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Abstract 

When analyzing data sampled with unequal inclusion probabilities, correlations between the prob­
ability of selection and the sampled data can induce bias. Weights equal to the inverse of the 
probability of selection are commonly used to correct this possible bias. When weights are uncor­
related with the sampled data, or more specifically the descriptive or model estimators of interest, 
highly disproportional sample design resulting in large weights can introduce unnecessary vari­
ability, leading to an overall larger root mean square error (RMSE) compared to the unweighted or 
Winsorized methods. 

We describe an approach we term weight smoothing that models the interactions between the 
weights and the estimators of interest as random effects, reducing the overall RMSE by shrink­
ing interactions toward zero when such shrinkage is supported by data. This manuscript adapts a 
more flexible Laplace prior distribution for the hierarchical Bayesian model in order to gain more 
robustness against model misspecification and considers this approach in the context of a general­
ized linear model. Both simulation and application suggest that under linear model setting, weight 
smoothing models with Laplace prior yield robust results when weighting is not necessary, and 
could reduce the RMSE by more than 25% if strong patterns exist in the data. Under logistic 
regression of same sample size, the estimates are still robust, but with less gain in efficiency. 

Key Words: Weight Smoothing, Laplace Prior, Generalized Linear Model, Hierarchical Bayesian 
Model 

1 Introduction 

Studies based on data sampled with unequal inclusion probability typically apply case weights 
equal to the inverse of probability of inclusion to reduce or remove the bias in estimators of popu­
lation quantities of descriptive interest, such as means or totals (Horvitz and Thompson 1952). This 
“fully weighted” approach can be extended to estimate analytical quantities that focus on associa­
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tion between risk factors and outcomes, such as population slopes in linear and generalized linear 
models, by applying sampling weights to score equations, and solving for the resulting “pseudo­
maximum likelihood” estimators (PMLEs) (Binder 1983, Pfeffermann 1993). Unweighted and 
weighted estimators generally correspond when the underlying model (either implicit or explicit) 
is correctly specified and the sampling scheme is noninformative. When the model is misspeci­
fied or the sampling scheme is informative, weighted estimators typically have reduced bias, often 
(although not always) at the cost of increased variance. As model assumptions improve and/or 
sampling better approximates noninformativeness, the increase in variance from weighted analysis 
could overwhelm the reduction in bias, and lead to an overall larger mean square error (MSE) than 
would be the case if the weights were ignored or at least controlled in some fashion. 

Weight trimming, or “winsorization,” is used to control the variation in weights, or more precisely, 
cap the weights at some value w0, and redistribute the values above w0 among the rest (Alexander 
et. al. 1997; Kish 1992; Potter 1990). Various approaches have been developed in creating different 
criteria to determine the cap value based on data. Some example includes NAEP method by Potter o a 
(1988), which set the cutoff point equal c w2/n, where c was chosen in an ad-hoc manner. i∈s i 
Cox and McGrath (1981) approached it by estimating the cutoff point value which optimizes the p 

ˆ ˆ ˆ ˆempirical MSE estimated by MSE(θ̂t) = ( θ̂t − θ̂  
w)

2 −V ar(θ̂t)+2 V ar(θ̂t)V ar(θ̂  
w), where θ̂  

w is 

the fully weighted estimator, and θ̂t, t = 1, ..., T , is the weight trimmed estimator, with t denoting 
various trimming levels, from 1 as the unweighted estimator to T as the fully-weighted estimator. 
Chowdbury et al. (2007) suggested treating the weights as coming from a skewed cumulative 
distribution (e.g., an exponential distribution), and using the upper 1% of the fitted distribution as 
a cut point for weight trimming. Beaumont (2008) proposed a generalized design-based method, 
replacing the actual weights with weights predicted on some form of response and design variables. 
Details of these design-based approaches are summarized in Henry’s (2012) review. 

An alternative to standard design-based weighted estimation is a model-based approach that ac­
commodates disproportional probability-of-selection design in a finite population Bayesian infer­
ence setting. By creating dummy variables stratified by equal or approximately equal case weights, 
a fully weighted data analysis can be obtained by building a model that contains indicators for the 
weight strata together with interaction terms between the weight stratum indicators and model pa­
rameters of interest, then obtaining inference about the population quantity of interest from its pos­
terior predictive distribution. Elliott and Little (2000) established two model-based approaches for 
weight-trimming: model averaging, or “weight pooling”, and hierarchical modeling, or “weight 
smoothing”. A weight pooling model collapses strata with similar weights together with their 
associated interaction terms, mimicking a data-driven weight trimming process. Weight smooth­
ing treats the underlying weight strata as random effects, and achieves a balance between fully 
weighted and unweighted estimates using a shrinkage estimator: thus the strata are smoothed if 
data provide little evidence of difference between strata, and are separated if data suggest that in­
teractions with strata are present. Under a Bayesian framework, a two-level model is implemented, 
assigning a multivariate normal prior for the random effects, with inference obtained from the pos­
terior predictive distribution of the population parameter of interest. Elliott (2008, 2009) extended 
the application to linear and generalized linear models, and discussed different settings for the ran­
dom effect priors, namely exchangeable, autoregressive, linear and nonparametric random slopes, 
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and evaluated their performances.
 

In this manuscript we consider extending the weight smoothing approach by use of Laplace priors 
for the random effect weight strata and interaction terms instead of multivariate normal priors, in 
order to achieve more robustness against “oversmoothing” in settings where weights are required to 
accommodate model misspecification or non-ignorable sampling. In addition, considering the pre­
vailing performance of Laplace prior in sparse model selection, we expect the hierarchical model 
to properly smooth the strata when data provides no evidence in difference among strata, even 
under simplistic mean and covariance matrix settings such as exchangeable random priors, while 
maintaining its bias-reduction feature when it is needed. We evaluate the performance of our pro­
posed model in a simulation study, under both model misspecification and informative sampling, 
for both numerical and dichotomous outcomes, and compare it with competing methods. The pa­
per is organized as follows. In Section 2 we review the theory of model smoothing together with 
recently proposes model-assisted methods, and develop our model with Laplace priors. Section 3 
provides a simulation study, and compares bias, coverage and MSE of the proposed method with 
competing methods. Section 4 demonstrates the method’s performance for both linear and logistic 
scenarios by applications on Dioxin Dataset from NHANES and Partner of Child Passenger Safety 
Dataset. Section 5 provides a summary discussion. 

2 Weight Smoothing Methodology 

2.1 Finite Bayesian Population Inference 

For finite Bayesian population inference, we model the the population data Y : Y ∼ f(Y |θ, Z), 
where Z are the variables associated with the sample design (probabilities of selection, cluster 
indicators, stratum variables). Note that the parametric model f can either be highly parametric 
with a low dimension θ (e.g., a normal model with common mean and variance), or have a more 
semi-parametric or non-parametric flavor with a high-dimension θ (such as a spline or Dirichlet 
process model). Inference about some population quantity of interest Q(Y ) is based on the poste­
rior predictive distribution of J J 

p(Ynob | Yobs, Z, θ, φ)p(I | Y, Z, θ, φ)p(Yobs | Z, θ)p(θ, φ)dθdφ 
p(Ynob | Yobs, I, Z) = J J J 

p(Ynob | Yobs, Z, θ, φ)p(I | Y, Z, θ, φ)p(Yobs | Z, θ)p(θ, φ)dθdφYnobs 
(1) 

where Ynob consists of the N − n unobserved cases in the population, and φ models the inclusion 
indicator I . Assuming that φ and θ have independent priors, the sampling mechanism is said to be 
”noninformative” if the distribution of I is independent of Y |Z, or ”ignorable” if the distribution 
of I only depends on Yobs|Z. When the sampling design is ignorable, p(I | Y, Z, θ, φ) = p(I |
Yobs, Z, φ), and thus ( 1) reduces to J 

p(Ynob | Yobs, Z, θ)p(Yobs | Z, θ)p(θ)dθJ J = p(Ynob | Yobs, Z), 
p(Ynob | Yobs, Z, θ)p(Yobs | Z, θ)p(θ)dθdYnobs 

allowing inference about Q(Y ) to be made without explicitly modeling the sampling inclusion 
parameter I(Ericson 1969; Holt and Smith 1979; Little 1993; Rubin 1987; Skinner et al. 1989). 
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Notice that if inference about quantities Q(Y |X) involving covariates X is desired (e.g., regression 
slope), noninformative or ignorable sample designs can be relaxed to have distribution of I depend 
on X. 

