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Abstract 

Estimates of the proportions of physicians using electronic medical/health records (EMR/EHR) sys­
tems by state are important in monitoring the progress of adopting this technology in the US. The 
National Electronic Health Records Survey (NEHRS) collects information on EMR/EHR systems and 
has been used to report official design-based estimates of adoption at the state-level. More efficient 
estimates may be obtained using area-level models (Fay and Herriot, 1979), and are expected to be 
consistent and have smaller errors if a good set of model covariates is available. We demonstrate by 
simulations that relying on sample data for selecting a set of model covariates and finding an optimal 
vector of model parameters within this set results in overfitting of sample data and increased errors of 
estimates. Fit statistics provide a good measure of errors of estimates when model covariates are selected 
from information sources independent from sample data. Employing good independent information for 
covariate selection results in better model fit and smaller errors of estimates. 

Introduction 
Physicians’ adoption of EMR/EHR systems has continued to climb as federal efforts have promoted their use 
in the context of implementation of the Patient Protection and Affordable Care Act (Hsiao et al., 2012). At 
the same time there are significant differences in adoption of EMR/EHR systems between states depending 
on local healthcare policies (Hsiao and Hing, 2012). It is important to have efficient in-state estimates of the 
proportion of physicians adopting such systems. 
Prior to 2010 the Centers for Disease Control and Prevention’s (CDC) National Center for Health Statistics 
(NCHS) surveyed EMR/EHR systems adoption at the national level through the National Ambulatory 
Medical Care Survey (NAMCS) and its mail supplement (NEHRS). Starting in 2010, the NEHRS sample 
size was increased fivefold to allow for state-level estimates. Still, direct randomization-based estimates from 
NEHRS data have substantial sampling errors rendering many important analyses difficult or impossible. 
Model-based methods are expected to produce more efficient estimates in small areas compared with direct 
estimates. There is extensive literature on such methods, beginning with the landmark paper by Fay and 
Herriot (1979). For many years these methods were successfully applied by the U.S. Census Bureau’s Small 
Area Income and Poverty Estimates (SAIPE) program for estimating various poverty level indicators in 
small places. A methodology paper by Bell et al. (2007) describes application of area-level Fay-Herriot type 
models to single-year data from the American Community Survey (ACS) for estimating county- and state-
level poverty of school-age (5-17 years) children. 
Successful application of model-based methods largely depends on selecting a good set of model covariates 
(regressors). A large part of the paper by Bell et al. (2007) was devoted to a description of regressors and 
analysis of model fit criteria. The SAIPE program utilizes regressors available from administrative data 
sources, such as the number of IRS child tax exemptions, the number of Food Stamp Program participants 
and the number of children in poverty estimated from Census 2000. Common sense suggests that besides 
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being instrumental for fitting ACS sample data, these regressors should correlate with poverty indicators for 
the whole population. 
However, the relationship of the data collected by healthcare surveys to the administrative records in general 
is not obvious. Two of the variables collected by NEHRS are the adoption of any and the adoption of a 
basic EMR/EHR system. It is assumed that a physician office is adopting any EMR/EHR system from the 
positive response to the survey question, “Does this practice use electronic medical records or electronic health 
records (not including billing records)?”. Adoption of a basic EMR/EHR system requires implementation of 
all of the following functionalities: patient history and demographics, patient problem lists, physician clinical 
notes, comprehensive list of patients’ medications and allergies, computerized orders for prescriptions, and 
ability to view laboratory and imaging results electronically (Hsiao and Hing, 2012). 
One source of model covariates available to healthcare data analysts is the Area Resource File (ARF) 
distributed by the Health Resources and Services Administration (HRSA). It includes hundreds of county-
level demographic, geographic, economic and healthcare covariates. Unfortunately, an a priori relationship 
between these covariates and local adoption of EMR/EHR systems is not as clear as the relationship between 
poverty data collected by the ACS and administrative regressors used by the SAIPE program. 
Therefore, an analyst faces the problem of selecting an appropriate set of model covariates from the large 
number of ARF covariates based on the available sample. In our simulations we observed that finding 
the optimal parameter vector using exclusively sample data, results in overfitting of the sample data that 
translates into increased mean squared errors (MSE) of the estimates. Overfitting would not happen if the 
parameter space was based on the finite population data while the estimates of the model parameters within 
that space were found from fitting sample data. In the latter case, models with better fit criteria, such as 
AIC, provide for smaller MSE of the estimates. In fact, we found that a positive association between AIC 
and MSE takes place when the parameter space is defined using any source of information independent of 
sample data, such as prior information or a separate data set. This independently discovered parameter 
space may or may not provide for a good model fit, but overfitting does not happen in this case and AIC 
remains a reasonable measure of MSE. 
In Section 2 we formulate a model with random effects at the area level used to estimate in-state proportions 
of adoption of any and adoption of a basic EMR/EHR system by physicians and present an EBLUP estimator 
for proportions. Ways of meaningful aggregation of county-level covariates from the ARF at the state level 
are also discussed. The design of our simulation experiment is explained in Section 3. Section 4 is devoted 
to presenting simulation results and comparing different trends between fit criteria and MSE. In the final 
section we further discuss the observed results and draw some conclusions. 

