
 

 

 

 
 

 
  

 

    
   

 

  
    

 
 

 
  

 
 

   
  

 
 

 
 

  
   

    

 

  
 

 

    

 

 
    

  
    

   
     

   
    

 

Microdata risk assessment in an NSI context 

Jane Longhurst and Paul Vickers 

Office for National Statistics, Segensworth Road, Fareham, UK 
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Abstract. This paper provides an overview of how the Office for National Statistics (ONS) in the UK 
is tackling the problem of balancing the need to provide users with access to microdata and the need to 
protect confidentiality. A key stage in the microdata release process is risk assessment. A significant 
amount of research has been undertaken into methods for estimating disclosure risk measures for 
microdata. This paper will address the issues concerned with the practical implementation of such 
methods at the ONS focusing on the probabilistic disclosure risk method based on the Poisson 
Distribution and log-linear models (Elamir and Skinner, 2006). 

Keywords. Microdata, disclosure risk assessment, log linear modelling 

1. Introduction 

National Statistics Institutes (NSIs) collect and publish a wide range of economic and social data to 
support policy development and research.  This data has been collected from censuses, surveys and 
administrative data sources.  Making confidentiality commitments and keeping these commitments is 
an important factor in maintaining trust between data providers (businesses and people) and the NSI.  It 
helps preserve the high quality of the information provided. 

Official statistics are generally released in the form of tables and microdata (individual level records) 
and the demand from policy makers and researchers for more detailed data and innovative ways to 
supply the data is continuing to increase.  This increased demand increases the potential disclosure 
risks and this places greater pressure on NSIs to develop sophisticated methods to identify the level of 
risk posed by any release and to minimise this risk where it is deemed too great.  Striking the right 
balance between removing risk whilst retaining enough detail in the dataset to underpin robust research 
and policy making is a key challenge facing all Statistical Disclosure Control practitioners. 

At the Office for National Statistics (ONS), microdata is only released after its Microdata Release 
Panel has considered a range of factors.  One factor is risk assessment and this paper describes a 
method being developed by ONS to provide a quantitative risk assessment.  Section 2 gives an 
overview of the MRP process and the factors it considers.  Sections 3 and 4 describe in detail the 
research that has been carried out to develop microdata disclosure risk assessment. The conclusion is 
drawn that the method could be used to assess the risk of a microdata file at the individual level but that 
further research is required to assess the risk at the household level. 

2. Background to microdata release at the ONS 

ONS has a long history of releasing microdata from its surveys and currently has datasets deposited at 
the UKDA covering around 13 different surveys.  The release of all microdata from the ONS is 
approved by the Microdata Release Panel (MRP).  The panel consists of senior officials who have 
experience releasing  microdata across the full range of National Statistics outputs.  Approval of release 
will depend on a number of factors.  These are covered by the following framework which is described 
in detail by Jackson and Longhurst (2005) and is based on the Risk - Utility decision problem approach 
developed by Duncan, et al. (2001). 
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The first two stages determine the need for any confidentiality protection whilst stages three to five 
relate to the risk utility approach required. 

2.1 Legal and Policy Issues 

Data obtained for statistics is confidential. This is the common feature of all good statistical law, and 
also of common law for public administration.  It is a UN Fundamental Principle for Official Statistics. 
Access for research purposes is an exception to this default position. As such it needs to be a properly 
planned, managed, authorised and publicly acceptable activity.  For research access to be lawful 
requires all these to be addressed, because compliance with the law is not just a matter of following 
legislation, but requires compliance with the laws for public administrative and generic information 
and common law at both the national and European Union (EU) level. 

• Planning.   
Research data access is something that ideally ought to be enabled through either consent or 
sufficient advance information to be able to assume consent through participation. 
Respondents ought to be aware of this valuable use of their data, and be supportive of it. 
Information needs to be provided, and advance leaflets and confidentiality pledges ought to 
refer to research access to data.  It requires some forethought, so that the benefits of such 
access can be properly presented to respondents.   Failure to plan properly could either result 
in research access being a breach of data protection law or common law, or an inability to 
support research. 

• Management.  
Research access, being an exception to a zero risk activity (non-disclosure), is a priori a risk 
activity.  Risk must be managed. Where a public authority makes a decision without properly 
managing risk it is at risk of Judicial Review or some other sanction. 

• Authority.   
Legislation may provide the lawful authority to provide research access to data.  This 
authority may be specific, in the sectorial legislation for a particular collection or it may be 
general.  In the UK there are several pieces of legislation that provide powers to release and 
share data.  These include the Census Act (1920), the Statistics of Trade Act (1947), the 
Population and Statistics Act (1960). Where they are specified, disclosures other than as 
specified may give rise to a criminal offence. 

• Publicly acceptable. 
It is a general obligation on public authorities to carry out their functions in a manner that is 
compatible with the reasonable expectations of the public they serve. It is appropriate for 



 

 
    

 

  
    

  
     

 

 
  

  
   

 
 

  
   

 
  

 
 

  
 

  

  
  

  

 
  

 
  

 
 

   
  
   
  
 
   
  
 
    
 

 

 

 

 
   

  

statistics offices to give visibility to access to data to ensure the expectation of the public is 
that such research access will take place.  As this public expectation becomes embedded, so 
more respondents will participate when given information about appropriate research data 
access. It is an iterative process, and as such it is essential that the NSI does not step ahead of 
what its public considers acceptable.  Nor, of course, should it lag behind and hinder the 
social, environmental and economic research that the public can legitimately expect to be 
conducted to better inform public policy and political debate.  A NSI could be found to be 
failing under its administrative law if it is found under scrutiny (whether parliamentary, 
judicial, government, or peer review under the EU Code) to be out of step with public 
expectation. 

2.2 Risk Assessment 

It is important that any disclosure risk assessment is carried out in line with the legal and policy 
frameworks outlined above. For microdata, disclosure risk occurs when there is a possibility that an 
individual can be re-identified using information contained in the file, and on the basis of that, 
confidential information is obtained.  Microdata is released only after taking out directly identifying 
variables, such as names, addresses, and identity numbers. However, other variables in the microdata 
can be used as indirect identifying variables such as gender, age, occupation, place of residence, 
country of birth, family structure. A combination of identifying variables is defined as a key and 
provides the basis for identification of a respondent and hence the disclosure risk. The disclosure risk is 
a function of such identifying variables/keys both in the sample and the population. 