2.2 Weight Prediction 

Beaumont (2008) proposed a model-assisted method, tamping down the extreme values in weights 
by replacing weights with their predicted values from a prediction model of weights regressed 
on response and design variables. Denote I = (I1, ...IN )

T as the vector of sample inclusion 
indicators, i.e. Ii = 1 as ith unit sampled and Ii = 0 otherwise, Y = (Y1, ...YN )

T the vector 
of survey response variable, and Z = (Z1, ...ZN )

T the vector of design variables. Assuming a 
noninformative sampling design, thus P (I|Z, Y ) = P (I|Z), the predicted weights are obtained by 
w̃i = EM (wi|Ii = 1, zi, yi), or sometimes reduced to w̃i = EM (wi|Ii = 1, yi). Beaumont (2008) 
discussed two estimators, the linear form EM (wi|I, Y ) = Hi

T β + vi 
1/2

ci, and the exponential form, 
EM (wi|I, Y ) = 1 + exp(Hi

T β + vi 
1/2

ci), where Hi and vi > 0 are known functions of yi. (The 
exponential form prevents the predicted weights from being negative.) He presented two examples 
of Hi

T β, one-degree polynomial and five-degree polynomial of yi. The predicted weights are 
obtained by fitting the (unweighted) model on the sampled data, then the re-weighted estimator of 
the survey response variable of interest is obtained using the predicted weights. 

2.3 Weight Smoothing 

In general, weight smoothing stratifies the data by inclusion probability, and applies a hierarchical 
model treating strata means as random effects, thus achieves trimming via shrinkage. Consider­
ing the population mean as the quantity of interest, an example weight smoothing model is as 
following: 

iid
Yhi ∼ N(µh, σ

2) 
µ ∼ NH (φ, G) 

where µ = (µ1, ...µH ), φ = (φ1, ...φH ), and h = 1, ..., H indexes different ”weight strata” de­
fined, e.g., by same or similar inclusion probabilities. We assume φ, D, and σ2 all have weak 
or non-informative priors. Notice that the weight strata are not necessarily ordered by inclusion 
probability, but could be in a more natural ordering, for example, if the weight strata represent a 
disproportionately stratified sample by age. Based on this model, the posterior mean of the popu­
lation mean is derived as: 

HH 
E(Ȳ |y) = [nhȳh + (Nh − nh)µ̂h]/N 

h=1 

where µ̂h = E(µh|y). Various assumptions can be made for the prior distribution of µ, such as 

Exchangeable random effect (XRE): φh = φ0 for all h, G = τ 2IH 
Autoregressive (AR1): φh = φ0 for all h, G = τ 2A, Ajk = ρ|j−k|, j, k = 1, ..., H 

4
 



� � 

Linear (LIN): φh = φ0 + φ" ∗ h, G = τ 2IH  
Nonparametric (NPAR): φh = g(h), G = 0 where g is an unspecified, twice-differentiable func­
tion.
 
See Elliott and Little (2000) for a detailed review.
 

The weight smoothing mechanism can be easily intuited in the simplest case of the exchange­
able random effect (XRE) model (Holt and Smith 1979; Ghosh and Meeden 1986, Little 1991, 
Lazzaroni and Little 1998),where φh = µ for all h, and G = τ 2IH . The estimation of µ̂h 
is now a shrinkage estimator as µ̂h = whȳh + (1 − wh)ỹ, for wh = τ 2nh/(τ

2nh + σ2) and a a 
ỹ = ( nh/(nhτ 2 + σ2))− 1 nh/(nhτ

2 + σ2)ȳh. As τ 2 → ∞, wh → 1, and E(Ȳ |y) = aH
h h aH[nhȳh + (Nh − nh)ȳh]/N = (Nh/N)ȳh, the fully-weighted estimator. On the other h=1 h=1

hand, as τ 2 → 0, wh → 0, and the estimation shrinks toward the unweighted mean: since ỹ = 
h nhȳh/σ

2 aH = ȳ if τ 2 = 0, E(Ȳ |y) = h=1[nhȳh + (Nh − nh)ȳ]/N = (n/N)ȳ + ȳ(1 − n/N) = ȳ
h nh/σ2 

if τ 2 = 0. Since τ 2 is itself estimated from the data, and is a measure of the information available 
to distinguish how the population means within a weight strata differ, the weight smoothing model 
achieves a “data-driven” compromise between the weighted estimator, which is design consistent 
but may be highly inefficient, and unweighted estimator, which is fully efficient when assumption 
of independent between inclusion probability and mean of Y holds, but is likely biased otherwise. 

2.4 Weight smoothing for linear and generalized linear regression models 

Generalized linear regression models(McCullagh and Nelder 1989) postulate a likelihood for yi of 
the form 

yiθi − b(θi)
f(yi|θi, φ) = exp + c(yi, φ) 

ai(φ) 

where ai(φ) is a known function of (nuisance) scale parameter φ, and the mean of yi given by µi = 
b" (θi) is based on a linear combination of fixed covariates xi through some link function g() such 
that E(yi|θi) = µi, and g(µi) = g(b" (θi)) = ηi = xT β. In the meantime, V ar(yi|θi) = ai(φ)V (µi),i 
where V (µi) = b"" (θi); thus the variance is usually a function of the mean, with the exception of 
normal distribution, for which b"" (θi) = 1. The link is considered canonical if θi = ηi, with the 
simplifying results that V (µi) = 1/g" (µi). Some examples include Gaussian (linear) regression, 

− 1where ai(φ) = σ2 and the canonical link g(µi) = µi; logistic regression, where ai(φ) = ni and 
the canonical link g(µi) = log(µi/(1 − µi)), and Poisson regression, where ai(φ) = 1 and the 
canonical link g(µi) = log(µi). 

When considering weighted estimators, we index by the inclusion stratum h, thus g(E[yhi|βh]) = 
xhi
T βh. For weight smoothing models, the hierarchical structure is considered as 

(βT , ...βT )T |β ∗ , G ∼ NHP (β ∗ , G)1 H 

where β∗ is an unknown vector of mean values for the regression coefficients and G is an unknown 
covariance matrix. Our interest is to estimate the target population quantity B = (B1, ...Bp)

T , 
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which is the slope that solves the population score equation UN (B) = 0 where 

NH ∂ 
UN (β) = logf(yi; β) = 

∂β 
i=1 HH −1(µi(β))xhi 

H Nh yhi − g
V (µhi(β))g "(µhi(β))

h=1 i=1 

Notice that the quantity B that satisfies U(B) = 0 is always a meaningful population quantity 
even if the model is misspecified, since it is a linear approximation of xi to ηi. A first-order 
approximation of E(B|y, X) is given based on B̂ where 

H H −1(µi( ˆ
H nh (ŷhi − g B)))xhi

Wh = 0 
B))g B))

h=1 i=1 V (µhi( ˆ "(µhi( ˆ

where Wh = Nh/nh, ˆ = g−1(xT β̂h), and ˆ = E(βh|y, X). For linear regression, where 
V (µi) = σ2 and g " (µi) = 1, 

yhi hi βh 

B̂ =E(B|y, X) H nh H HH nh

" " =[ Wh xhixhi]
−1[ Wh( xhixhi)β̂h] 

h i=1 h i=1 

" (µi) −1In case of logistic regression, V (µi) = µi(1 − µi) and g = µi (1 − µi)
−1 , E(B|y, X) is 

obtained by solving the weighted score equation for population regression parameter β 

H nh   H H 
" " ˆWh expit(x β) − expit(x βh) = 0 xhi hi hi 

h=1 i=1 

where expit(.) = exp(.)/(1 + exp(.)). In practice, approximate posterior distributions of B can 
be obtained by replacing the observed yhi with the predicted values g(xhi 

" β̂h) for each draw of β̂h 
and obtaining the pseudo-MLE for the chosen regression model. 

