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Abstract

Standard methods frequently produce zero estimates of dispersion parameters in the underlying linear
mixed model. As a consequence, the EBLUP estimate of a small area mean reduces to a simple regres-
sion estimate. In this paper, we consider a class of generalized maximum residual likelihood estimators
that covers the well-known profile maximum likelihood and the residual maximum likelihood estimators.
The general class of estimators has a number of different estimators for the dispersion parameters that
are strictly positive and enjoy good asymptotic properties. In addition, the mean squared error of the
corresponding EBLUP estimator is asymptotically equivalent to those of the profile maximum likelihood
and residual maximum likelihood estimators in the higher order asymptotic sense. However, the strictly
positive generalized maximum likelihood estimators have an advantage over the standard methods in
estimating the shrinkage parameters and in constructing the parametric bootstrap prediction intervals of
the small area means. We shall illustrate our methodology using an example from the SAIPE program
of the US Census Bureau.
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1 Introduction

Linear mixed models have been frequently used in various small area estimation application. Most of the

small area models can be considered as a special case of the following general linear mixed model of the form
y = XB+Zv+te, (1.1)

where y is an n x 1 vector of sample observations; X and Z are known matrices; 3 is a p x 1 vector of
unknown parameters (fixed effects); v and e are independent following normal distributions with means 0
and covariance matrices G = G(o) and R = R(o), respectively, depending on some unknown vector of
dispersion parameters, o = (01,01,...,04) € © ={c:0; >0,i=1,---,q}. We assume that p is fixed and
X is of full rank p (< n). Note that cov(y) =X =R+ ZGZ'.

The maximum likelihood estimator of ¢ is obtained by maximizing a given likelihood L(o), or equivalently
the corresponding log-likelihood (o), with respect to o in the parametric space ©. Different maximum
likelihood estimators of o are obtained by varying the choice of L(o). The profile maximum likelihood
(PML) and residual maximum likelihood (REML) estimators are among the well-known maximum likelihood

estimators considered in the literature. The maximum likelihood estimators enjoy good asymptotic properties



(see, e.g., Jiang 1996; Das et al. 2004, Jiang 2007). However, even when the dispersion parameters are strictly
positive, the standard maximum likelihood estimators, including the PML and REML, do not ensure strictly
positive estimates of the dispersion parameters for a given dataset.

In section 2, we propose a rich class of generalized maximum likelihood ratio estimators of o, which
includes the PML and REML as special cases. The class also includes consistent estimators that are strictly
positive. In this section, we consider different generalized maximum likelihood estimators for the well-known
Fay-Herriot model and present higher order asymptotic expressions for the bias and mean square error of
the generalized maximum likelihood estimators of a non-linear function of the model variance. In section 3,
we consider the related prediction problem. We present the expression for the empirical best linear unbiased
prediction (EBLUP) estimator of a general mixed effect. The mean square error of EBLUP and the related
prediction interval problem are discussed for the Fay-Herriot model. In section 4, we analyze data from the

Small Area Income and Poverty Estimation (SAIPE) project of the US Census Bureau.

2 The Generalized Maximum Likelihood Estimation

We define the generalized likelihood as

L(o) = h(o) x Lg(o),

where Lg(o) denote the residual likelihood of o and h(o) is a suitably chosen smooth function of A that is
free of y. The generalized maximum likelihood (GML) estimator of o, if exists, is obtained by maximizing
the generalized likelihood L(o) with respect to o in the parameter space ©. Since there is a lot of flexibility
in the choice of h(o), we can cover a wide range of likelihoods (e.g., profile maximum likelihood, residual
likelihood, etc.) considered in the literature. The generalized maximum likelihood estimator of o can be
made strictly positive by imposing the condition that h(c) = 0 when any of the dispersion parameters is
zero. The asymptotic properties of the generalized maximum likelihood estimators can be obtained using the
standard mathematical tools used to prove similar properties for the profile maximum likelihood and residual
maximum likelihood estimators.

