sampling designs. 

6 Conclusion 
In this article we demonstrated how the PML estimator can be used with 
the three basic complex sampling designs WR, WOR and WORUNEQ. The 
PML estimator can be utilized in advanced multivariate statistical modeling 
to properly account for various features of complex sampling designs. The 
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Table 5: E®ect of Strati¯cation and Clustering on the Chi-Square Test 

Method A B C D E 
T1 Average 1.042 0.349 9.141 5.052 4.984 
T1 Rejection 0.054 0.002 0.524 0.380 0.380 
T2 Average 12.827 8.057 75.884 61.236 53.856 
T2 Rejection 0.760 0.500 0.990 0.982 0.980 

PML parameter estimates are a®ected only by the sampling weights while 
their standard errors are adjusted to re°ect the e®ects of strati¯cation, clus-
ter sampling, multistage sampling, ¯nite population sampling and unequal 
probability sampling. Our simulation studies showed that the PML method 
performs very well as long as the number of PSUs is not small. When the 
number of PSUs is small alternative estimator such as the bias corrected PML 
method described here are preferable. Our comparison with the method im-
plemented in SUDAAN showed that the GEE method is equivalent to the 
PML method for linear and logistic regression. The GEE with exchangeable 
correlation method performed poorly in our simulation study. The main ad-
vantage of the PML method however is its generality. This method can be 
used to estimate any parametric model. 
In this article we described an adjustment to the LRT statistic which 

takes into account the complex sampling design. The unadjusted LRT can 
lead to erroneous results when analyzing survey data, while the adjusted 
LRT performs correctly. Because of its simplicity of use, the adjusted LRT 
is a valuable alternative to other methods such as Wald's test. 
The PML extension described in this article and the LRT adjustment 

can also be used for multilevel models via the multilevel pseudo maximum-
likelihood method described in Asparouhov (2005b). 
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7 Appendix 
We follow the ideas of Yuan-Bentler (2000) to derive a general LRT correction 
based on the PML method under complex sampling. The arguments below 
also apply to any consistent estimator obtained by maximizing an objective 
function l. Such estimators are called extremum estimators; see Amemiya 
(1985), Chapter 4. 
We assume a general hypothesis testing for two nested models M1 and 

^M2. Let µ i be the true parameter values and µi the parameters estimates 
for model Mi that maximize the pseudo log-likelihood function Li. We a re  
interested in the asymptotic distribution of the ^test statistic T  = 2(L2(µ2) 

^ 
¡

L1(µ1)) that can be used to test the more restricted model M1 versus the less 
restricted model M2. More speci¯cally we are interested in the asymptotic 
distribution of T when M1 is correct. Since M1 is correct µ2 is a function of 
µ1 and L1(µ1) = L 2(µ2). Let ¢ = @µ2=@µ1. Let S i = @Li(µ)=@µi and Hi = 
¡n¡1@2Li(µ)=(@µi)2 . Given some basic regularity conditions (see Amemiya, 
Theorem 4.1.3) we have that 

p
n(µ̂  

i ¡ µi) =  Op(1); (7) 

where n is the number of observations. Using the Taylor expansion we get 
that 

1 
Li(µ̂  

i) =  Li(µi) +  Si(µi)(µ̂  
i ¡ µi) ¡ n(µ̂  

i ¡ µi)T Hi(µi)(µ̂  
i ¡ µi) +  op(1) 

2 
(8) 

and p
0 =  Si(µ̂  

i) =  Si(µi) ¡ nHi(µi)(µ̂  
i ¡ µi) +  op( n)  (9)  

Solving equation (9) for Si(µi) and substituting that in (8) gives us 

1 
Li(µ̂  

i) =  Li(µi) +  n(µ̂  
i ¡ µi)T Hi(µi)(µ̂  

i ¡ µi) +  op(1) 
2 

(10) 

Now 

T = n(µ̂  
2 ¡ µ2)T H2(µi)(µ̂  

2 ¡ µ2) ¡ n(µ̂  
1 ¡ µ1)T H1(µi)(µ̂  

1 ¡ µ1) +  op(1) (11) 

The chain rule for di®erentiation gives us 

S1 = ¢S2: (12) 

17 

mailto:2=@�1.Let


Solving (9) for Si(µi) and substituting in (12) we get that 
p p

H1(µ1) n(µ̂  
1 ¡ µ1) = ¢H2(µ2) n(µ̂  

2 ¡ µ2) +  op(1) (13) 

^Solving now equation (13) for 
p  n(µ1 ¡ µ1) and substituting in (11) we get µ ¶

T = n(µ̂  
2 ¡ µ2)T H2(µ2) ¡ H2(µ2)¢T H¡1(µ1)¢H2(µ2) (µ̂  

2 ¡ µ2)+  op(1) 1 (14) 