2.5 Laplace Prior for Weight Smoothing 

Instead of using a multivariate normal distribution as the prior of βs, we propose using a multi­
variate Laplace distribution. Unlike normal distribution prior which restricts the variation between 
random effect term and prior mean in an L2 manner, Laplace measures by the L1 distance. Ac­
cording to Eltoft(2006), the general form of Multivariate Laplace distribution is given by: p

1 2 K(d/2)−1( λ 
2 q(y)) 

pY (y) = p
(2π)d/2 λ 2(

λ q(y))
(d/2)−1 
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where y is a d-dimensional random variables y = (y1, ..., yd); Km(x) denotes the modified Bessel 
function of the second kind and order m, evaluated at x; q(y) = (y − µ)tΓ−1(y − µ); Γ = {γjk}, 
j, k = 1, ..., d is a d × d matrix defining the internal covariance structure of the variable Y , µ = 
(µ1, ..., µd) is the vector of means, and λ an overall scale parameter. However, such a format is 
inconvenient for application. The alternative approach is to represent Laplace distribution as a scale 
mixture of normals with an exponential mixing density. By creating a set of latent mixing variables 
Dτ = diag(τ 2, ..., τ 2 ), and applying exchangeable random slope(XRS) setting, we reach the two 1 Hp

level hierarchical form of Laplace Prior for β: 

(β1 
T , ..., βT )T |βh

∗ 
hH , Dτ , σ

2 ∼ MV N(β ∗ , σ2Dτh) 
βh
∗ |σ0

2 ∼ MV N(0, σ0
2Ip) 

= diag(τ 2 , ..., τ 2 )Dτh h1 hp

HpH λ2 
−λ2τj 

2/2σ2, τ1
2, ...τ 2 ∼ 1/σ2 eHp 2 

j=1 

λ2 ∼ Gamma(r, δ) 

The first level of the model depends on the distribution assumption of the generalized linear model 
used. In this paper, we take linear regression and logistic regression as examples, and provide the 
full hierarchical Bayesian model and related Gibbs Sampler algorithm. 

For linear regression, Y conditional on all other parameters follows a normal distribution. Assum­
ing that the residual variance σ2 is independent from the latent mixing variables τi, the hierarchical 
model is as follows: 

yhi|xhi, βh, σ
2 ∼ N(x T βh, σ

2)hi

(β1 
T , ..., βT )T |βh

∗ 
hH , Dτ , σ

2 ∼ MV N(β ∗ , σ2Dτh) 
βh
∗|σ0

2 ∼ MV N(0, σ0
2Ip) 

Dτh = diag(τ 2 
hp)h1, ..., τ 2 

HpH λ2 
−λ2τj 

2/2σ2, τ 2, ...τ 2 ∼ 1/σ2 e1 Hp 2 
j=1 

λ2 ∼ Gamma(γ = 1, δ = 1.78) 

Following the deduction in Park & Casella(2008), the analytical forms of all fully conditional 
distributions of β, σ2 etc are achievable, and the posterior predictive distribution could be obtained 
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through a Gibbs Sampler as below. A detailed derivation is attached in the Appendix 1.
 

βh|rest ∼ MV N(A−1(Xh
T Yh + Dτh 

−1 
h), σ

2A−1), A = Xh
T Xh + D−1β ∗ 

τh 

β ∗|rest ∼ MV N((σ2Dτh)
−1((σ2Dτh)

−1 + (σ2I)−1)−1βh, ((σ2Dτh)
−1 + (σ2I)−1)−1)h 0 0 

HH1 
σ2|rest ∼ InvGamma((n + Hp)/2, [ (Yh − Xhβh)

T (Yh − Xhβh)+
2

h=1  
H H 

(βh − βh
∗ )T (Dτh)

−1(βh − βh
∗ )])  

h=1   
λ2σ2  

1/τ 2 |rest ∼ InvGaussian( , λ2) hi (βh − β∗)2  
h 

H pHH 
λ2 ∼ Gamma(Hp + γ, 

1 
τ 2 
hi + δ)

2 
h=1 i=1 

For logistic regression, the model is similar to that for linear regression, except that Y follows a 
binomial distribution, and estimation of σ2 is no longer necessary: 

H nh � � �HH �1−yhi exp(xhiβh) yhi 1 
yhi|xhi, βh, ∼ 

1 + exp(xhiβh) 1 + exp(xhiβh)
h=1 i=1 

(β1 
T , ..., βT

h, Dτ , ∼ MV N(β ∗ 
H )

T |β ∗ 
h, Dτh) 

β ∗|σ2 ∼ MV N(0, σ2Ip)h 0 0

= diag(τ 2 , ..., τ 2 )Dτh h1 hp

HpH λ2 
−λ2τj 

2/2τ 2, ...τ 2 ∼ e1 Hp 2 
j=1 

λ2 ∼ Gamma(r = 1, δ = 1.78) 

When the first level is not normally distributed, the fully conditional distribution of β does not be­
long to any known distribution, and thus direct sampling is impossible. Instead we apply Metropo­
lis method, and the proposed βh is drawn from Np h, cβDβ), for Dβ = βh τh )

−1, where (β " (V −1 + D−1 

βh 
" is the ML estimate of the logistic regression of y on Z from strata h, and Vβ h the associated 

covariance matrix obtained from the expected information matrix evaluated at βh
" . The proposed 

βh is accepted with probability r = max[1, {fβ(βprop)}/{fβ (β)}],where fβ is the posterior dis­
nhn 

tribution of β proportional to p(βh) f(yhi|βh). All other parameters follow the Gibbs Sampler 
i=1 

algorithm, and are directly drawn from their fully conditional distributions as below: (full deriva­

8
 



 
tion in Appendix 2) 

β ∗|rest ∼ MV N((Dτh)
−1((Dτh)

−1 + (σ2I)−1)−1βh, ((Dτh)
−1 + (σ2I)−1)−1)h 0 0 

λ2 
1/τ 2 |rest ∼ InvGaussian( , λ2)hi (βh − βh

∗)2 

H pHH 
λ2 ∼ Gamma(Hp + γ, 

1 
τ 2 
hi + δ)

2 
h=1 i=1 

3 Simulation Study 

To evaluate the performance of weight smoothing models using Laplace priors, we created two 
scenarios for ordinary linear regression and logistic regression, generating separate populations 
with normally distributed outcome and dichotomise outcome accordingly. The target of interest is 
the population slope. In addition to our Laplace prior estimator, we consider an unweighted esti­
mator, a fully-weighted estimator, a normal-prior (exchangable) estimator (Elliott and Little 2000; 
Elliott 2007), and several variations of the model-assisted estimator proposed by Beaumont (2008). 
For each scenario and estimator, we compute bias, square root of mean square error (RMSE) and 
coverage of 95% confidence or credible intervals. 