In terms of disclosure risk assessment an intruder is someone who deliberately or inadvertently 
determines confidential information about a respondent from a dataset or attempts to do so. To assess 
the disclosure risk, one firsts need to make realistic assumptions about what an intruder might know 
about respondents and what information will be available to them to match against the microdata and 
potentially make an identification and disclosure. These assumptions are known as disclosure risk 
scenarios. ONS considers various disclosure risk scenarios in carrying out its disclosure risk 
assessment. The scenarios cover topics such as political attacks, private and public database cross 
match, journalists, local search and inquisitive neighbours.  Keeping aware of the types of database 
available for matching against is an important factor in developing and maintaining disclosure risk 
scenarios (see Elliot and Dale (1998), Elliot and Purdam (2002), Purdam, Mackey and Elliot (2004)).   

These disclosure risk scenarios can be used to define the identifying variables within a microdata set. 
ONS has developed a checklist that can be used to focus on these identifying variables when 
considering the risk associated with any particular request for microdata.  This is summarised below.  
For each item on the list the data supplier must provide the necessary information, justify why the level 
of detail is needed and any analysis of associated disclosure risk that has been carried out: 

• level of geography 
• details of ethnicity coding 
• details of occupational coding 
• information on any other visible or traceable variables released in the dataset 
• sampling fraction of the survey (and the data released) 
• sampling design of the survey (eg details of cluster sampling etc) 
• inclusion of hierarchical (eg individual/household) or longitudinal variables 
• any measures used to assess and treat outliers in the data 
• any assurances given to respondents before their consent was obtained 
• information on previous releases of the same or similar data 

Responses to these questions allow a disclosure risk assessment to be made.  This assessment is 
generally made using subjective judgements and precedents.  Sections 3 and 4 describe work to provide 
a quantitative risk assessment to support these subjective judgements. 

2.3 Risk Management 

The outcome of the risk assessment determines whether further measures need to be carried out or put 
in place to allow the data to be released.  The MRP recognises all microdata releases are not risk free. 



 

  

 
   

     
    

 
 

  

 
 

   
 

 
     

 

 
 

 
  

 
 

 
 

 
   

   
 

  
  

   
    

   
     

 
  

  
 

   
 

 

  
 

  
 

It aims to release microdata in a way that minimises this risk.  It uses a combination of disclosure 
control methods and licence agreements to control how researchers and policy makers use the data and 
present the results of any analysis. 

Disclosure control methods considered for microdata include adding random noise to continuous 
variables, changing values of categorical variables, recoding or suppression of the data.  The method 
used will depend on the type of data being released.  In ONS the majority of microdata files released 
are protected using recoding.  

The second vehicle used to manage the risk of microdata is to release the data under licence 
arrangements or in a safe setting.  These are described briefly below: 

• End-User Licence.  This is the most commonly used licence and is applied to general 
microdata products that are generated by all ONS social surveys.  It has only limited control 
over the use and the users and the dataset itself is not seen as having a high confidentiality 
risk. 

• Special Licence.  Some users require more detail than can be provided using an end-user 
licence. The special licence places more controls on the user and how the data can be held 
and are applied to more detailed microdata products. 

Both the End User Licence and the special licence require published outputs to meet the 
Confidentiality Guarantee of the National Statistics Code of Practice.   

• ONS also provides access to identified or identifiable data in its microdata laboratory.  
Researchers using the laboratory are supervised and all output is checked for disclosure before 
it is removed from the laboratory. 

3. Quantitative risk assessment 

3.1  Introduction 

Section 2 has provided an overview of a framework for protecting and providing access to microdata. 
A key stage in this framework is assessing disclosure risk. As described the current risk assessment 
procedure for microdata files being released by the ONS is based on a checklist criteria (informed by 
disclosure risk scenarios), subjective judgement and past experience. More recently there has been a 
recognised demand for quantitative disclosure risk measures for microdata in order to gain more 
objective criteria for release. The focus of this paper is how this can be achieved for ONS social survey 
microdata released under an End-User licence. Social surveys are typically samples of households and 
therefore the characteristics of the population are not fully known. The disclosure risk is a function of 
both the population and the sample, and in particular depends on records that are unique on a set of 
identifying key variables. When the population is unknown there is a need to rely on models or 
heuristics in order to quantify the disclosure risk. A significant amount of research has been undertaken 
into methods for estimating quantitative disclosure risk measures for microdata. 

Previous work (Shlomo and Barton (2006)) has been undertaken to compare the performance of three 
different methods; the Special Uniques Detection Algorithm (SUDA) (Elliot et al (2005)), the 
probabilistic disclosure risk method based on the Poisson Distribution and log-linear models (Elamir 
and Skinner (2006)) and the method based on the Negative Binomial Distribution (Polettini and Seri 
(2003)) which is embedded in the Computational Aspects of Statistical Confidentiality (CASC) project 
software Mu-Argus (CASC (2004)). An evaluation of these three methods has been carried out for a 
range of different sample sizes but limited key sizes, mostly 6 variables. For the examples considered 
the results show that the Poisson model with log-linear modelling performs the best but is more 
complex than the other methods and requires more computing time and intervention in a model search 
algorithm. 

The scope of this paper is to investigate the practical issues related to the implementation of the 
probabilistic disclosure risk method based on the Poisson Distribution and log-linear models at the 
ONS for social survey microdata files. In particular addressing the performance and feasibility of this 
method for larger key sizes, specifically investigating the practicality of splitting the risk assessment by 



 

   

 
   

  
    

  

 
 

 
  

  

 

  
 

  

   
  

 

 
  

 
 

 
 

 
 

 

 

 
  

 

   

 

    

subpopulations in order to reduce computational demands. An objective will be to balance the quality 
of the risk estimates against the simplicity of the method and ease of implementation. The method can 
be used to estimate risk for individual records and globally for a whole file. The focus here is on file 
level measures of risk that can be used within a microdata release procedure. The utility of individual 
level measures are recognised particularly for targeting disclosure control methods. At present research 
has been restricted to estimating risk for individual respondents. Consideration will also be given to the 
feasibility of estimating disclosure risk for hierarchical microdata sets, e.g. individuals within 
households. 

To introduce the basic measure of identification risk, suppose a key has K cells and each cell k = 1,….K 
is the cross product of the categories of the identifying variables. Let Fk  be the population count in 
cell k of the multi-way contingency table formed by cross-classifying the key variables. Let the 
corresponding sample count be f k . The modelling approach investigated here implies that the 

K 

population and sample size (denoted by N  and n, respectively) are random and that ∑ F = N andk 
k =1

K 

∑ f k = n . Throughout this report, n or N refers to their expectations which are estimated by their 
k =1 

natural estimators: the actual sample size and population size. 