2 Area-level model for estimating proportions 
Some of the Fay-Herriot area-level models described by Bell et al. (2007) used ACS estimates of the (log) 
number of school-age children in poverty by county and state as the dependent variable. Other models 
had the logarithm of the direct survey estimate of poverty rate among school-age children as the dependent 
variable. We used the latter approach, defining the dependent variable as the logarithm of the direct NEHRS 
estimate of the proportion of office-based physicians adopting either any or basic EMR/EHR systems for 
state i: 

log (yi) = log (Yi) + ei where ei ∼ ind N (0, vi) (1a) 

   log (Yi) = xiβ + ui where ui ∼ iid N 0, σ2 (1b)u

where, for state i, 

yi = direct survey estimate of dependent variable; 
Yi = true population value of dependent variable; 
ei = log (yi) − log (Yi) = sampling error of estimating log (Yi); 
vi = direct survey estimate of the variance of sampling error ei; 

 xi = 1 × r vector of model covariates for state i; 
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β = r × 1 vector of model parameters;  
ui = random effect on state level;  
σ2 = variance of the random effect.  u 

The unknown parameters β and σ2 defined by equations (1a) and (1b) can be estimated iteratively by the u 
maximum likelihood method, or using the Carter and Rolph (1974) estimator described in Fay and Herriot 
(1979). Estimated parameters can be plugged into the standard formula (see Bell (1999) and Bell et al. 
(2007)) for an EBLUP of log (Yi) :   

 ˆlog (Yi) = (1 − wi) log (yi) + wi xiβ (2) 

where wi = vi/ σ̂2 + vi .u 
The variance of the prediction error, ignoring the error of estimating variance of the random effect σ̂2 , can u

be estimated as:       
 σ2 2 ˆVar log (Yi) = wi ̂ + w xiVar β xi (3)u i

On the original scale prediction of the proportion of physicians adopting either any or basic EMR/EHR 
systems by state is:       

ˆ   Yi = exp log (Yi) exp Var log (Yi) /2 (4) 

The area-level model (1b) employs covariates at the state level Xst . However, the ARF comprises demo-i 
graphic, economic and healthcare covariates at the county level Xc (j ∈ i), so they must be aggregated to ij 
the state level. The question is: what should be used as the basis for aggregation? The sample unit of both 

c,phys NAMCS and NEHRS is a physician. The numbers of physicians in counties N are available from the ij 
sampling frame used in both surveys. We used them as weights in the weighted average of covariates at the 
state level:  c,phys Xc 

ij Nij

Xst j∈i 
= (5a)i  

N c,phys 
ij 

j∈i 

Some of the ARF covariates Xc,pop were proportional to the census counts in the counties N c,pop, for example ij ij 
the number of people who are black or older than 65 years. They were normalized by the county’s census 
counts in order to minimize interdependence between overall census and the number of physicians in counties:  

Xc,pop/ N c,pop c,phys Nij ij ij
j∈i 

= (5b)Xi
st  

N c,phys 
ij 

j∈i 

State covariates defined according to (5) maintain meaningful association with county covariates Xc of the ij 
c,phys ARF for different possible distributions of physicians by counties j within state i. If, for instance, Nij 

are the same for all counties, state covariates Xst are equal to the mean of corresponding county covariates i 
Xc 

ij (j ∈ i). On the other hand, if all physicians reside in just one county j0, state covariates are equal to 
covariates in that county Xc .ij0 