We now illustrate the generalized maximum likelihood estimation with the help of the well-known Fay-
Herriot model. The Fay-Herriot model (Fay & Herriot, 1979) consists of two levels. In Level 1, the sampling

model,

yil0i ~ N(0;,D;), i=1,---,m,



independently for each i. In Level 2, the linking model,
0; ~ N(z;3,A), i=1,---,m,

also independently for each 1.

Level 1 accounts for the sampling variability of the regular survey estimates y; of true small area means
6;. Level 2 links 6; to a vector of p known auxiliary variables x; = (z;1,---,2;p)’, often obtained from
administrative and census records. The sampling variances D; are assumed to be known.

The Fay-Herriot model has been widely used in small area estimation and related problems for a variety
of reasons, including its simplicity, its ability to protect confidentiality of microdata and its ability to produce
design-consistent estimators. Some earlier applications of the Fay-Herriot model include the estimation of: (i)
false alarm probabilities in New York city (Carter and Rolph, 1974); (ii) the batting averages of major league
baseball players (Efron and Morris, 1975); and (iii) prevalence of toxoplasmosis in El Salvador (Efron and
Morris, 1975). More recently, the Fay-Herriot model was used: to estimate poverty rates for the U.S. states,
counties, and school districts (Citro et al., 1997) and to estimate proportions at the lowest level of literacy
for states and counties (Mohadjer et al., 2007). For a comprehensive review of the theory and applications
of the above model, see Rao (2003, Chapter 7).

/!

Define X = (z1, -+, 2m), v = (v1, ", 0m), € = (€1, - em), and y = (y1, -+, ym)’. The Fay-Herriot

model can be rewritten as

y=XB+v+e, (2.1)

a special case of the general linear mixed model with block diagonal variance-covariance structure: ¥ = D+ A,
where D = diag(D;, -+, D,,). Thus, for this application o = A.

The generalized likelihood of A is given by

where

1
Lr(A) = ¢|X'871X|71/2|p|71/2 exp{—iy/Py},

where ¢ is a generic constant free from A and P = ¥7! — ¥71X(X'Y71X)71X'S"L. The generalized
maximum likelihood estimator of A, denoted by A, is obtained by maximizing the proposed generalized

likelihood L(A), or the corresponding generalized log-likelihood function of A given by

1(A)=c— % [1og(\X’Z*1X|) +log(|Z]) 4+ y'Py] + log h(A).



Let g(A) be a general non-linear smooth function of A, which could depend on area i. We estimate g(A)
by g(A). Under mild regularity conditions, it can be shown that the mean squared error (MSE) of g(A) is

the same as that of the residual maximum likelihood estimator g(Ag), up to the order O(m~1), and is given

by

39} 24 omY), (2.2)

Blo(d) - oA = | 35| s

In other words, the mean squared error of g(A) does not depend on the adjustment factor h(A), up to the
order O(m~"). However, the biases of different estimators of g(A) depend on the adjustment factor h(A).
Since the MSE of g(A) does not depend on the adjustment factor h(A), up to the order O(m=1), we could

compare the bias ratio

—r (ﬁl)—laloghm) 1 9% (351)

9A 2 A2 +o(1).

Var[g(A)]

For the case of the shrinkage factors g(A) = B; = D; /(A + D;), we have

Bias[B;(A)] _ 1 {1 B ﬂ
Var[B;(A)] 11— ’

Vi
where
Bias(A)
i and ~
7T AT D ¢ Var(4)

For the following choice of the adjustment term:

m(4) = A¥e (1)) xXs i e,

we get

1 _
¢ = 5[01 + €29 — c3w] + o(m ™),

where ¥ = m™! D Vi Aw = 2iey vihgs, and hy; = vsaf (Z;ﬂ:l vjmjxg)_l z;, under mild regularity
conditions. Note that the adjustment factor h(A) is quite general and generates a variety of likelihood
functions considered in the literature. For example, the choices (i) ¢; = c2 =0, ¢3 =1, (ii) ¢; = ca = ¢3 =0,
and (iii) ¢ = 2,¢2 = ¢ = 0 result in the profile likelihood, residual likelihood and an adjusted residual
likelihood considered by Morris (2006).