The aim of quantitative disclosure risk assessment methods for microdata is to estimate an individual 
1

per-record disclosure risk measure that is formulated as , that is the probability that a record in the 
Fk 

microdata and a record in the population having the same values of identifying key variables will be 
correctly matched. Since the uniques in the population, Fk = 1, are the dominant factor in the 

disclosure risk measures, this measure is focused on the case when f k = 1, i.e. for sample unique 
cells. This leads to the following record-level risk measure: 

rk = E[1/ Fk f k = 1] 
This individual risk measure can be aggregated across sample uniques to obtain a global measure for 
the entire file: 

τ = ∑ rk = ∑E[1/ Fk f k = 1] 
SU SU 

the expected number of correct matches for sample uniques, where SU = {k : f k = 1}. 

For this measure the problem of risk assessment becomes one of statistical inference since the f k  are 

observed but the Fk  are not.  

3.2 The Poisson Model and Log-Linear Modelling  

As described in Bethlehem et al (1990) consider models where the Fk  are realisations of independent 

Poisson random variables with means λk  (k = 1,……K), Fk ~ P(λk ) . Assume that the sample is 

drawn by Bernoulli sampling with common inclusion probability π  so that f ~ P(µ )  where k k 

µ = πλ and f F ~ Bin(F ,π ) . Therefore the record level measure can be expressed as k k k k k 

1 −λk (1−π )rk = E[1/ Fk f = 1] = (1− e ) = h(λ )k λk (1−π ) k 



 

 
   

  

  

  
 

   

  

 
 

 

 
   

 
   

 
  

 

 

 
 

 

 

 
   

   
  

 

 

  

  
  
    

This measure depends on unknown λk  for cells where the observed counts f k are just one. The 

assumption was made that the sample frequencies, f k  are independently Poisson distributed with 

mean µ k . In order to ‘borrow strength’ between cells suppose the µ k  are related via the log linear 

′ model logµ = x β  where xk is a design vector denoting the main effects and interactions of the k k 

model for the key variables. Using standard procedures, such as iterative proportional fitting, this 
model is fitted  to the sample data to obtain the maximum likelihood estimates for the vector β  and 

ˆ
the fitted values µ̂ = exp(x ′β̂ )  are calculated. The estimate for λ̂ 

k  equal to 
µ
π 

k  is then k k 

substituted in the formula for rk  which can be aggregated across sample uniques to obtain the 
following file level measure estimate: 

τ̂  = ∑ r̂k = ∑ Ê[1/ Fk f k = 1] = ∑ I ( f k = 1)h(λ̂ 
k ) 

SU SU k 

Such an approach has been described in Skinner and Holmes (1998) and Elamir and Skinner (2006). 

A key issue with this method is that inference may be sensitive to the adequacy of the specification of 
the log linear model. Skinner and Shlomo (2006) develop criteria for assessing whether the vector xk 

may be expected to lead to accurate estimated risk measures. Standard approaches such as Pearson or 
likelihood-ratio tests or Akaike’s Information Criterion are discounted since they are not appropriate 
for the large and sparse tables considered in this application. In this analysis the minimum error test 

B̂
statistic  is used, where 

v 

B̂ = ∑ â( f k − µ̂ k ) + b̂[( f k − µ̂k )
2 − f k ], and 

k 

2 2 2v = ∑ â µ̂ + 2b̂ µ̂k , where k 
k 

â = −λ̂ exp(−µ̂ )h′(λ̂ )k k k 

and 

ˆ kb = λ̂ 
exp(−µ̂k )h′′(λ̂ 

k ) . 
2π 

B̂ / v  has an approximate standard normal distribution under the hypothesis that the expected value 

of B̂ is zero. A positive value under 1.96 accepts the fit of the log linear model for obtaining a good 
disclosure risk measure. 

3.3 Method  

Every 10 years since 1801, the UK has set aside one day for the census whereby information is 
obtained on every member of the population. It is the only survey which provides a detailed picture of 
the entire population, it covers everyone at the same point in time and asks the same core questions 
everywhere. The data used for this analysis was taken from the 2001 UK Census. Following the 
method used by Shlomo and Barton (2006) five different samples were drawn from the Census data for 
England and Wales covering 52 million people within 22 million private households (communal 



 

  
 

 
    

  
   

  
 

 
 

  

 
  
 

 
 

 

 

 
  

 
  

   
  

  
 

 
 

  
 

  

 
 

  
  

 
 

 
 

 

     

 
   

 
 

establishments were excluded). The different samples simulate typical sample sizes for different ONS 
social surveys and the samples were drawn using a similar design as standard social surveys. In the first 
stage households were sorted according to geography and systematically sampled with equal 
probability. In the second stage all individuals in the sampled household were selected. Clustered 
samples, i.e. by sampling postcode sectors and then households within these sectors, are not simulated 
since it is assumed that this aspect of sample design would not affect the risk measurements. Some 
ONS social surveys sample disproportionately across geographies, this is not simulated here. 

Table 1 describes the five different samples. 

Sample Sampling Fraction No. households in the 
sample 

No. persons in the 
sample 

A 0.000323 7,000 16,651 
B 0.001062 23,000 54,560 
C 0.002308 50,000 119,618 
D 0.006924 150,000 357,888 
E 0.010155 220,000 524,399 

Table 1: Samples used in the analysis 

The Poisson model with log-linear modelling is used to estimate r̂k  for each unique individual in each 
of the samples for a particular key. Summing these record-level measures across the sample uniques 
results in the file level measure τ̂  , an estimate of the expected number of correct matches for sample 
uniques. This approach is repeated for the different sample sizes and using different key sizes. Since 
the samples have been drawn from Census data, the true risk measure, τ , can be calculated and used to 
evaluate the performance of the method. 

The log-linear models are fitted using Iterative Proportional Fitting (IPF) programmed in SAS since 
log-linear model fitting procedures in standard statistical software will often not cope with the large 
numbers of variables and cells that are used here. Initially five iterations are used for the IPF procedure. 
The estimation method deals automatically with zero marginal counts corresponding to a given model, 
for example because of impossible combinations of key variables values (structural zeros), by setting 
the fitted values for cells falling in these margins to zero. 