3.1 Hierarchical weight smoothing model for ordinary linear regression 

We generate a population of N = 20, 000 for ordinary linear regression. The predictor X is 
uniformly distributed on the interval from 0 to 10, and is equally divided into 20 strata with a range 
of 0.5 each. The response variable Y is then generated as a spline function of X with cutpoints 
between strata as knots. Three sets of coefficients are applied separately, so the pattern of Y | X 
varies from straight slope to increasing curve and decreasing curve. 

20H 
Yi|Xi, β, σ2 ∼ N(β0 + βh(xi − h)+, σ2) 

h=1 

Xi ∼ UNI(0, 10), i = 1, ..., N = 20, 000 
βa = c(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
βb = c(0, 0, 0, 0, 0, 0, 0, .5, .5, .5, .5, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4) 
βc = c(0, 11, −4, −4, −2, −2, −2, −2, −1, −1, −1, −1, −0.5, −0.5, −0.5, −0.5, 0, 0, 0, 0, 0) 

From the population, a sample of n = 1000 is selected without replacement, according to inclu­
sion probabilities equal to πi = (1 + i/30) ∗ i/2 for the ith stratum. Thus the ratio between the 
maximum and minimum of weights is about 35, and the sample size of each stratum is always 
greater than 3. Z is created as Z = I ⊗ X ,where I = c(I1, ..., Ih) is an indicator vector stating if 
the current observation belongs to ith stratum. Z is centered within each column with respect to 
each stratum(for computation convenience), and used as predictor in the simulations. 
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Bias 
σ2 = 10 
RMSE cover 

σ
Bias 

2 = 103 

RMSE cover 
σ

Bias 

2 = 105 

RMSE cover 
UNWT -0.013 0.730 0.95 0.009 0.693 0.95 -0.766 0.713 0.96 
FWT -0.006 1 0.94 -0.012 1 0.93 -1.253 1 0.96 
HWS -0.006 1.047 0.96 -0.019 0.978 0.95 -1.107 0.768 0.99 
XRS -0.001 1.489 1 0.016 0.720 0.96 -0.765 0.716 0.96 
PREDY -0.014 0.805 0.96 0.025 0.698 0.95 -0.781 0.711 0.97 
PREDY5 0.108 1.511 0.52 0.104 0.756 0.95 -0.785 0.717 0.97 
PREDYX -0.005 0.803 0.97 -0.016 0.783 0.94 -1.145 0.796 0.95 
PREDYX5 -0.005 0.978 0.94 -0.019 0.953 0.94 -1.540 0.983 0.95 

Table 1: Table 1: Comparison of various estimators of slope B1 under βa linear spline setting. Bias 
and RMSE under populations with residual variance 10, 103 and 105 from following model: un­
weighted, fully weighted, hierarchical weight smoothing, exchangeable random effect and weight 
prediction by y, degree 5 polynomial of y, linear combination of x and y, and degree 5 polynomial 
of x,y . 

aN aNOur inferential target is B = ( X̃iX̃i
" )−1 X̃iYi for X̃i = (1 Xi) ", the least-squares linear i=1 i=1 

approximation of Y to X . Under βb and βc, weights correct bias from model misspecification. 
Under βa, the model is correctly specified, suggesting that the unweighted estimator may be most 
efficient. Population variance σ2 varies among 10, 103 and 105, creating varying level of variance 
influence compared to possible bias; note that under βb, the curvature is largest where the data 
is most densely sampled, while the reverse is true under βc, suggesting that varying degrees of 
trimming will be required to optimize the bias-variance tradeoff. 

For the hyperprior parameters, σ0
2 is arbitrarily defined as 1000 to approximate a non-informative 

prior; the prior for λ follows a gamma hyperprior with parameter r = 1 and δ = 1.78, as suggested 
by Park and Casella (2008). All other parameters in simulation are initialized at zero, expect for 
variance estimator σ2, which is initialized at one. A Gibbs Sampler method is applied, that is, for 
each iteration, all parameters are sequentially drawn from the full conditional distribution. Then 
to obtain the estimate from posterior predictive distribution, the unobserved Y are generated based 
on sampled parameters from each iteration, and the target population slope B is obtained by fully 
weighted regression on observed and predicted Y . The process iterates 10000 times, with a burn-
in of 2000. Diagnostic plots are generated to assure the algorithm’s convergence. Bias, RMSE 
and 95% coverage are recorded for comparison. Overall 200 samples are generated from each 
population to provide the empirical distribution for the repeated measures properties. 

We compare the properties of our Laplace model (HWT) with major competitors, including the 
unweighted model (UNWT), fully weighted model (FWT), weight smoothing model with normal 
prior and exchangeable random slope assumption (XRS), and four variations of the model-assisted 
estimators of Beaumont (2008): predicted weights on y only (PREDY); predicted weights on de­
gree 5 polynomial of y (PREDY5); predicted weights on y and x (PREDYX) and predicted weights 
on degree 5 polynomial of y, together with x (PREDYX5). Bias and nominal 95% coverage are 
recorded directly, while RMSE is rescaled according to fully weighted estimator. Results are pro­
vided in Table 1,2, and 3. 

10
 



UNWT 
FWT 
HWS 
XRS 
PREDY 
PREDY5 
PREDYX 
PREDYX5 

σ2 = 10 σ2 = 103 σ2 = 105 

Bias RMSE cover Bias RMSE cover Bias RMSE cover 
1.980 

-0.006 
-0.006 
-0.103 
0.963 
1.059 
0.368 
0.018 

10.201 
1 

0.453 
1.008 
4.977 
5.466 
2.050 
1.000 

0 
1 

0.97 
0.95 

0 
0 

0.32 
1 

1.993 
-0.005 
-0.042 
1.769 
1.794 
1.791 
0.385 
0.012 

2.441 
1 

0.947 
2.213 
2.228 
2.212 
0.919 
0.955 

0.02 
0.92 
0.96 
0.04 
0.03 
0.03 
0.90 
0.96 

1.204 
-1.252 
-1.354 
1.203 
1.174 
1.184 

-0.746 
-1.515 

0.726 0.95 
1 0.96 

0.774 0.99 
0.729 0.94 
0.722 0.94 
0.730 0.95 
0.792 0.95 
0.983 0.96 

Table 2: Table 2: Comparison of various estimators of slope B1 under βb linear spline setting. Bias 
and RMSE under populations with residual variance 10, 103 and 105 from following model: un­
weighted, fully weighted, hierarchical weight smoothing, exchangeable random effect and weight 
prediction by y, degree 5 polynomial of y, linear combination of x and y, and degree 5 polynomial 
of x,y . 

σ2 = 10 σ2 = 103 σ2 = 105 

Bias RMSE cover Bias RMSE cover Bias RMSE cover 
UNWT -1.874 6.227 0 -1.836 2.177 0.01 -2.611 0.758 0.9 
FWT -0.006 1 1 -0.020 1 0.97 -1.257 1 0.95 
HWS -0.005 0.337 0.85 0.069 0.937 0.96 -0.772 0.772 0.99 
XRS -0.549 1.872 0.06 -1.721 2.052 0.01 -2.609 0.761 0.91 
PREDY -0.009 1.258 0.97 -1.738 2.075 0.01 -2.627 0.756 0.90 
PREDY5 -0.167 1.131 0.99 -1.256 1.757 0.37 -2.593 0.761 0.88 
PREDYX -0.327 1.416 0.75 -0.729 1.091 0.75 -1.861 0.809 0.93 
PREDYX5 -0.020 1.019 1 -0.055 0.965 0.96 -1.557 0.983 0.95 

Table 3: Table 3: Comparison of various estimators of slope B1 under βc linear spline setting. Bias 
and RMSE under populations with residual variance 10, 103 and 105 from following model: un­
weighted, fully weighted, hierarchical weight smoothing, exchangeable random effect and weight 
prediction by y, degree 5 polynomial of y, linear combination of x and y, and degree 5 polynomial 
of x,y . 
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Under βa, where the model is correctly specified, all methods yield unbiased results, and the un­
weighted estimator maintains the best efficiency, with an approximate 30% decrease in RMSE 
comparing to fully weighted estimator. The original weight smoothing method under XRS tends 
to provide unstable results, inflating the variance when population signal is strong, but achieving 
similar RMSE as the unweighted estimator when the population signal is weak relative to the noise. 
Our model, under the same XRS assumption but with a Laplace prior, gives more stable results that 
resemble the fully weighted estimator when variance is low, but increases in efficiency as popula­
tion variance increases. Both the XRS and HWT estimators have correct to somewhat conservative 
coverage when the linear model is correctly specified. Most model-assisted estimators have im­
proved RMSE comparing to the fully weighted estimator, with the exception of PREDY5, which 
has unstable results and poor nominal coverage when σ2 = 10. 

