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Goal for this Talk 

The charge of agencies such as the CDC includes the following: 
I Conduct surveillance into epidemiologic issues 

I e.g., develop/implement statistical models to better estimate 
and/or predict trends in the data 

I Disseminate information (e.g., data) for public use 
I e.g., publishing articles/reports, release data via CDC 
WONDER 

I Must be cognizant of potential risks of disclosure when sharing 
information based on confidential/private data 

The goal for this talk will be to develop a statistical framework 
which is useful for both of these charges. 



Today’s Example: Stroke Mortality 

Background information on stroke mortality: 
I Stroke is the fourth leading cause of death in the US 
I Mortality rates increase exponentially with age 
I Previous work has identified strong spatial patterns in stroke 
mortality (e.g., “the stroke belt”) 

Our data consists of the number of stroke deaths, Yikt , and the 
population size, nikt , from: 

I i = 1, . . . , Ns =3,099 counties (or county equivalents) from 
the contiguous United States 

I t = 1, . . . , Nt =41 years of data (1973 – 2013) 
I US citizens ages 65 and older. 

I k = 1, . . . , Ng = 3 age brackets (65–74, 75–84, 85+) 

Because stroke mortality is quite rare, many of our Ns × Ng × Nt 
= 381,177 counts are quite small. 



Data Dissemination Challenges 

When releasing these data for public use, CDC WONDER uses 
NCHS’s recommendation of suppressing instances where Yikt < 10 

I Leads to nearly 70% of the data analyzed here being 
suppressed. 

This has an impact on the types and quality of inference that 
outside researchers can conduct using the public-use data. 

I Analyzing all 380,000+ observations would require censored 
data methods (or otherwise accounting for the missingness) 
— this is likely an unreasonable expectation. 

I Others may restrict their analyses to counties in which 
complete data are available (i.e., urban centers), or aggregate 
spatially or across age to obtain larger counts. 

I Analyses for more specific demographic groups are left 
unstudied (e.g., mortality rates by age/race/sex), as the issue 
will only be compounded. 



Our Proposal 

To obtain more reliable estimates from the data and to provide 
unrestricted access to high-quality public-use data, we propose the 
following: 
1. Analyze the data using a Bayesian statistical model which 
accounts for (a) spatial structure, (b) temporal structure, and 
(c) between-age-group structure 

I To do so, we will use the multivariate space-time conditional 
autoregressive (MSTCAR) model of Quick et al. (2017). 

2. Using the posterior distribution from the Bayesian model, we 
will generate multiply-imputed synthetic data to replace 
sensitive counts 

I The resulting synthetic data will preserve the complex spatial, 
temporal, and between-age dependencies (along with any 
covariate relationships) that we accounted for in our model. 

http://onlinelibrary.wiley.com/doi/10.1111/rssc.12215/full
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Disease mapping — the univariate case 

Following the convention set forth by Besag et al. (1991), we may 
assume � � 

Txikt βkt + Zikt , τ k 
2 , Yikt | λikt ∼ Pois (nikt λikt ) where log λikt ∼ Norm 

where 
I xTikt β denotes a regression where xikt denotes a vector of 
county-level covariates 

I For this analysis, our covariates include % non-white and % 
male within each age group at each time period 

I Zikt denotes a spatiotemporal random effect 
I τ2 

k denotes the variance of the log mortality rates 



Conditional autoregressive (CAR) models 
To induce spatial correlation in the random effects, Besag et al. 
(1991) assumed 

 kt ∼ NormZikt | Z(i)kt , σ
2 

⎛ ⎞ X ⎝ ⎠Zjkt /mi , σ
2 
kt /mi 

j∼i �
ZT� � � 

σ2 �−(Ns −1)/2 ·kt (D − W ) Z·kt
π Z·kt | σ2 ∝ exp −kt kt 2σ2 

kt 

 �
where 

 I Z(i)kt is the vector Z
T

·kt = (Z1kt , . . . , ZNskt ) with the ith 
element removed. 

I j ∼ i denotes that counties i and j are neighbors. 
I W is an adjacency matrix with wij = 1 if j ∼ i and wij = 0 
otherwise.P 

I mi = wij , the number of neighbors j 
I D is a diagonal matrix with elements mi 

I σ2 
kt is an age/time-specific variance parameter. 



Extension to multiple disease mapping 

When modeling data from multiple diseases (or in our case, 
mortality rates for multiple age groups over time), a multivariate 
extension of the CAR model can be used (e.g., the multivariate 
CAR (MCAR) of Gelfand and Vounatsou, 2003). ⎛ ⎞ X 1⎝ ⎠Zi ·· | Z(i)··, ΣZ ∼ Norm Zj ··/mi , ΣZ 

mi
j∼i � 	 � 

1 � 
ZTπ (Z | ΣZ ) ∝ |ΣZ |−(Ns −1)/2 exp − (D − W ) ⊗ Σ−1 Z ,Z2 

where 
I Z is a Ns Ng Nt × 1 vector of spatiotemporal random effects 
which allows for correlation between age groups 

I ΣZ is the multivariate analog of σ2 from the univariate case 



Multivariate space-time model for Z 

Based on the MCAR of Gelfand and Vounatsou (2003), ⎛ ⎞ X 1⎝ ⎠Zi ·· | Z(i)··, ΣZ ∼ Norm Zj ··/mi , ΣZ 
mi

j∼i 

I Spatial associations are accounted for via the neighborhood 
structure in the mean and variance. 

I Thus, ΣZ can be thought of as a (scaled) covariance matrix 
which accounts for the multivariate and temporal 
dependencies in Z. 