Since B̂ / v  was primarily derived as a means to detect underfitting (and empirical results suggest 
that it is more effective for this purpose than for detecting overfitting) a forward search algorithm is 
used, starting from simpler models and adding interaction terms until the specification is judged to be 
adequate. Empirical experiments (Skinner and Shlomo (2006)) have shown that the independence log-
linear model tends to underfit and at the other extreme the all 3-way interaction model tends to overfit. 
As a practical approach the suggestion is made to first compute the minimum error test for the 
independence model and the all 2-way interactions model. If the latter shows no sign of underfitting 
(negative test statistic) then start with the independence model and use forward stepwise procedure to 
add in 2-way interaction terms to the independence model. If all 2-way interaction model does show 
signs of underfitting (large positive test statistic) then use a forward stepwise procedure adding 3-way 
interaction terms to the all 2-way interaction model. Following Shlomo and Barton (2006) a model is 
accepted when the value of the test statistic, B̂ / v , is less than 1.96. 

The sample design deviates from the underlying assumption of a simple random sample, it is possible 
that a complex sampling scheme could invalidate the assumption that the f k  are Poisson distributed. 
Under a clustered sample of households, dependencies will be introduced into the data in particular for 
cells defined by household level key variables, e.g. region, number of residents, number of cars, 
however other individual level key variables will cut across clusters thus reducing these dependencies. 
Skinner and Shlomo (2006) suspect that sampling error effects are less important than the impact of 
model choice and Shlomo and Barton (2006) report that the deviation from a simple random sample is 
less noticeable when aggregating the individual risk estimates to obtain the file level measures. 



 

  
  

 
 

 
  

    
 

 
 
3.4 Results 
 

 
 

 
 

 
   
 

  
  

 
  

 

 
 

 

 
   

 
 

   
    

       
    

  
  
   

 

As in Shlomo and Barton (2006) the analysis is based on the private database cross match scenario. 
This has been identified by the ONS as the most important scenario, where an intruder aims to match a 
released microdata file with an external database. As defined in Elliot and Dale (1998) this scenario has 
a 12 variable key, however previous analysis (Shlomo and Barton (2006)) has mostly focused on a 6 
variable key. As a first stage the analysis is restricted to 6 variables with categories typically used in 
ONS social survey microdata releases: region (11), age (96), sex (2), number of residents (7), marital 
status (6), number of cars (5). An 8 variable key is also considered, this covers the 6 variable key plus 
number of earners (5) and number of dependent children (5). The assumption is made that there are no 
discrepancies in the values of the key variables between the microdata and the intruder’s data.  

Table 2 displays the results (final model, estimated and true risk and the minimum error test statistic) 
for the five samples for the 6 variable key where K = 443,520, replicating the results in Shlomo and 
Barton (2006). A detailed breakdown of the model search for Sample C is included in the Appendix as 
an example. For all samples the estimated risk is close to the true risk, in all cases within 10%. The 
breakdown of the model search shows that as outlined in Skinner and Shlomo (2006) large negative 
values for the test statistic (overfitting) lead to an underestimate of the true risk and large positive 
values (underfitting) lead to an overestimate. When the test statistic for a model is small this can lead to 
either over or under estimation. In all cases here the true risk is underestimated for the final model. 
Each model takes a few minutes to run, some intervention is required through the model search 
algorithm to select the interactions for inclusion and so models with more interactions take longer to 
run. As the sample size increases, the global risk estimate increases and the model becomes more 
complex.  

Sample Final Model True Risk 
(τ ) 

Estimated Risk 
(τ̂  ) 

Minimum error 
test statistic 

B̂
( ) 

v 
A All 2-way interactions 83.0 81.4 0.14 
B All 2-way interactions +  

{age, residents, mstatus} 
220.3 204.5 1.13 

C All 2-way interactions +  
{age, mstatus, cars} + 
{age, residents, mstatus} 

446.6 410.6 1.65 

D All 2-way interactions +  
{age, mstatus, cars} + 
{age, residents, mstatus} + 
{region, age, residents} 

1193.8 1182.4 1.74 

E All 2-way interactions +  
{age, residents, mstatus} + 
{age, residents, cars} + 
{age, mstatus, cars} + 
{region, age, residents} + 
{age, sex, mstatus} + 
{region, residents, mstatus} 

1701.8 1569.7 1.03 

Table 2: Results for 6 variable key 

The interpretation of the final risk measure is the expected number of correct matches for sample 
uniques. If an intruder matched sample A to a population database (assuming there are no discrepancies 
in the values of the key variables) the estimated expected number of correct matches (for sample 
uniques) would be 81.4. One could present this figure relative to sample size or the number of sample 
uniques. The size of Sample A is 16651 of which 9705 are sample uniques. The final reported risk 
measures could therefore be: 

• 81.4 correct matches (based on sample uniques) 
• 0.5% of sample correctly matched (based on sample uniques) 
• 0.8% of sample uniques correctly matched 



 

 
  

    
  

   
   

 
   

 

 

 
  

 

 

  
    

 
  

 
 

 
 

 

  
   

  

                                                 
   

 

The modelling exercise was repeated for the 8 variable key where K = 11,088,000 but problems were 
encountered related to computing times. Even running just the all 2-way interaction model takes 
approximately 40 hours1. The different samples take approximately the same time, run time is 
dependent on key size and number of variables, although as shown in Table 2 sample size tends to 
affect model complexity which is related to the time taken to complete the model search. The run time 
also depends on the number of times the SAS programme loops through the raking procedure during 
the IPF, this depends on the number of variables and the number of interations. It can be calculated that 
the next stage in the model search, i.e. testing each 3-way interaction term for inclusion in the model 
would take about 2000hrs or over 33 days! This would not be practical and hence two approaches that 
could speed up the modelling process are considered. Firstly whether it is possible to reduce the 
number of times the programme iterates through the IPF. Secondly consideration is given to 
partitioning the data (reducing sample and key size) and estimating the risk for subpopulations. This 
approach should result in simpler models which will be easier and faster to fit. Necessarily these 
approaches will involve a trade off between practicality and the accuracy of the risk estimates, i.e. is it 
possible to fit simpler models that do not necessarily fit the data as well but still produce reasonable 
estimates of risk. 

3.4.1 IPF Iterations 

In order to investigate the number of iterations used in the IPF procedure consider the 6-variable key 
for samples A, B and C and models selected using 5 iterations as described in Table 2. The model 
fitting procedure is repeated for 1 to 7 iterations. The results for Sample B are displayed graphically in 
Figure 1 and in a table in the Appendix. 