For scenarios under βb and βc, the unweighted estimator of B is biased, and the fully weighted 
estimator strongly prevails over unweighted estimator with respect to both RMSE and coverage for 
small to moderate levels of residual variances. The weight smoothing method under XRS remains 
biased at moderate levels of variance for βb and βc, and also at small levels of variance for βc, 
raising RMSE relative to FWT and destroying nominal coverage, suggesting that the exchangable 
random slope structure is not sophisticated enough to capture the relation in mean and variance 
among strata. The weight smoothing estimator with Laplace prior has limited bias similar to that 
of the fully weighted estimator, but very substantially reduced RMSE, though it suffers a moderate 
drop in coverage under βc and σ2 = 10. Most of the model-assisted estimators are insufficiently 
structured to reduce bias in the small-to-medium residual variance settings, except for PREDYX5, 
which mimics the fully weighted estimator and thus has little savings in relative RMSE under any 
of the scenarios. 

3.2 Hierarchical weight smoothing model for logistic regression 

Following Elliott (2007), we set up population in two approaches: model misspecification and in­
formative sampling. For model misspecification, the population is equally divided into 20 strata, 
and the predictor X is uniformly distributed within each stratum on an interval ranging from 
0.5(h − 1) to 0.5h. The binary response variable is generated as following: 

P (Yi = 1|Xi) ∼ BER(expit(1.5 − .75Xi + C ∗ X2)),i 

Xhi ∼ UNI(0.5 ∗ (h − 1), 0.5 ∗ h), h = 1, .., 20, i = 1, ..., 1000 

Our inferential target is B = (B0 B1) ", the value of β = (β0 β1) " that solves the score equation 
" U(β) = 

aN
i=1 X̃i(Yi − expit(X̃i β)), corresponding to the best linear approximation to Xi and 

E(Yi|Xi)log . For C, we consider values of 0, .027, .045, .061, .080, corresponding to increas­
1−E(Yi|Xi) 

ing levels of model misspecification. The selection probability for each observation remains the 
same within each stratum, and increases linearly along strata, with a ratio between maximum and 
minimum probabilities equals to 20. 
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Bias 
c = 0 
RMSE cover Bias 

c = .45 
RMSE cover Bias 

c = .80 
RMSE cover 

UNWT 0.014 0.697 0.96 0.063 1.151 0.47 0.132 2.819 0 
FWT 0.006 1 0.84 -0.015 1 0.82 -0.014 1 0.94 
HWS 0.011 0.915 0.84 -0.014 0.909 0.82 -0.013 0.860 0.88 
XRS 0.038 1.125 1 0.078 1.696 0.94 0.042 1.644 0.98 
PREDY 0.014 0.765 0.95 0.082 1.614 0.27 0.136 3.115 0 
PREDYX 0.003 0.791 0.96 0.021 0.903 0.92 0.038 1.123 0.79 
PREDYX5 -0.004 0.962 0.93 -0.005 0.965 0.94 -0.001 0.967 0.98 

Table 4: Table 4: Comparison under model misspecification. Bias and RMSE under populations 
with underlying model quadratic coefficient 0, .45 and .80 from following model: unweighted, 
fully weighted, hierarchical weight smoothing, exchangeable random effect and weight prediction 
by y, degree 5 polynomial of y, linear combination of x and y, and degree 5 polynomial of x,y. 

For the informative sampling setting, we follow the same formula of 

P (Yi = 1|Xi) ∼ BER(expit(1.5 − .75Xi + C ∗ X2)),i 

Xhi ∼ UNI(0.5 ∗ (h − 1), 0.5 ∗ h), h = 1, .., 20, i = 1, ..., 1000 

but fix C = 0, so the model is correctly specified. We also create a vector of binary value Zi 
∗ such 

that Cor(Yi, Zi 
∗) = r, and r range from 0.05 to 0.95 to represent different level of correlation with 

Y . Then we let Zi = Zi 
∗Ui +(1−Zi 

∗)Xi, where Ui ∼ U(0, 10) independent of Xi, and the selection 
probability is proportional to Zi. Thus whether the selection probability is related to X or not is 
determined by the value of Z∗, which is correlated with Y to some level. The process results in a 
ratio of roughly 30 between maximum weight and minimum weight, and the correlation between 
selection probability and Y varies from 0 to 30 % as the correlation between Z∗ and Y increases 
from .05 to .95. 20 strata of equal size are created by pooling observations with similar selection 
probabilities together. 

From this population, samples with n = 1000 are selected without replacement, with the selection 
probability stated above. We create weight strata using the values of h. A total of 200 samples are 
generated to create the empirical distribution for inference. A single MCMC chain is built for each 
data set, and for each iteration in the algorithm, all parameters are sequentially drawn from the 
full conditional distribution, except for β, which is proposed from a normal distribution centered at 
MLE with inverse expected information as covariance matrix, and accepted according to likelihood 
ratio times prior distribution. Then the predicted Y is calculated based on drawn parameters, and 
the target population slope is obtained by fully weighted logistic regression. The initial values of 
parameters are assigned the same as linear regression setting, and the process iterates 10000 times, 
with a burn-in of 2000. 

We compare the properties of our Laplace model (HWT) with same major competitors as in the 
linear regression setting, with the exception of (PREDY5): since Y is a binary variable, higher-
order polynomials are not relevant. Bias and nominal 95% coverage are recorded directly, while 
RMSE is rescaled according to fully weighted estimator. Results are provided in Table 4 and 5. 

While comparing different models under model misspecification setting, the unweighted model 
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Bias 
r = .05 
RMSE cover Bias 

r = .50 
RMSE cover Bias 

r = .95 
RMSE cover 

UNWT 0.057 0.990 0.76 0.069 1.155 0.52 0.053 0.914 0.64 
FWT 0.023 1 0.94 0.009 1 0.88 0.001 1 1 
HWS 0.022 0.906 0.82 0.009 0.914 0.84 0.001 0.875 0.96 
XRS 0.067 1.417 1 0.071 1.463 0.98 0.059 1.272 1 
PREDY 0.055 1.034 0.70 0.071 1.233 0.54 0.062 1.079 0.64 
PREDYX 0.021 0.832 0.94 0.023 0.859 0.91 0.031 0.880 0.93 
PREDYX5 0.004 0.977 0.94 0.002 0.969 0.95 0.007 0.997 0.97 

Table 5: Table 5: Comparison under informative sampling. Bias and RMSE under populations 
with correlation between Z and Y equal to .05, .50 and .95 from following model: unweighted, 
fully weighted, hierarchical weight smoothing, exchangeable random effect and weight prediction 
by y, degree 5 polynomial of y, linear combination of x and y, and degree 5 polynomial of x,y. 

has increased bias as the population model is less correctly specified, resulting in a change from 
efficient estimate to a poor estimate(RMSE ratio from 69.7% to 281.9% of FWT’s as C increases) 
and poor coverage as misspecification increases. The exchangeable random slope model estimator 
is not robust, with bias similar to unweighted model, and larger RMSE than the fully-weighted es­
timator, although coverage is conservative. The hierarchical weight smoothing model with Laplace 
prior provides a more robust estimator, with minimal bias, and RMSE reduced by up to 14% com­
pared to the FWT estimator, although coverage suffers to a moderate degree. The weight prediction 
models PREDY and PREDYX perform similar to unweighted estimate, gaining efficiency when 
model’s correctly specified, and suffering as misspecification increases. PREDYX5, which pre­
dicts weights with a degree five polynomial of both x and y, essentially mimics the fully-weighted 
estimator. 