We are specially interested in hy(A) with ¢; > 0 since this restriction will ensure a strictly positive estimate
of A. To fix ideas, consider ¢; = ¢, ¢a = ¢3 = 0 for which ¢ = ¢/2 + o(1). Thus, in this case the generalized
likelihood is obtained when the residual likelihood is multiplied by A9, Note that the generalized likelihood

reduces to the Morris” ADM for the choice ¢ = 2. Unlike the REML, Morris ADM is strictly positive. But,



compared to the REML, the Morris ADM overestimates A as the leading term of ¢ for Morris’s ADM is 1
while it is just zero for the REML. When the parameters of interest are the shrinkage factors, the bias ratio

expression suggests some good choices for the generalized maximum likelihood estimator.
3 The Prediction of Mixed Effects

In small area estimation, we are interested in estimating p = '3 + m/v, for specified vectors of constants

[ and m. The best linear unbiased prediction (BLUP) estimator of u, under model (1.1), is given by

where

B=po)=(X'S7'X)'X'sy

is the generalized least squares estimator of 3, and s(0) = £~'ZGm. An empirical best linear unbiased
prediction (EBLUP) estimator t(&) of p is obtained by plugging in an estimator & for o in the BLUP
expression. We refer interested readers to Rao (2003) and Jiang (2007) for a detailed discussions on BLUP
and EBLUP.

The mean squared error (MSE) of EBLUP is defined as
MSE[t(5)] = E[t(&) — ul?,

where E is over the model (1.1). An estimator, denoted as mse[t(5)], is called a second-order unbiased (or

nearly unbiased) estimator of MSE[t(o)] if
E {mse[t(6)]} = MSE[t(6)] + o(m ™).

Some important papers that use the Taylor series linearization method in obtaining second-order unbiased
MSPE estimators include Datta and Lahiri (2000), Das et al. (2004), and Datta et al. (2005). See Rao
(2003) and Jiang (2007) for a detailed account of the Taylor linearization method in small area estimation.
Under certain regularity conditions, Das et al. (2004) obtained a second-order unbiased (or nearly unbi-
ased) Taylor linearization estimator of MSE[¢(6)] when the dispersion parameters are estimated by standard
“score function” methods. It is straightforward to extend their results when the dispersion parameters are
estimated by the proposed generalized maximum likelihood method, under suitable regularity conditions on

the adjustment factor h(o).



For the Fay-Herriot model, an EBLUP estimator of 6; is given by
éEEBLUP =Y~ Bi(yi - 352@7

. o ~ A -1 ~
where B; = D;/(A+D;),i=1,---,m, and g% = <Z;n:1 xjngj/Dj) > i1 2y;Bj/ Dy, the weighted least
square estimator of 3 with B; replaced by the generalized maximum likelihood estimators B’j.

Using algebra similar to that of Li and Lahiri (2009), we obtain the following second-order (or, nearly)

unbiased estimator of MSE(FBLUP):

mse(é;EBLUP) = 912‘(30 + g2i(B) + 2931‘(B) - (Bi)Qﬁ\aS(J‘i),

where
qi(B;) = Di(1-B;),
-1
2,/ - Bj /
92i(B) = Bjz; Z 7. LiT; Ti,
j=1"7
) !
B} | & (B
(B) = 2= =
95:(B) D; Z (Dj> 7
j=1
with B = (B, -+, By) and BTlES(A) is an estimator of bias of the generalized maximum likelihood estimator

(see section 2).