200 

205 

210 

215 

220 

225 

0 1 2 3 4 5 6 7 8 

No. iterations 

R
is

k 

True risk Estimated risk 

Figure 1: Results for Sample B, 6-variable key, all 2-way interaction model + {age, residents, mstatus} 

The results for all 3 samples show that after 2 iterations the total number of iterations used in the IPF 
procedure does not significantly affect the error in the risk estimate. The conclusion is drawn that it is 
acceptable to only use 2 iterations for the IPF procedure. This will significantly reduce the time needed 
to fit the models. 

The results described above have assumed a fixed model. However, in practice using a different 
number of iterations in the IPF may lead to a slightly different model selection and hence different risk 
estimates. For example for Sample B, after 3 iterations the best fitting model is actually all 2-way 

1 Run times are obviously very dependent on the PC used. All results were obtained on a standard ONS 
PC; 2.8 GIG processor, 512 MEG memory, Windows XP, SAS Version 8.2. 



 

 
 

 

 
  

 
  

    
   

 
   

 
   

 

  

     
   

 
    

 
 

   

     
 

    
 

 

 
 

  
 

  
   

   
 

 
    

    
     

 
  

    
 

 
 

interaction + {age, residents, cars} which has a slightly better test statistic than the model considered 
above and leads to a risk estimate of 223.9 rather than 205.2. 

3.4.2 Partitioning 

The second approach considered here to reduce the time taken for the model search and model fitting 
procedures involves partitioning the data into smaller datasets. Models are fitted to each of these 
partitions to obtain risk estimates which are then aggregated over all the partitions to obtain to final risk 
estimate for the whole file. Since this approach will reduce the size of the sample and key size (if 
partitioning is based on a key variable) it should result in simpler models which will be easier and 
faster to fit. Two issues are considered; which variables should be used to partition the sample and how 
many partitions should the sample be divided into.  

Partitioning by a particular key variable assumes an underlying interaction with that variable in the 
model in each of the sub-tables. If a survey uses a stratified sample then the stratification variables will 
have to be included in the key and should be considered as partitioning variables. Here the samples 
were not stratified and so it seems sensible to choose the variable which is the most correlated with 
other variables in the key. The Cramer’s V statistic was used to measure the strength of association 
between pairs of the key variables in Sample C. The strongest association is between age and marital 
status (0.434). There is also some association between age and number of residents (0.276) and age and 
number of cars (0.183). Similar levels of association are observed between number of residents and 
marital status (0.285) and number of residents and number of cars (0.207). It seems that age would be a 
good candidate for a partitioning variable. 

In order to test this hypothesis consider partitioning Sample C into 4 subsets based on age, region, and 
marital status and compare the estimated risk measures for the 6-variable key. Also consider 
partitioning Sample C into 2 subsets based on age and gender. Table 3 displays the results.  

Partition 
variable 

Partitions Average size 
of partition 

Key size 
(K) 

Estimated 
Risk (τ̂  ) 

Age 4 (24 years in each) 29905 110,880 457.1 
Region 4 (2 or 3 regions in 

each) 
29905 120,960 or 

80,640 
503.6 

Marital status 4 (1 or 2 marital 
status categories in 
each) 

29905 147,840 or 
73,920 

404.3 

Age 2 (48 years in each) 59809 221,760 480.2 
Sex 2 (male/female) 59809 221,760 501.7 

Table 3: Results for partitioning Sample C, 6-variable key, τ  = 446.6 

A detailed breakdown of results by partition for 4 age partitions is included in the Appendix. The 
results show that different models are selected for different partitions, as expected these tend to be 
simpler models (since the sample size of them is smaller). For some paritions the true risk is 
overestimated for others it is under estimated. As expected partitioning by age produces the best risk 
estimate when splitting into 4 or 2 partitions. The results are robust, the risk estimates for each partition 
are good and the overall risk estimates for partitioning by age are more accurate than the estimate with 
no partitioning (see Table 2). The conclusion is drawn that age is the best variable to partition by.  

At present partitions were formed by grouping an equal number of categories of the key variable by 
order, e.g. ages 1 to 24 then 25 to 48 etc. Simpler models (which may be quicker to fit) may be 
obtained by forming partitions based on more natural groupings of the categories, e.g. 1 to 15, 16 to 19, 
20 to 30 etc.  

Now consider the best number of partitions to implement when partitioning by age. Table 4 compares 
the results for 2, 4 8 and 16 age bands. Detailed breakdowns by partition are provided in the appendix 
for 8 age bands. 

No. of partitions Average Key size (K) Estimated 



 

 
  

 
  

 
 

  
 

    
 

   

  
   

  
   

 
 

   

   

 
 

 
  
  

 
 

  
 

 
    

  

 
    

    
  

 
  

  

 
 

 

  
      

 

size of 
partition 

Risk (τ̂  ) 

2 age bands 59809 221,760 480.2 
4 age bands 29905 110,880 457.1 
8 age bands 14952 55,440 434.9 
16 age bands 7476 27,720 457.3 

Table 4: Results for Sample C, 6-variable key, partitioned into 2, 4, 8 and 16 age bands, τ  = 446.6 

The results in Table  4 are robust, even for very small samples the risk estimates are reasonable. The 
results show that the accuracy of the total risk estimate is good (within 3%) whether partitioning is 
carried out for 4, 8 or 16 age bands. The choice for the best number of partitions would therefore 
depend on time taken to carry out the modelling exercise. In general as sample sizes get smaller models 
become simpler, e.g. independence model or independence model plus some 2-way interactions has a 
better fit than the 2-way interaction model or the 2-way interaction model plus some 3-way 
interactions. Ideally one would want to find the case when the all 2-way interaction model or the 
independence model fits. These cases are quicker and easier to run since they require no stepwise 
procedure and therefore no user intervention in the modelling process. Consider the case when the all 
2-way interaction model is taken for each partition regardless of the minimum error test statistic. For 16 
age bands this would result in an estimate of 443.4, some over and some under estimation cancels out 
across the partitions. For 8 age bands this would result in an estimate of 467.5 (still within 5% of the 
true risk). 

This approach is tested further using the 8 variable key. Following the results from Section 3.4.1 the all 
2-way interaction model is fitted to partitions of Sample C based on 8 and 16 bands using 2 iterations 
in the IPF procedure. Table 5 displays the overall results including the time taken to carry out all of the 
modelling (aggregated over the partitions). The results by partition are shown for 8 age bands in the 
Appendix. 