Simulation experiment 
We conducted non-parametric simulations using a two-step procedure that combines an inverse sampling 
process (Step 1) and a bootstrap resampling algorithm (Step 2) described by Sverchkov and Pfeffermann 
(2004). At Step 1 we generated a single“pseudo population” for each state i by selecting with replacement  
Ni = k∈i wik physicians from the original sample with probabilities proportional to wik/ Ni, where wik 
is the survey weight of physician k in state i after adjustment for non-response and post-stratification. At 
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Step 2 we drew B = 1000 bootstrap samples from the “pseudo population” generated in Step 1, by selecting 
without replacement within each state i the same number of physicians ni as in the original sample with 
probability proportional to inverse survey weight 1/ wik. 
We calculated “true” “pseudo population” proportions Yi in small areas of physicians adopting any and 
adopting a basic EMR/EHR system. For every bootstrap sample we calculated design-based estimates of 
logarithms of these proportions log(yi) and their sampling error variances vi. The latter estimates were 
calculated using Taylor linearization. This provides all required data input for the area-level Fay-Herriot 
model (1). 
Utilizing different methods for selecting model covariates and defining parameter space, we estimated pa­
rameters of model (1) and calculated corresponding model-based estimates (4) of proportions of physicians 
who adopted any and adopted a basic EMR/EHR system by state. In Method 1, model covariates were 
selected only once by fitting the model to “pseudo population” data. In Method 2, model covariates were 
selected by finding the best fit for every bootstrap sample. In Method 3, model covariates were also selected 
once from fitting a single arbitrary bootstrap sample. For all three methods, the optimal vector of model 
parameters within the defined parameter space was estimated from the data for every bootstrap sample. 
Using“pseudo population” for defining model covariates (Method 1 ) corresponds to practical situations when 
analysts have good prior intelligence about meaningful correlation between the dependent variable and ad­
ministrative data sources. The Census Bureau’s SAIPE program would be a good example of such experience. 
However, in many cases analysts doing small area estimation have only sample data to rely upon for model 
selection (Method 2 ) and all other inferences. Sometimes an analyst may possess approximate knowledge 
about the association between the dependent variable and a predefined set of covariates. If an analyst chooses 
to rely on this knowledge (avoiding the temptation to “improve” the model fit using sample data for selecting 
“better” covariates), that would correspond to Method 3. 
Using the methods described above for selecting covariates of model (1b), the following model-based esti­
mates in small areas were calculated: 

Ŷ 0 
i − only-intercept model;  

Ŷ 2 (1)− intercept and 2 covariates defined from “pseudo population” (Method 1 );i 
Y 2+3 Y 2+3 Y 2+3ˆ (1, 1), ˆ (1, 2), ˆ (1, 3)− same as for Ŷi 

2(1) plus ∼ 3 more covariates defined by Methods 1-3 ;i i i 
Y 2+8 Y 2+8 Y 2+8ˆ (1, 1), ˆ (1, 2), ˆ (1, 3)− same as for Ŷi 

2(1) plus ∼ 8 more covariates defined by Methods 1-3 ;i i i 
In the above notations, numbers in parentheses denote methods of defining a set of model covariates and 
numbers in superscript denote the number of covariates utilized by the model. For example, for the estimator 
Ŷ 2+8(1, 2) first two model covariates were selected using Method 1 and then ∼ 8 were added to improve fit i 
of sample data (Method 2 ).  
For every estimator Ŷi listed above we calculated the root average MSE (RMSE) by averaging its squared  
deviation from “pseudo population” value Yi over simulations s = (1, ..., B) and states i = (1, ..., Ns):        Ns B

NsB 
i=1 s=1 

Results and conclusions 
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Ŷi − Yi (6) 
1

ŶiRMSE =

Results of the simulations are presented in Figure 1 below. In agreement with the well-known James and Stein 
(1961) theorem proving inadmissibility of the direct estimator with dimension k ≥ 3 under the quadratic 
loss function, even the estimator Ŷ 0 utilizing the only-intercept model has on average smaller RMSE than i 
the direct estimator yi in small areas.  
Furthermore, when covariates of a model utilized by an estimator were selected using reliable prior informa­
tion (Method 1 ), then adding more covariates resulted in better model fit (smaller AIC) and smaller RMSE  
of an estimator:  