I We’ll allow for differing degrees of temporal correlation within � �
 T 

each each age-bracket, denoted by ρ = ρ1, . . . , ρNg . 
I Between age-bracket dependencies will be allowed to vary over 
time, denoted by G = {G1, . . . , GNt }. 

We denote this structure by Z ∼ MSTCAR (G, ρ). 



Hierarchical model 
Putting these pieces together, our full hierarchical model is as 
follows: � n o � Y 

2π β, Z, G, G, ρ, τk , λ | Y ∝ Pois (Yikt | nikt λikt ) 
i,k,t � �Y 

T 2× Norm log λikt | xikt βikt + Zikt , τ k 
i,k,t 

× MSTCAR (Z | G, ρ) × Norm (β | 0, Σβ ) Y 
× InvWish (Gt | G, ν) × Wish (G | G0, ν0) 

 t h � �iY 
× Beta (ρk | aρ, bρ) × IG τk 

2 | aτ , bτ , 
k 

where Σβ = 100IpNg Nt and X is the (Ns Ng Nt × p) matrix of 
covariates. 
We fit this model using Markov chain Monte Carlo (MCMC) and 
obtain samples from the posterior distribution for each model 
parameter. 

I
(1) (L) e.g., λ  , . . . , λikt ikt , where L is the number of iterations 



Synthetic data 

Given our samples for λikt , we can generate synthetic counts for 
our suppressed Yikt from a truncated Poisson of the form � � n o 

∗(`) (`) (`) ∗(`)
Yikt | λikt , {Yikt < 10} ∼ Pois nikt λikt × I Yikt < 10 . 

If desired, this approach could be modified to preserve aggregate 
totals (e.g., state-level counts) which would be publicly available. 

To assess the quality of these synthetic data, we will compare them 
to synthetic data that could be generated by fitting the MSTCAR 
model to the publicly available (i.e., suppressed) data. 

I Counts below 10 will be imputed as part of the model 
I We consider this to be the best available alternative for both 
public users and for ill-intentioned users (or “intruders”) 



Measuring disclosure risk and utility 

I Disclosure risk will be computed as 

P (Y ∗ 
ikt = y | Y, Yikt = y) for y = 0, 1, . . . , 9. 

In particular, we will look at the risk when y = 1 (the value 
we’re most concerned about). 

I Utility will be compared by fitting a model of the form 

Yikt ∼ Pois (nikt exp [γ0kt + ruralikt γ1kt ]) , 

where ruralikt denotes a 0/1 variable taking value 1 if county i 
has a population (across all age groups) less than 50,000 
during year t. 

I Estimates from synthetic data will also be compared to the 
estimates from the confidential data (i.e., the “truth”). 



Table of Contents 

Introduction 

Methods 
Multivariate space-time CAR model 
Generation and evaluation of synthetic data 

Results 
Analysis of the stroke mortality data 
Generation/Evaluation of synthetic data 

Summary and Discussion 



Stroke mortality: ages 65–74 



Overall declines in stroke mortality 

(a) Ages 65–74 (b) Ages 75–84 

(c) Ages 85+ 



How much of these data are suppressed to the public? 



Example: 1986∗ in Montour County, PA 

(a) Ages 65–74 (b) Ages 75–84 (c) Ages 85+ 

∗ Data since 1989 is suppressed on CDC Wonder, but data prior to 1989 is 
unsuppressed and publicly available. 



Disclosure risk 

(a) P (Y ∗ = 0) (b) P (Y ∗ = 1) (c) P (Y ∗ = 9) ikt = 0 | Yikt ikt = 1 | Yikt ikt = 9 | Yikt 

I Red and green lines denote the expected risk probabilities at 
the beginning and end of the study, respectively. 

I These risk probabilities are highest at the boundary values. 
I If Yikt = 0, there is no one’s privacy to be concerned about. 
I We set the upper bound to some conservative value. 

I Interior values are essentially what we would “expect” 



Disclosure Risk and Utility 

(a) P (Y ∗ = 1) ikt = 1 | Yikt (b) Ages 75–84 
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Summary 

Recall that the goal of this talk was to develop a statistical 
framework which is useful for both public health surveillance and 
the dissemination of information, thereby avoiding a redundancy of 
tasks. Thus, we claim: 

I The MSTCAR is well-suited for conducting public health 
surveillance. 

I The posterior distribution yields inference on rates, aggregates 
of rates, rate ratios, declines, etc. 

I The MSTCAR shows promise for generating synthetic data for 
public-use 

I Using the MSTCAR should yield synthetic data with very high 
utility 

I That said, it is not without its weaknesses 



Limitations / Future Work 
I No clear connection (yet) between this approach and a form 
of differential privacy 

I We see some similarities between our framework and that used 
for OnTheMap (Machanavajjhala et al., 2008), but the 
question is how to express the “informativeness” of our model. 

I Not practical for BIG examples without BIG assumptions 
I A similar analysis with Ng = 24 age/race/sex subgroups takes 
2+ weeks to run 

I Aspects of utility unclear 
I e.g., we assume (but haven’t proven) that by accounting for 
spatial structure, we will preserve relationships for 
spatially-structured covariates not included in the model 

Our vision: For this approach to ultimately be used for a series of 
one-offs rather than to generate a “Synthetic CDC WONDER” 

I e.g., CDC researchers study trends in stroke mortality, publish 
their research, and make the synthetic data available for 
further analysis by outside researchers 



Questions? 

hsq23@drexel.edu 

mailto:hsq23@drexel.edu

	Introduction
	Methods
	Multivariate space-time CAR model
	Generation and evaluation of synthetic data

	Results
	Analysis of the stroke mortality data
	Generation/Evaluation of synthetic data

	Summary and Discussion

	anm0: 