No. of partitions Average 
size of 
partition 

Key size (K) Estimated 
Risk (τ̂  ) 

Time taken 

8 age bands 14952 1,386,000 3278.7 8 hrs 
16 age bands 7476 693,000 3134.8 2 hrs 40mins 
32 age bands  3738 346,500 2918.9 5 hrs 

Table 5: Results for Sample C, 8-variable key, partitioned into 8/16 age bands, all 2-way interactions 
models, τ = 2693.4 

The results are not as accurate as for the 6-variable key. The risk is overestimated in all cases. 
Partitioning into 8 age bands results in an estimate which is within 22% of the truth. Using 16 age-
bands is quicker and more accurate (within 17%). 32 age bands takes longer to model but results in the 
most accurate estimate of the true risk, within 9%. For the 8 band partitioning the minimum test 
statistics range from 2.5 to 22.5 indicating that the all 2-way interactions model is underfitting the data 
for each partition and hence the overall risk is overestimated. For 16 bands the range is -0.7 to 13.9, 
again this leads to overestimation. For 32 bands the range is -0.9 to 8.2. Both results are quicker and 
more accurate than running a 2-way interaction model on the full dataset without any partitions. 

Similar modelling exercises were carried out for the other samples where different sized partitions were 
selected depending on the overall sample size. Table 6 summarises the partitioning results across all 
samples, displaying the partition that produced the best risk estimate. 

Sample No. of 
partitions 

Average 
size of 
partition 

Key size 
(K) 

True Risk 
(τ ) 

Estimated 
Risk (τ̂  ) 

Range for 

B̂2 

v 

Time 
taken  

A 4 age bands 4163 2,772,000 406.0 414.0 [-0.22,17.5] 16 hrs 
B 32 age 

bands 
1705 346,500 1284.6 1231.9 [-0.7,7.1] 5 hrs 14 

mins 



 

 
 

        

  
 

    
 

 
 

    
 

 

 
  

   
   

    
  

  
 

   

 
  

   
    

    

  

 
 

   
  

  
 

 

 
  

  
 

   
 

  
  

 
     

  

 
  

 
      

  
 

 
 

    

C 32 age 
bands 

3738 346,500 2693.4 2918.9 [-0.9,8.2] 5 hrs 

D 32 age 
bands 

11,184 346,500 7703.5 9052.3 [-1.0,22.1] 5 hrs 25 
mins 

E 32 age 
bands 

16,388 346,500 11111.6 13224.5 [-0.2,20.4] 5 hrs 50 
mins 

Table 6: Partitioning results, 8-variable key, all 2-way interactions models 

The results show that for all samples (other than Sample A) the best results are obtained using 32 
partitions. For Sample A the best result is for 4 partitions. In general as the size of the partition 
decreases the fit of the all 2-way interaction model improves and hence the accuracy of the risk 
estimate increases. The results for Sample A and B have shown that if sample sizes become too small 
(average around 2000 individuals) the all 2-way interaction model starts to overfit the data and leads to 
an underestimation of the final risk. Overall as the sample sizes increase the error in the risk estimate 
increases. Ideally one would implement more than 32 partitions for the larger samples (D and E) in 
order to improve the fit of the all 2-way interaction model and increase the accuracy of the risk 
estimate. Alternatively one could form equal sized partitions by implementing different groupings of 
age. The results suggest that an ideal partition size for this 8-variable key is 2000-4000 individuals. 

The practicalities of running a 10 variable key defined as the 8 variable key plus tenure (6), primary 
economic status (14) are also considered. This would mean that K = 931,392,000. Even with 96 age 
partitions this would mean K = 9,702,000 for each partition. Based on previous results the whole model 
would take 32 days to run (just using 2-way interaction and 2 iterations within the IPF). It may be 
possible to reduce running times by using a more powerful PC. This modelling exercise would only 
need to be carried out once for each social survey and only repeated if the design of the microdata file 
altered significantly. In addition running times could be shortened by reducing the number of 
categories for each variable, however this will determined by the design of the microdata file. It does 
not seem practical to run a 10-variable key. 

The ONS will need to consider whether it is reasonable to measure risk based on an 8 variable key. Is it 
likely that an intruder would have access to more than 8 identifying variables in an external database? 
Is it possible to set benchmarks against agreed risk thresholds using 8 variables? Is it possible to 
combine risk estimates from different 8-variable keys? 

4. Measuring risk for hierarchical files 

4.1 Introduction 

Many social surveys are hierarchical in nature, allowing groups of individuals to be recognised within 
the file, the most common case being households. If it is possible to link individuals within the released 
microdata file then it is important to take into account this dependence when measuring disclosure risk. 
Limited research has been carried out on this problem. A handbook produced as part of the Eurostat 
funded Centre of Excellence (CENEX) in Statistical Disclosure Control (CENEX (2006)) includes a 
discussion of household or hierarchical disclosure risk scenarios and how the Mu-Argus risk 
methodology estimates household risk. Rather than estimating household risk directly it is defined as 
the probability that at least one individual in the household is identified and is computed from the 
individual risk of the household members. This approach does not consider the increased risk from 
combining the characteristics of the individuals in the household. The assumed scenario is that the 
intruder matches the microdata file with the external database at the individual level (which includes 
household characteristics). An alternative scenario would be that the intruder matches directly at the 
household level, where a single record represents a household characterised by the identifying variables 
of all household members. This alternative approach was adopted for the disclosure risk assessment for 
the Household Sample of Anonymised Records (SARs) (CCSR (2005)) from the 2001 UK Census and 
in the assessment of the UK 1991 Census Household SAR using the SUDA method, (Elliot (2005)). 
The reason for these two different approaches is related to the assumed availability of hierarchical 
external databases. Initial observations from the CAPRI (Confidentiality and Privacy Group) Data 
Monitoring Service (CCSR (2004)) indicate that detailed information on children is rarely collected 
outside of the benefits system so that some information needed by an intruder for a hierarchical 
matching attack on a household file is not available. However, it is noted that some hierarchical 



 

 
 

   

 
 

 
      

 
 

  
  

 
 
 
   

 
 

 
 

   

 
   

 
  

 
    

  
  

 
  

 
 

 

 

 
  

 
 

 
 

 
  

household information is available in many datasets (particularly when more than one adult lives in the 
household) and the data environment is constantly changing. Given increasing trends in data collection 
and availability it is not possible to state with certainty that full hierarchical datasets would not become 
available in the future. The assumption made here is that such an external database is available. 

The disclosure risk scenario will involve an intruder identifying a household based on the individual 
and household information in the microdata file. Studies have shown that this significantly affects the 
risk, where based only on the age and sex of the individuals any household with more than 6 people has 
a very high probability of being unique in the population (CCSR (2005)).  