Let us now discuss the prediction interval problem. Following Cox (1975), one can propose the following
empirical best prediction interval for 6;: OA?BLUP + 24/20i, where 62 = gli(Bi) and 2,9 is the upper 100(1 —
a/2)% point of the standard normal distribution. This prediction interval is asymptotically correct in the
sense that the coverage probability converges to 1 —a, for large m and certain regularity conditions. However,
for small m, this is not efficient since the coverage error of this interval is of order O(m™1), which is not
accurate enough for most small area applications. See Chatterjee et al. (2008) for a review of different
attempts to improve on the Cox’s prediction interval.

For a general linear mixed model, Chatterjee et al. (2008) proposed a parametric bootstrap method
to obtain a prediction interval directly from the bootstrap histogram of the certain pivot quantity. The
method is a significant improvement over the Cox empirical Bayes prediction interval. One of the critical
requirements of the parametric bootstrap method is that the dispersion parameter estimates must be strictly
positive. This paper thus strengthens the parametric bootstrap methodology of Chatterjee et al. (2008)

by suggesting methods to generate strictly positive dispersion parameters. For the Fay-Herriot model, the



100(1 — )% parametric bootstrap prediction interval for 6; is given by:

[OZEBLUP _ q1&i7 QEBLUP + CJ251‘]7

where
Li(q2) — Li(q1) =1—q,

L} being the parametric bootstrap approximation to £;, the distribution of &; *(6; — §FPUP). See Li and

Lahiri (2009) for details.

4 SAIPE Data Analysis

Governmental policies increasingly demand income and poverty estimates for small areas. In the U.S. more
than $130 billion of federal funds per year are allocated based on these estimates. In addition, states utilize
these small area estimates to divide federal funds and their own funds to areas within the state. These funds
cover a wide range of community necessities and services including education, public health, and numerous
others. Therefore, there is a growing need to refine manners in which these estimates are taken to provide an
increased level of precision. In response to the growing need for these estimates, the Census Bureau formed a
committee on Small Area Income and Poverty Estimates (SAIPE). This committee was created in the early
1990’s with the goal of providing more timely and precise estimates than those from the data in the decennial
census in accordance with the need for these estimates in order to allocate governmental funds. For example,
the “Improving America’s Schools Act” requires SATPE estimates of poor school-age children (under 18) for
counties as well as school districts in order to allocate more than $7 billion annually for the educationally
disadvantaged students. The SAIPE provides estimates of income and poverty at state, county, and district
levels. For example, it provides estimates of all poor persons, poor children under the age of 5, poor children
under the age of 18, poor children aged 5-17, and median income of households for states. See Citro et al.
(1997) and Bell (1999), for details.

In this section, we study the problem of estimating annual poverty rates of school-aged (5-17) children for
the 50 states and District of Columbia of the United States, an important component of the Census Bureau’s
Small Area Income and Poverty Estimates (SAIPE) program. For the state level SAIPE, the Census Bureau
has switched from the Current Population Survey (CPS) to the American Community Survey (ACS). But,
for the sake of illustration, we will use the old CPS based estimation. Fay and Train (1997) developed a

Fay-Herriot model for this estimation problem. In our notations, 1; denotes the direct estimate of the true



poverty rate 6;, and z; is a 5 X 1 vector consisting of unity and four known auxiliary variables derived from
administrative records. The sampling variances D; were obtained from a sampling error model of Otto and
Bell (1995) that involved fitting a generalized variance function (GVF) to five years of direct variance and
covariance estimates for each state produced by Fay and Train (1995). U.S. Internal Revenue Service income
tax return files were used to obtain two auxiliary variables: an analogue to state child poverty rates and also
state rates of non-filing for income taxes. Data from the U.S. Department of Agriculture were used to develop
a variable reflecting state participation rates in the food stamp poverty assistance program. In addition, x;
includes the residual from regressing 5-17 state poverty rates from the previous 1990 decennial census on the
other regression variables for 1989 (the census income reference year). For further details on SAIPE, the
readers are referred to Bell(1999) and the website: http://www.census.gov/hhes/www/saipe.html.