Under informative sampling, the unweighted estimator has only slightly larger RMSE than the 
fully weighted estimator, but is substantially biased with poor coverage. The exchangeable random 
effect model has a similar degree of bias compared to the unweighted estimator, but has increased 
variability that, while providing conservative coverage, yields substantially increased RMSE over 
the fully-weighted estimator. The hierarchical weight smoothing model with Laplace prior again 
provides a more robust estimator, with minimal bias, and RMSE reduced by up to 12% compared 
to the FWT estimator, although coverage suffers to a moderate degree except when the sampling 
is highly informative. PREDY is modestly biased but has poor coverage (perhaps not surprising 
given that Y is binary), while PREDYX improves RMSE by upp to 17% while having only slight 
undercoverage. PREDYX5 again mimics the fully-weighted model. 
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4 Application 

4.1 Application on Dioxin data from NHANES 

To demonstrate the performance of our method in linear regression setting, we consider its applica­
tion on the dioxin dataset from the National Health and Nutrition Examination Survey(NHANES). 
During the 2003-2004 survey, 1250 representative adult subjects were selected under a probability 
sample of the US, and had their blood biomarkers measured, including 2,3,7,8-tetrachlorodibenzo-
p-dioxin(TCDD), a compound usually formed through incomplete combustion such as incinera­
tion, paper and plastics manufacturing, and smoking. Other demographic variables like age and 
gender are also available from the survey. The sampled data is stratified into 25 strata, within each 
consist of 2 Masked Variance Units(MVU’s) for proper variance estimation procedure, with survey 
weights provided as well. Due to technical limit, 674 readings are below limit-of detection, and 
are imputed through multiple imputation using the model described in Chen et al. (2010), resulting 
in 5 replicate data sets. Both survey structure and imputation are incorporated in analysis using a 
jackknife method and Rubin’s formula(Rubin 1987). 

To determine the connection between log of TCDD level and individual demographic information, 
four linear regression models are fitted as log TCDD on age, log TCDD on gender, log TCDD 
on age and gender, and log TCDD on age, gender and interaction. The hierarchical model is 
built as described before, with same initial value of parameters as those in the simulation. For 
each model setting, the unweighted (UNWT), fully-weighted (FWT), and the hierarchical weight 
smoothing (HWS) estimators are obtained(exchangeable random slope model fails to converge 
and is removed from the result). To estimate mean square error, the fully weighted version is 
treated as unbiased. Note that the fully weighted estimator is unbiased only in expectation, leading 
to the true estimated square bias of regression coefficient β̂ given by max((β̂ − β̂w)

2) − V̂01, 
ˆ ˆ ˆ β, ˆ To fully account for the design feature, all where V̂01 = V ar(β̂) + V ar(β̂w) − 2Cov( ˆ βw). 

kh
ˆ kh−1a a 

variance/covariance estimates are calculated via jackknife as V ar(β̂w) = ( ˆ −
kh 

βw(hi) 
h i=1 

βw)
2 , = (X " W(hi)X)−1XW(hi)y, where ˆ denotes the weighted β estimater from sample ˆ β̂w(hi) βw(hi) 

excluding ith MVU in hth stratum, and W(hi) is a diagonal matrix consisting of case weight wj 
khfor all elements j ∈/ h, j ∈/ i, 

kh−1 wj for all elements j ∈ h, j /∈ i, and 0 for elements j ∈ 
ˆ ˆ ˆh, j ∈ i. V ar(β̂) and Cov(β̂w, β) are calculated accordingly, and estimates from five imputed 

replicate datasets are combined with Rubin’s formula. The result was based on 10000 iterations 
after discarding 2000 draws as burn-in. And the resulting Biasness and RMSE are summarized in 
Tables 6-9. 

For the first two models of log TCDD on age and gender separately, the estimation of the 
single predictor from unweighted model appears to be biased comparing to fully weighted model, 
resulting in estimated bias about 40% and 70% of RMSE. However, the weighted model also 
fails to provide a efficient estimate for effect on age, supported by a RMSE of 3.888, larger than 
3.265 from the unweighted model. Meanwhile, the hierarchical weight smoothing model shows 
its ability to improve efficiency, both reducing the biasness comparing to unweighted model, and 
maintaining a RMSE similar to or smaller than fully weighted model depend on the severity of 
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Model Bias(10−3) RMSE(10−3) 
UNWT -1.262 3.265 
WT 0 3.888 
HWT -0.086 1.214 

Table 6: Table 6: Regression of log TCDD on Age. Bias and RMSE for linear slope estimated for 
age: unweighted, fully weighted and hierarchical weight smoothing. 

Model Bias(10−2) RMSE(10−1) 
UNWT -8.219 1.248 
WT 0 0.637 
HWT 0.589 0.607 

Table 7: Table 7: Regression of log TCDD on Gender. Bias and RMSE for linear slope estimated 
for gender: unweighted, fully weighted and hierarchical weight smoothing. 

Age Gender 
Model Bias(10−4) RMSE(10−3) Bias(10−2) RMSE(10−2) 
UNWT -9.067 3.296 -0.159 9.017 
WT 0 3.895 0 6.161 
HWS -0.841 1.227 1.058 5.659 

Table 8: Table 8: Regression of log TCDD on age and gender. Bias and RMSE for linear slope 
estimated for age and gender: unweighted, fully weighted and hierarchical weight smoothing. 

Age Gender Interaction 
Model Bias(10−4) RMSE(10−3) Bias(10−2) RMSE(10−1) Bias(10−3) RMSE(10−3) 
UNWT -5.063 3.758 2.882 1.591 -0.880 3.285 
WT 0 2.661 0 3.259 0 7.335 
HWS -9.142 2.048 -6.530 1.282 1.646 2.667 

Table 9: Table 9: Regression of log TCDD on age and gender, and interaction between age and 
gender. Bias and RMSE for linear slope estimated for age, gender and interaction: unweighted, 
fully weighted and hierarchical weight smoothing. 
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variance inflation. 

As more predictors enter the model, the estimated bias rapidly decreases in scale, leading to a 
scenario that both bias and inflation in variance could dominate the overall RMSE, and neither 
unweighted model nor fully weighted model prevails in estimating all predictors. Hence the hier­
archical weight smoothing model cannot reduce bias further, yet it succeeds in reducing variance, 
resulting in overall smaller RMSE comparing to either unweighted estimator or fully weighted 
estimator. 