4.2 Method  
 
When measuring risk at the household level the key variables will need to be modified to incorporate 
information on all the individuals within the household as well as some household level variables. 
Following Elliot (2005) three different types of keys can be considered using variables from the private 
database scenario: 

1. Basic household information for all members of the household, e.g. age, sex. 
2. As above but includes some household structure information, e.g. geography, number of cars. 
3. Detailed information about one member of the household, e.g. age, sex, marital status,  

primary economic status, plus some basic information about the other household members, 
e.g. broad age bands, sex. 

Here analysis is restricted to the first scenario and preliminary results are outlined. 

Before fitting the model the microdata file needs to be modified. The file is split by household size and 
separate models are fitted to each different sub-file (almost like a partition). For each household one 
record is created that contains information on all members of the household. The key is then 
constructed using variables on each member of the household and household level variables. Care 
needs to be taken in constructing this key in terms of ordering the members within the household. It is 
possible that two households could be identical, but not recognised as such if they are sorted in 
different orders. Constructing keys at the household level and in particular the ordering of household 
members will introduce dependencies into the variables in the key which could affect the validity of 
fitting a log-linear model to the data. Consider two person households and a simple key of age and sex 
for both household members where the household members are ordered by age and then sex. The age 
of the second household member will always be less than or equal to the age of the first household 
member. Certain age combinations will be more likely, i.e. both members having similar age (partners) 
or one member being older than the other (parent and child), whereas other combinations will be rare 
or impossible, e.g. two under 16 year olds. The construction of the household key introduces many 
structural zeros which may or may not be modelled effectively. 

The modelling approach is the same as was used at the individual level. Note, at the individual level the 
sample design deviated from the assumption of a simple random sampling since all individuals were 
sampled within each household. However, when considering modelling at the household level the 
simple random assumption holds. 

4.3 Results 

The results here are restricted to 2 person households. Table 7 describes the files for the different 
sample sizes. 

Sample No. 2 person households in the 
sample 

A 2414 
B 7651 
C 16715 
D 50365 
E 73888 

Table 7: Samples used for 2 person household analysis 



 

 
    

  

 

 
 

  
 

 

  
 

 
 

  
   

 
   

  
   

    
 

   
 

 
  

 
  

  
 

   
 

   
   

  
 

 
 

 
   

   

 
  

 

 

Table 8 details the results of the stepwise modelling procedure for Sample A using scenario 1, a 4 
variable key constructed using age and sex of both household members, K = 36,864. The household 
members are ordered within the key by age and then sex. The minimum error test statistic for the all 2-
way interaction model is negative, providing evidence of overfitting and as expected the true risk is 
underestimated. The forward stepwise procedure is used to add 2-way interaction terms to the 
independence model. As 2-way terms are added to the model the test statistic decreases (indicating a 
better fit) but the risk estimate moves further away from the truth. No model can be found with a test 
statistic that is positive and less than 1.96. A similar pattern of results is observed for sample B. For 
sample C, D and E the all 2-way interaction model produces the best estimate of risk but this is not 
reflected in the test statistic.  

The results show that the modelling procedure is not as effective in this case as it was for modelling at 
the individual level. Two possible reasons are proposed. 

The format of the household level key introduces dependencies between the key variables and many 
structural zeros, particularly for the ages of the household members. The inclusion of the 2-way 
interaction term between the two age variables will ensure that for any combination of these two 
variables with a zero marginal count in the sample, all fitted cells will be zero. Hence, structural zeros 
will be accounted for in the model. However, other random zeros will also be fitted and the model 
could overfit the data. This is observed for Sample A and B where the all 2-way interaction model 
overfits the data. However, this is not observed for the other samples. In order to reduce the problems 
associated with the interdependencies between the two age variables the proposal is made to order the 
key by sex and then age rather than age and then sex. This will not totally overcome the problem. One 
combination of sex for the two household members will become a structural zero determined by the 
ordering, however the 2-way interaction between the two sex variables could be forced into the model 
to take account of this. Including this 2-way interaction term should not cause overfitting or impact on 
the degrees of freedom in the model as much as the 2-way interaction term between the age variables 
would since there are only 2 categories of sex. Interdependencies between the two age variables will 
still exist but there should be less structural zeros forced into the key by the ordering procedure. 

The modelling exercise described above should be repeated with the same samples and same key 
variables but with the household members ordered within the key by sex and then age. 

Another factor that may be affecting the results seen here is the number of variables in the key. Here a 
4 variable key has been investigated whereas previous analysis investigated 6 and 8 variable keys. 
Further analysis should be carried out with larger keys to investigate whether including more variables 
in the key improves the performance of the models. In particular household type should be considered 
as a key variable and potentially used as a partitioning variable. Creating partitions for particular 
households, e.g. 2 adults or 1 adult and 1 child, will introduce restrictions to the age categories, 
simplifying the keys and hence reducing the number of structural zeros. 

Model Estimated Risk (τ̂  ) Minimum error test 

B̂
statistic ( ) 

v 
Independence 9.39 21.5 
All 2-way interaction 1.57 -1.16 
Independence + {sex, sex2} 11.75 8.1 
Independence + {sex, sex2} + {age, sex2} 11.5 4.6 
Independence + {sex, sex2} + {age, sex2} + {age, 
sex} 

12.2 3.4 

Independence + {sex, sex2} + {age, sex2} + {age, 
sex} + {age2, sex2} 

1.47 -1.69 

Table 8: Results for Sample A, 2 person households, 4-variable key, τ = 4.8 

5. Conclusions 



 

  

 
 

 

 
 

 

 
 

   
 

 
 

 
   

  
 

 

 
  

 
  

 
     

  
     

  

 
  

 

 

 

 
  

  

 

 

 
  

 
   

 

There is a strong, widespread and increasing demand for National Statistics Institutes (NSIs) to release 
microdata files. These data sets are a vital resource for key research and thus it is important to make the 
microdata as detailed as possible. However, this objective conflicts with the obligation that NSIs have 
to protect the confidentiality of the information provided by the respondents. A framework for 
protecting and providing access to microdata has been proposed. A key stage in this framework is 
assessing disclosure risk. This paper has investigated issues concerned with the practical 
implementation of a method for quantitatively assessing disclosure risk for microdata based on the 
Poisson Distribution and log-linear models. 

The results have shown that it is feasible to assess the risk of a microdata file at the individual level for 
a 6 and 8-variable key and that the results are robust. Quantitative file level measures of risk can be 
used within the microdata release approval process alongside current (more subjective) measures such 
as the checklist.  