Table 1 displays different estimates of A for five years, from 1989 to 1993. We consider four standard
methods — the Prasad-Rao (PR), Fay-Herriot (FH), REML and PML. In addition, we consider two new
generalized maximum likelihood methods obtained by choosing hi(A) = A (AR) and hi(A) = A|X’Z_1X|%
(AM). It is interesting to note that all the standard methods considered in Table 1 are subject to zero
estimate. For the year 1992, the standard methods fail to produce a positive estimate. The REML and PML
estimates are all zero except for the year 1993. In contrast, all ADM estimates are positive supporting our
theory. The results for the PML and REML was first noted by Bell (1999, 2001). When A is estimated at
zero, the EBLUP estimator puts all the weight to the synthetic estimator and none to the direct estimator.
So for this important application, we need a variance component estimation method that can always provide
a positive estimate with desirable statistical properties.

In Figure 1, we draw the profile log-likelihood function of A for the year 1992. We can readily see that the
function attains its maximum on the boundary, which gives the zero PML estimate. On the other hand, AM
maximizes an adjusted profile likelihood obtained by multiplying the profile likelihood by A. The multiplier
A pushes the mode of the profile likelihood to the right resulting in strictly positive estimate of A. For the
year 1993, the PML estimate of A is 0.43. In this case also, the multiplier A pushes the mode of the profile
likelihood to the right yielding a larger adjusted PML estimate (2.42). Similar conclusions can be drawn for
REML and adjusted REML.

Overestimation of the adjusted methods makes up for underestimation of the shrinkage estimator B; due
to its convexity. We again consider the years 1992 and 1993 to compare the impact of the REML, PML and

two adjusted likelihood estimators of A on B;. Figure 2 displays B; versus states, where states are sorted


http://www.census.gov/hhes/www/saipe.html

in increasing order of the D;’s. In the graphs, ADM RE and ADM ML are simply the adjusted REML and
adjusted PML estimators that we discussed earlier. Since for 1992 both RE and PML estimates of A are
zero, we have B; = 1 for all the states. On the other hand, the adjusted likelihood estimates of A yield
large B; for the states with large D; and small B; for the states with small D;. When D; is small, the direct
estimate y; is reasonable. Thus, in this situation a sensible EBLUP method should put more weight to y;
than the synthetic regression part. In this sense, the REML and PML do not provide a sensible result; but
the adjusted likelihood methods do. For the year 1993, all the methods produce non-zero estimates of A,
and yield large Bz for the states with large D; and small Bz for the states with small D;. However, estimates
of B; based on the adjusted likelihood estimates of A are much smaller than the corresponding REML and
PML estimates and thus the adjusted likelihood methods put more weight to the direct part and are more
conservative than the corresponding EBLUP based on REML or ML.

For the year 1992, all the standard methods provide very unreliable interval estimates. For example, the
the length of the Cox empirical Bayes (EB) interval is typically much narrower than the ideal length, which
causes severe undercoverage problem. So it will be interesting to examine the lengths of the Cox empirical
Bayes intervals for our application. For 1992, the Cox EB interval produces a prediction interval of length 0.
To understand the difference between prediction intervals produced by a traditional method and a parametric
bootstrap method, we consider the year 1993 where all methods produce non-zero estimates of A. As an
illustration, we compare the parametric bootstrap prediction intervals with the Cox prediction interval that
uses the Fay-Herriot method of estimating A. For this data set, the length of the parametric bootstrap
prediction intervals based on the adjusted maximum likelihood methods are always more than those of the
Cox prediction intervals for all the states, inflation in lengths ranging from 18% to 83%. For details, see Li

(2007).
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Figure 2: SAIPE 92 and 93 B; versus State
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