4.2 Application on Partner for Child Passenger Safety data 

In this section, we use Partners for Child Passenger Safety dataset to demonstrate our method’s per­
formance under logistic regression setting. Unit observations in the dataset are damaged vehicles 
disproportionally sampled from State Farm claims records between December 1998 and December 
2005, when at least one child occupant less than 15 years of age gets involved in a model year 1990 
or newer State Farm-insured vehicle. The focus of the study is children’s consequential injuries, 
defined by either facial lacerations or other injuries rated 2 or more on the Abbreviated Injury 
Scale (AIS) (Association for the Advancement of Automotive Medicine 1990). Due to the rare 
occurrence of the injury among all claims, to improve accuracy of the corresponding estimation 
on this rare outcome, the overall population is divided into three strata based on injury status – 
vehicles with at least one child occupant screened positive for injury, vehicles with all child oc­
cupants reported receiving medical treatment but screened negative for injury, and vehicles with 
no occupants receiving medical treatment – and crossed with two strata defined by whether the 
vehicle was driveable or not. Since the stratification was associated with risk of injury, and cannot 
be fully explained by other auxiliary variable, the sampling design is informative, with weights 
varies from 1 to 50, and 9% of weights lying outside 3 times their standard deviation. 

As determined by Winston, Kallan, Elliott, Menon and Durbin(2002), children rear-seated in com­
pacted extended cab pickups are at greater risk of consequential injuries than children rear-seated 
in other vehicles. To strengthen the conclusion, two models are applied, the unadjusted logis­
tic model of injury status on car type(compacted extended cab pickups or others), and adjusted 
logistic model adapting control variables including child age (years), use of restraint (Y/N), in­
trusion into the passenger cabin in accident (Y/N), tow-away after accident (Y/N), direction of 
impact (front/side/rear/other), and weight of the vehicle (pounds). The logistic hierarchical weight 
smoothing model is set up as stated in previous section, then the Gibbs sampler is executed for 
10,000 iterations with 2,000 burn-in, and odds ratios are compared with unweighted and fully 
weighted model. 

The estimated odds ratios for compacted extended cab pickups indicator didn’t vary much from 
unadjusted model to fully adjusted model, while unweighted regression and fully weighted regres­
sion lead to quite different result, from a OR of 3.534 to 11.317 for unadjusted model, and from 
3.448 to 13.890 when all other control variables are included. Both hierarchical weight smoothing 
model and exchangeable random effect model provide estimates lies in between the unweighted 
and weighted estimates, although estimation from HWS model tends to match estimation from 
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OR 
Unadjusted Adjusted 

UNWT 3.534(2.003,6.234) 3.448(1.850,6.430) 
FWT 11.317(2.737,46.784) 13.890(3.176,60.760) 
HWS 10.559(3.731,29.876) 13.268(7.919,22.232) 
XRS 8.681(2.790,27.007) 6.725(2.162,20.922) 

Table 10: Table 10: Odds ratio and relevant 95% confidence interval for estimated effect on injury 
from compacted extended cab pickups: unweighted, fully weighted, hierarchical weight smoothing 
and exchangeable random effect. 

fully weighted model. It is also worth noting that with similar point estimates, HWS model pro­
vides a considerable reduction in estimated standard deviation, leads to a smaller 95% confidence 
interval comparing to fully weighted model, an characteristic also presented in simulation study 
before. 

5 Discussion 

Generally, most methods for weight trimming, both design based and model based, handle sam­
pling weights by achieving a balance between bias and variance, resulting in an estimate usually 
lying between those from the unweighted model and fully weighted model. However, the weight 
smoothing model with Laplace prior shows the potential to provide a more efficient estimate than 
either unweighted model and fully weighted model at same time. This occurs especially when the 
model is misspecified, and population variance is small so the weight smoothing model is able to 
model the underlying data structure precisely, and yielding an estimate greatly reduced in RMSE. 
However, this aggressive estimation comes at the cost of robustness, that is, the overly reduced 
variance could lead to poor coverage rate. As presented in the simulation, the HWS model suffers 
a moderate drop in the coverage rate when population variance is small. It is worth exploring in 
future the model’s mechanism in reducing the overall RMSE, and the limit of the scenarios under 
which it still maintains reasonable coverage. 

Comparing the results of the Laplace prior weight smoothing models with the model-assisted es­
timators of Beaumont (2008), we find that the Laplace estimators offer the promise of relatively 
simple estimators that can approximately fully-weighted estimators when weights are required 
for bias correction, but improve over weighted estimators in terms of variability while maintain­
ing approximately correct nominal coverage of credible intervals. In contrast, the model-assisted 
estimators can in some settings “oversmooth” weights when bias correction is needed and yield 
unstable estimators when the weight prediction is weak. The predicted weights in the model-
assisted approach incorporate information from design variables, thus yielding better predictions 
for weighted mean and population total estimates than unweighted estimators. However, in some 
settings even a degree five polynomial may fail to correctly approximate the relationship between 
the inverse of the probability of selection and the sample statistic of interest. Perhaps even more 
importantly, highly structured models for weight prediction such as high degree polynomials may 
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results in unstable estimates of weights, adding unnecessary variance rather than dampening it. 
Ultimately we find attempts to model weights rather than data misguided, as it focuses on design 
factors on which we should be conditioning, rather than assessing uncertainties in the data that may 
be fertile ground for mean square error reduction while preserving approximate nominal coverage: 
i.e., calibrated Bayes estimators (Little 2011). 
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Appendix 1: Full Conditional Distribution for Linear Model 

To derive the fully conditional distribution of the linear model for Gibbs sampler, first we start with 
the hierarchical model: 

Yh ∼ MV N(Xhβh, σ
2Inh ) 

βh = (βh1, ..., βhp)
T , h = 1, ...H 

βh ∼ MV N(βh
∗ , σ2Dτh) 

βh 
∗ ∼ MV N(0p, σ0

2Ip) 
Dτh = diag(τ 2 , ..., τ 2 )h1 hp

σ2 ∼ 1/σ2 

λ2 
−λ2τ 2 

hi/2τ 2 
hi ∼ e 

2 
λ2 ∼ Gamma(γ, δ) 

Ignoring all constants, we reduce the formula to the kernel of likelihood of y, and all other condi­
tional probabilities: 

HH 1 
p(Y |β, σ2) ∝ (σ2)−n/2 exp{− (Yh − Xhβh)

T (σ2Inh )
−1(Yh − Xhβh)}

2
h=1 

HH 1 
p(β|β ∗ , σ2, Dτ ) ∝ (σ2)−Hp/2 |Dτh|−1/2 exp{− (βh − βh

∗ )T (σ2Dτh)
−1(βh − βh

∗ )}
2

h=1  
H H 1 

f(β ∗ ) ∝ exp{−
2 
βh 
∗T (σ0

2Ip)
−1βh

∗}
h=1 

f(σ2) ∝ 1/σ2 

H pHH 
f(τ 2|λ2) ∝ (λ2)Hp exp(−λ2τ 2 

hi/2) 
h=1 i=1 

f(λ2) ∝ (λ2)γ−1 exp(−δλ2) 
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Since βhs from different strata are independent, we write separately the kernel of posterior distri­
bution of βh, which is proportional to the product of likelihood of y and βh prior. 

1 
p(βh|rest) ∝ exp{− [(Yh − Xhβh)

T (Yh − Xhβh) + (βh − β ∗ )T D−1(βh − β ∗ )]}h τh h2σ2  

1  
D−1 T D−1∝ exp{− [βT XT Xhβh − 2Y T Xhβh + βT βh − 2β ∗ βh]}h h h h τh h τh 2σ2  

1  T D−1 = exp{− [βT (XT Xh + D−1)βh − 2(Y T Xh + β ∗ )βh]}h h τh h h τh 2σ2  

1  ∝ exp{− [(βh − (Xh
T Xh + D−1)−1(Yh

T Xh + D−1βh
∗ ))T (Xh

T Xh + Dτh)
−1 

τh τh 2σ2 

(βh − (Xh
T Xh + D−1)−1(Yh

T Xh + D−1βh
∗ ))]}τh τh 

Yh + D−1β∗ Xh + D−1Which suggests that βh|rest ∼ MV N(A−1(XT 
τh ), σ2A−1), A = Xh

T 
h h τh . 