From equation (9) we also see that the asymptotic distribution of 
p
n(µ̂  

i ¡ µi) ! N(0; Vi)  (15)  

where 
Vi =

1 
Hi(µi)

¡1V ar(Si(µi))Hi(µi)
¡1 

n 
(16) 

Elementary matrix algebra shows that the asymptotic distribution of T is X 
¸iÂ

2
1i 

i 
(17) 

where Â21i are independent chi-square distributed random variables and ¸i 
are the eigenvalues of µ ¶

E = V2 H2(µ2) ¡ H2(µ2)¢T H1
¡1(µ1)¢H2(µ2) : (18) 

The p-values of this distribution are easy to compute following a method 
^developed in Imhof (1961). Because µ1 and µ2 are not known we use µ1 and 

^ µ2 in equation (18). p
By equation (9) we get that Si(µi) = O p( n): The chain rule for the 

second derivative gives us 

H1(µ1) = ¢
T H2(µ2)¢ + n¡1S2@2 µ2 =(@µ1)

2 = ¢T H2(µ2)¢ + op(1) (19) 

This leads us to the following alternative computation of E µ ¶
E2 = V2 H2(µ2)  H2(µ2)¢

T (¢H2(µ2)¢)
¡1¢T H2(µ2) = E + op(1):¡  (20) 

While asymptotically equations (18) and (20) are equivalent, they will lead 
to di®erent results for ¯nite sample size. It is not clear which one of the two 
should be preferred in speci¯c applications. 
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Instead of computing the exact p-value of the weighted chi-square distri-
bution (17) we can use the following adjusted test statistic. Let 

d d 
T ¤ = P T = T:  

i ¸i Tr(E) 
(21) 

where d is the number of parameter restrictions model M1 imposes, i.e., d 
is the di®erence between the number of parameters in the two models. The 
ratio 

Tr(E) 
c = 

d 
is the correction factor. The distribution of T ¤ is approximated by a chi-
square distribution with d degrees of freedom and thus its p-values are read-
ily available. Again we can use E2 in formula (21) instead of E and get an 
asymptotically equivalent statistic which in ¯nite sample size may be sub-
stantially di®erent. 
Now we derive one more formula for computing T ¤ . Using equations (12) 

and (16) we get that 

H1(µ1)V1H1(µ1) = ¢H2(µ2)V2H2(µ2)¢
T : (22) 

Now using formula (18) and (22) we get that 

Tr(E) =  Tr(V2H2(µ2)) ¡ Tr(V2H2(µ2)¢T H¡1(µ1)¢H2(µ2)) = 1 

Tr(V2H2(µ2)) ¡ Tr(¢H2(µ2)V2H2(µ2)¢
T H¡1(µ1)) = 1 

Tr(V2H2(µ2)) ¡ Tr(V1H1(µ1)): 
^ ^ Again since µ1 and µ2 are not know we approximate with µ1 and µ2 

Tr(E) =  Tr(V2H2(µ̂  
2)) ¡ Tr(V1H1(µ̂  

1)): (23) 

Formula (23) is the same as formula (5) and is also the formula implemented 
in Mplus. This formula has several advantages. It is computationally more 
e±cient then formulas (18) and (20) because it does not involve the computa-
tion of ¢. It can also be used to easily compute the proper LRT adjustment 
when two nested hypothesis are involved as follows. Suppose that we have 
three models M1, M2 and M3 and w e have the t est s tatistics T 1¤ 

 and T2¤ 
 for 

testing M1 versus M3 and M2 versus M3. Suppose that the LRT statistics 
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have been computed according to formulas (21) and (23). Let the correc-
tion factors be c1 and c2 and the degrees of freedom d1 and d2. We w ant  
to compute the LRT statistic T ¤ for testing M1 versus M2. Let the degrees 
of freedom for that test be d and the correction factor be c. We h ave t hat  
d = d1 ¡ d2 and 

cd = Tr(V2H2(µ̂  
2)) ¡ Tr(V1H1(µ̂  

1)) = (Tr(V3H3(µ̂  
3)) ¡ Tr(V1H1(µ̂  

1)))¡ 

(Tr(V3H3(µ̂  
3)) ¡ Tr(V2H2(µ̂  

2))) = c1d1 ¡ c2d2: 

Thus 
c1d1 ¡ c2d2 

c = 
d 

and 
c1T

¤ ¡ c2T ¤ 
T ¤ = 1 2 : 

c 
The exact same approach was outlined in Satorra-Bentler (1999) when ap-
plied to the Satorra-Bentler (1988) chi-square statistic. 
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