Ŷ 2 Ŷ 2+3 Ŷ 2+8AIC (1) > AIC (1, 1) > AIC (1, 1) (7a)i i i 

and 
Ŷ 2 Ŷ 2+3 Ŷ 2+8RMSE i (1) > RMSE (1, 1) > RMSE (1, 1) (7b)i i 
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The opposite happened when covariates were added to the model conditional on achieving better fit of sample 
data (Method 2 ). Models with better fit corresponded to estimators having larger RMSE: 

Ŷ 2 Ŷ 2+3 Ŷ 2+8AIC (1) > AIC (1, 2) > AIC (1, 2) (8a)i i i 

but 
ˆ Ŷ 2+3 Ŷ 2+8Y 2RMSE i (1) < RMSE (1, 2) < RMSE (1, 2) (8b)i i 

Figure 1: Dependence of the root average MSE (RMSE) on the model fit criteria AIC for different model-
based estimators of proportions of adoption of any and basic EMR/EHR systems by physicians in states. 
RMSE of model-based estimators is measured relative to RMSE of direct estimator yi. ×− intercept-only 
model; +− covariates defined from fitting “pseudo population”; •− covariates defined from fitting every 
bootstrap sample; 0− covariates defined from fitting the first bootstrap sample were used for the rest. 

Open circles on Figure 1 denote AIC of models and RMSE of corresponding estimators when model covariates 
were selected conditional on fitting the first bootstrap sample (s = 1) and then used for fitting the rest of 
bootstrap samples’ data (s = 2, ..., B) (Method 3 ). We ran simulations under these conditions multiple times, 
changing the initial seed of the random number generator and thus generating different first bootstrap 
samples. Fitting models to these samples resulted in different sets of model covariates for each run of 
simulations. Average model fit (AIC) and error of estimators in small areas (RMSE) differed between 
runs of simulations, depending on proximity of the data distribution in the first sample to the “pseudo 
population” distribution. Increasing dimension of parameter space did not always result in decrease of 
RMSE, as happened when there was reliable prior information about model covariates (7). Neither did 
we observe an increase of RMSE, associated with overfitting of sample data (8). For different simulations, 

Ŷ 2+8 Ŷ 2+3RMSE (1, 3) could be either larger or smaller than RMSE (1, 3) . There was, however, a net i i 

positive effect from adding extra covariates for estimating adoption of any EMR/EHR system but no such 
effect for estimating adoption of a basic EMR/EHR system: 

Ŷ 2 Ŷ 2+3 Ŷ 2+8RMSE i (1) < avg RMSE (1, 3) , RMSE (1, 3) , for any EMR/EHR (9a)i i 

Ŷ 2 Ŷ 2+3 Ŷ 2+8RMSE i (1) ∼ avg RMSE (1, 3) , RMSE (1, 3) , for basic EMR/EHR (9b)i i 

In conclusion, overfitting can be characterized as a misleading situation when a model better fitting sample 
data results in estimators having larger RMSE. This happens when sample data are used for defining the set 
of model covariates (parameter space). If model covariates are set in advance using either reliable or partially 
reliable information and the optimal vector of model parameters is found within the predefined parameter 
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space, then overfitting does not occur and AIC of the model fit reliably predicts RMSE of estimators in small 
areas. 
Analysts often repeat the rhetorical wisdom stating that model-based estimators are efficient only when the 
underlying model is “correct”. The meaning of the word “correct” remains mysteriously unexplained. Let 
us define “correctness” of a model when there is proper correspondence between model fit criteria (AIC) and 
RMSE of the corresponding estimators. In the course of conducted simulations we found that the Fay-Herriot 
predictive model is always “correct” when parameter space is defined from external sources of information 
rather than being conditional on sample data. 
In small area estimation problems dealing with health data, reliable external sources of information about 
explanatory powers of model covariates are not always available. In other applications, particularly in data 
mining, there is enough data to allocate for both model fitting and model validation. Ultimately, a working 
population model is selected based on its ability to fit data reserved for validation. However, in small 
area estimation problems there is usually barely enough data for estimating model parameters and making 
predictions with reasonably small errors. In such cases, other methods of avoiding overfitting of sample data 
must be considered. 
One of these methods is Bayesian model averaging (BMA), which tackles the problem by estimating models 
for all possible combinations of covariates and constructing a weighted average over all of them. Hoeting 
et al. (1999) provided a thorough introduction to BMA. George and Foster (2000) advocated an “Empirical 
Bayes” approach by using information contained in the data (y; X) to elicit weight of models via maximum 
likelihood. Application of model averaging to small area estimation problems will be a subject for future 
research. 
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