Similarly, we derive the kernel of fully conditional distribution of other parameters as follows: 

1 
p(βh

∗|rest) ∝ exp{−
2
[(βh 

∗ − βh)
T (σ2Dτh)

−1(βh 
∗ − βh) + βh 

∗T (σ0
2I)−1βh

∗ ]} 

1 ∝ exp{−
2
[βh 

∗T ((σ2Dτh)
−1 + (σ0

2I)−1)βh 
∗ − 2βh

T (σ2Dτh)
−1βh

∗ ]} 

1 ∝ exp{−
2
(βh 

∗ − ((σ2Dτh)
−1 + (σ0

2I)−1)−1(σ2Dτh)
−1βh)

T ((σ2Dτh)
−1 + (σ0

2I)−1) 

(βh 
∗ − ((σ2Dτh)

−1 + (σ0
2I)−1)−1(σ2Dτh)

−1βh)}
βh
∗ |rest ∼MV N((σ2Dτh)

−1((σ2Dτh)
−1 + (σ0

2I)−1)−1βh, ((σ2Dτh)
−1 + (σ0

2I)−1)−1) 

HH1 
p(σ2|rest) ∝(σ2)−n/2 exp{− (σ2)−1 (Yh − Xhβh)

T (Yh − Xhβh)}∗
2

h=1 H 
(σ2)−Hp/2 exp{− 

1
(σ2)−1 

H

(βh − βh
∗ )T (Dτh)

−1(βh − βh
∗ )} ∗ (σ2)−1 

2
h=1 H 

=(σ2)−(n/2+Hp/2)−1 exp{− 
1
(σ2)−1[ 

H

(Yh − Xhβh)
T (Yh − Xhβh)+

2
h=1 

HH 
(βh − βh

∗ )T (Dτh)
−1(βh − βh

∗ )]}
h=1  

H H1 
σ2|rest ∼InvGamma((n + Hp)/2, [ (Yh − Xhβh)

T (Yh − Xhβh)+
2

h=1  
H H 

(βh − βh
∗ )T (Dτh)

−1(βh − βh
∗ )]) 

h=1 
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1 (βhi − β∗ )2 λ2τ 2 
hi hi p(1/τ 2 |rest) ∝(τ 2 )−hi hi

1 
2 exp(−  ) ∗ d(τ 2 

hi) ) ∗ exp(−  
2 σ2τ 2 

hi 2  
1 (βhi − β∗ )2(1/τ 2 ) λ2 

)−2( hi hi + )] ∗ (1/τ 2 
hi∝(1/τ 2 

hi)  
1 
2 exp[−  

1/τ 2 
hiσ22 

1 (βhi − β∗ )2(1/τ 2 )2 + λ2σ2 
hi hi3 

2

3 
2

=(1/τ 2 
hi)

−

∝(1/τ 2 )−hi

exp[− ( )] 
σ2(1/τ 2 

hi) 2 o 
1 ((1/τ 2 ) − hi)

2)2 
hi λ2σ2/(βhi − β∗ 

exp[−  ] 
2 (βhi − β∗ )−2σ2(1/τ 2 )hi hi

λ2σ2 
1/τ 2 

hi , λ2)|rest ∼InvGaussian(  
(βh − βh

∗)2 

H pHH1 
p(λ2|rest) ∝(λ2)Hp exp(− λ2 τ 2 

hi) ∗ (λ2)γ−1 exp(−δλ2)
2 

h=1 i=1 HH 
τ 2=(λ2)Hp+γ−1 exp[−λ2(

1 H p

hi + δ)]
2 

h=1 i=1 
H pHH 

τ 2λ2 ∼Gamma(Hp + γ, 
1 

hi + δ)
2 

h=1 i=1 

Appendix 2: Full Conditional Distribution for Logistic Model 

yhi|Xhi, βh, ∼ Binomial(p = logit(xhiβh)) 
βh = (βh1, ..., βhp)

T , h = 1, ...H 
βh ∼ MV N(βh

∗ , σ2Dτh) 
βh 
∗ ∼ MV N(0p, σ0

2Ip) 
= diag(τ 2 , ..., τ 2 )Dτh h1 hp

λ2 
−λ2τ 2 /2τ 2 hi

hi ∼ e 
2 

λ2 ∼ Gamma(γ, δ) 

Similarly, we start with the hierarchical model, derive the kernel of the posterior distribution of all 
parameters, and reveal that they belongs to some known distribution families. The full conditional 
distribution of βh doesn’t below to any known distribution family, and the rest of parameters are 
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presented below: HH yhi 1−yhiH nh exp(xhiβh) 1 
p(Y |β) = 

1 + exp(xhiβh) 1 + exp(xhiβh)
h=1 i=1 
HH 1 

p(β|β ∗ , Dτ ) ∝ |Dτh|−1/2 exp{− (βh − βh
∗ )T (Dτh)

−1(βh − βh
∗ )}

2
h=1 HH 1

)−1β ∗ f(β ∗ ) ∝ exp{− β ∗T (σ2Ip }h 0 h2 
h=1 

H pHH 
f(τ 2|λ2) ∝ (λ2)Hp exp(−λ2τ 2 

hi/2) 
h=1 i=1 

f(λ2) ∝ (λ2)γ−1 exp(−δλ2)  

1  
p(β ∗|rest) ∝ exp{− [(β ∗ − βh)

T D−1(β ∗ − βh) + β ∗T (σ2I)−1β ∗ ]}h h τh h h 0 h2
1

(D−1 β ∗∝ exp{− [β ∗T + (σ0
2I)−1)β ∗ − 2βh

T D−1 
h]}h τh h τh 2

1 ∝ exp{− (β ∗ − (D−1 + (σ0
2I)−1)−1D−1βh)

T (D−1 + (σ0
2I)−1)h τh τh τh 2 

(β ∗ − (D−1 + (σ0
2I)−1)−1D−1βh)} h τh τh 

β ∗|rest ∼MV N((Dτh)
−1((Dτh)

−1 + (σ2I)−1)−1βh, ((Dτh)
−1 + (σ2I)−1)−1)h 0 0 

1 (βhi − β∗ )2 λ2τ 2 
hi hi1 

2p(1/τ 2 |rest) ∝(τ 2 
hi hi)

− ) ∗ d(τ 2 
hi)exp(−  ) ∗ exp(−  

2 τ 2 
hi 2  

1 λ2 
)−2((βhi − β ∗ )2(1/τ 2 ) + )] ∗ (1/τ 2 

hi hi hi

1 
2∝(1/τ 2 

hi)  exp[−  
1/τ 2 

hi2 
1 (βhi − β∗ )2(1/τ 2 )2 + λ2 

hi hi3 
2

3 
2

=(1/τ 2 
hi)

− exp[− ( )] 
(1/τ 2 

hi) 2 o 
1 ((1/τ 2 ) − hi)

2)2 
hi λ2/(βhi − β∗ 

∝(1/τ 2 
hi)

− exp[−  ] 
2 (βhi − β∗ )−2(1/τ 2 )hi hi

λ2 
1/τ 2 

hi , λ2)|rest ∼InvGaussian(  
(βh − βh

∗)2 

H pHH1 
p(λ2|rest) ∝(λ2)Hp exp(− λ2 τ 2 

hi) ∗ (λ2)γ−1 exp(−δλ2)
2 

h=1 i=1 
H pHH 

=(λ2)Hp+γ−1 exp[−λ2(
1 

τ 2 
hi + δ)]

2 
h=1 i=1 

H pHH 
τ 2λ2 ∼Gamma(Hp + γ, 

1 
hi + δ)

2 
h=1 i=1 
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