The time taken to estimate disclosure risk for the 8-variable key can be shortened by reducing the 
number of iterations employed when fitting the log-linear models using IPF. It is acceptable to only use 
2 iterations and this does not significantly affect the error in the final risk estimate.  

Splitting the risk assessment by subpopulations or partitions also reduces computational demands for 
the 8-variable key. The results show that final risk estimates are more accurate when partitions are 
determined by a key variable that is most correlated with the other key variables, here age. Further 
work could investigate how the modelling procedure could be simplified by forming partitions by more 
natural groupings of age categories, e.g. 1 to 15, 16 to 19, etc.  

In general as sample sizes get smaller the best fitting log-linear models become simpler. The 
recommendation is made that the all 2-way interaction model is taken for each partition. This will 
necessarily impact on the quality of the final risk estimate but will avoid lengthy model search 
procedures. For small microdata samples (17,000 individuals) the recommendation is made to split the 
file into 4 partitions (average 4000 individuals). For larger samples (50,000-500,000 individuals) more 
partitions are recommended aiming again for an average of around 2000-4000 individuals in each 
partition. 

Assessing disclosure risk for larger keys is possible with partitioning but the time taken to carry out the 
modelling is anticipated to take days rather than hours on a standard ONS PC. Other methods, in 
particular SUDA, can handle larger keys but this is a heuristic method rather than a method which is 
based on well-defined statistical theory. Future work should consider the likely availability of external 
databases with more than 8 or 10 identifying variables in order to gauge whether risk assessments are 
required for these larger keys. In addition the availability of hierarchical external databases needs to 
inform the hierarchical disclosure risk scenarios. 

The preliminary results outlined here have indicated that as currently implemented the modelling 
procedure is not as effective for estimating risk at the household level as it is at the individual level. 
Further analysis is required to overcome the interdependencies in the key variables introduced by the 
hierarchical structure. Further analysis is also required to investigate larger keys and alternative 
scenarios. 
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Appendix 

Model Estimated Risk (τ̂  ) Minimum error test 

B̂
statistic ( ) 

v 
All 2-way interaction 578.4 8.0 
All 3-way interaction 271.8 -2.4 
All 2-way interaction + {age, mstatus, cars} 516.3 4.1 
All 2-way interaction + {age, mstatus, cars} + {age, 
residents, mstatus} 

410.6 1.65 

Table A1: Detail of model search for 6-variable key, sample C, τ  = 446.6 

No. 
iterations 

Estimated 
Risk (τ̂  ) 

Minimum 
error test 
statistic 

B̂
( ) 

v 

Min 
correction 
factor 

Max 
correction 
factor 

1 223.6 0.79 0 4.7 
2 206.8 0.77 0.4 2 
3 205.2 0.97 0.6 1.5 
4 204.8 1.06 0.9 1.3 
5 204.5 1.13 0.9 1.2 
6 204.3 1.19 0.9 1.1 
7 204.2 1.24 0.9 1.1 

Table A2: Results for Sample B, 6-variable key, all 2-way interaction model + {age, residents, 
mstatus}, by number of iterations, τ = 220.3 

www.eprints.soton.ac.uk/41842
www.neon.vb.cbs.nl/casc
www.neon.vb.cbs.nl/cenex


 

 

 

 

  

  

 

 

   
 

   

   

 
    

    

  

  

    

  

 

   
 

   
 

Partition No. 
persons in 
the 
partition 

Final Model True 
Risk 
(τ ) 

Estimated 
Risk (τ̂  ) 

Minimum 
error test 
statistic 

B̂
( ) 

v 
1 to 24 
years 

36711 All 2-way 
interactions 

63.5 68.4 0.04 

25 to 48 
years 

40539 All 2-way 
interactions 

145.8 152.8 0.59 

49 to 72 
years 

29948 All 2-way 
interactions 

143.1 167.8 0.38 

Over 72 
years old 

12420 All 2-way 
interactions + 
{age, residents, 
cars} + 
{region, age, 
mstatus} 

94.3 68.1 0.74 

Total 446.6 457.1 

Table A3: Results for Sample C, 6-variable key, partitioned into 4 age bands, K = 110,880 

Partition No. 
persons in 
the 
partition 

Final Model True 
Risk 
(τ ) 

Estimated 
Risk (τ̂  ) 

Minimum 
error test 
statistic 

B̂
( ) 

v 
1 to 12 
years 

18216 Independent + 
{age, mstatus} + 
{age, residents} 

14.3 16.5 0.6 

13 to 24 
years 

18495 Independent + 
{residents, cars} + 
{age, mstatus} 

49.2 48.8 1.8 

25 to 36 21781 Independent + 69.5 66.3 1.06 
years {mstatus, cars} + 

{region, mstatus} 
+ 
{age, mstatus} 

37 to 48 
years 

18758 All 2-way 
interactions 

76.3 78.1 1.4 

49 to 60 
years 

16939 All 2-way 
interactions 

74.1 79.7 0.08 

61 to 72 
years 

13009 Independent + 
{residents, cars} + 
{age, mstatus} 

69.0 56.2 1.8 

73 to 84 8941 All 2-way 60.9 55.9 1.04 
years interactions + 

{region, mstatus, 
cars} 

Over 85 3479 All 2-way 33.4 33.4 0.29 
years old interactions + 

{age, sex, 
residents} 
Total 446.6 434.9 

Table A4: Results for Sample C, 6-variable key, partitioned into 8 age bands, K = 55,440 



 

 
 

  
 

  
 

  
 

  
 

  
 

  
 

 
 

    
 

   

Partition No. 
persons in 
the 
partition 

Final Model True 
Risk (τ ) 

Estimated 
Risk (τ̂  ) 

Minimum 
error test 
statistic 

B̂
( ) 

v 
1 to 12 
years 

18216 All 2-way 
interaction 

153.5 181 10.3 

13 to 24 
years 

18495 All 2-way 
interaction 

347.6 376.9 22.5 

25 to 36 
years 

21781 All 2-way 
interaction 

550.0 646.8 7.13 

37 to 48 
years 

18758 All 2-way 
interaction 

602.4 739.1 3.8 

49 to 60 
years 

16939 All 2-way 
interaction 

483.2 623.2 2.5 

61 to 72 
years 

13009 All 2-way 
interaction 

302.8 396.6 4.3 

73 to 84 
years 

8941 All 2-way 
interaction 

172.3 226.5 7.7 

Over 85 
years old 

3479 All 2-way 
interaction 

81.7 88.9 4.6 

Total 2693.4 3278.7 

Table A5: Results for Sample C, 8-variable key, partitioned into 8 age bands, K = 1,386,000 
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