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Abstract 

As survey costs increase while response rates decrease, many agencies have begun to consider adaptive strategies 
for data collection. One such strategy is to select a probability sample of nonresponding units for follow-up instead 
of attempting complete follow-up on all nonrespondents. This report presents the results of a simulation study 
conducted to develop allocation strategies for selecting a subsample of nonrespondents for follow-up in the Annual 
Survey of Manufactures, given a fixed total cost and reliability constraints. The simulation study accounts for the 
two-phase sampling, testing the sensitivity of the assumed response levels and response mechanism, by examining 
the increase in variance (or coefficient of variation) caused by subsampling while monitoring follow-up cost. 

1.  Introduction  

Consider a typical business survey, where data collection begins by mailing a form or a letter containing an internet 
address to each survey unit. During the data collection period, the survey organization keeps track of the returns. 
Often, the organization administering the survey (the “survey organization”) establishes and maintains relationships 
with a select set of businesses to ensure that their forms are completed correctly and in a timely manner; usually, 
these personal contacts are reserved for larger businesses or those with very complex organizational structures 
(Snijkers et al., 2013). However, all sampled units that do not respond to the survey will receive some form (or 
forms) of reminder (nonresponse follow-up). 

In our setting, the program has an annual fixed budget, and nonresponse follow-up costs are components in the 
overall budget.  Consequently, nonresponse follow-up has a fixed calendar schedule. As a very simple example, the 
collection calendar might be: 

 January 1: Forms mailed 
 March 1: Reminder letter sent to all nonresponding units 
 June 1: Package re-mailed and reminder phone calls are made 
 September 1: Reminder letter is sent to remaining nonrespondents 

Obviously, this is not a responsive design (Groves and Heeringa, 2006). Instead, the funds for each round are 
determined in advance using estimates based on historic information from prior collections.  Thus, a high proportion 
of the follow-up costs are already expended before follow-up begins: letters and packages are printed in advance, 
and bulk mail is contracted. Likewise, a portion of the budget is set aside for telephone follow-up, especially when 
centralized phone call centers are used. 

As survey costs increase while response rates decrease, many agencies have begun to consider adaptive strategies 
for data collection. In today’s federal budget environment, the term “fixed budget” is a misnomer. If the actual 
dollar amount available is less than budgeted, an adaptive nonresponse follow-up strategy can mitigate the 

1 This report is released to inform interested parties of ongoing research and to encourage discussion of work in 
progress. Any views expressed on statistical issues are those of the authors and not necessarily those of the U.S. 
Census Bureau. 
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detrimental impact on quality that could occur if the follow-up procedures were abruptly curtailed. Indeed, if the 
adaptive design strategy includes probability sampling of nonresponding units for follow-up, survey costs can be 
reduced without greatly reducing quality. One potential quality benefit of focusing on a more targeted number of 
units for nonresponse follow-up is the possible reduction in mean squared error (MSE) that occurs if the reduction in 
nonresponse bias offsets the increase in variance due to subsampling. 

Unfortunately, there are bias and variance trade-offs associated with subsampling. Probability subsampling of 
nonrespondents adds an extra stage to the original sample design. This in turn adds a variance component, even 
under 100% response from the subsample. When designing this subsample, it is important to take the additional 
variance component into consideration, by both maximizing the sampling rate (to avoid overly increasing the 
sampling variance) and by attempting to maintain consistent subsampling rates within each sampling stratum to 
minimize the variability of the weights. Note that probability subsampling adds a measurable sampling error 
component.  It is difficult – if not impossible – to measure the nonsampling error due to unit nonresponse under any 
follow-up scenario, although some nonsampling errors can be reflected in variance estimates obtained with 
replication methods. Of course, selection for follow-up does not ensure that the unit will respond. A study that 
assesses the feasibility of subsampling nonrespondents should include this uncertainty in the evaluation and should 
test the sensitivity of the assumptions. 

In this paper, we develop an allocation procedure for subsampling nonrespondents that tracks the  cumulative cost 
(denoted running cost) and the sampling variance after each round of follow-up, assuming a systematic sample of 
nonrespondents. The procedure employs a simulation approach that allows for varying response probabilities under 
a missing-at-random (MAR) response mechanism to assess sensitivity. We apply this procedure to empirical data 
collected from the 2010 Annual Survey of Manufactures (ASM), a Pareto-probability proportional to size (PPS) 
sample of establishments. Data collection procedures for the subsampled nonrespondents are not considered here 
and is a subject for separate research. 

In Section 2, we describe our allocation procedures.  Section 3 provides general background on the ASM and 
provides context for this research. We summarize our results in Section 4 and conclude in Section 5 with some 
general comments. 

2.  Allocation  Procedure  

We propose selecting a systematic sample of nonrespondents from a list sorted by unit measure of size.  Systematic 
sampling can yield estimates that are more precise over simple random sampling when the sample exhibits a 
monotone trend.  In this case, variance estimates from the systematic sample may be smaller but inestimable when 
compared to simple random sampling variance estimates (Lohr, 2010). Since business survey analyst phone 
follow-up procedures begin with the largest and most complex units and may not encompass the smaller units due to 
time constraints, the systematic sample should be more “representative” than the analogue obtained from an 
attempted 100% follow-up sample. 

The allocation objective is to determine the “optimal” subsampling interval (K ) that balances the simultaneous 
objectives of reducing data collection costs while minimizing the sampling variance of the estimate. To determine 
the best allocation rate for a program, we use the following simulation procedure, repeating steps 1 – 5 
independently 5000 times: 
 
1.  Randomly induce nonresponse in  the complete dataset using  a MAR mechanism,  dividing  the sample into  two  

groups:  respondents (ܴைோூீ) and  nonrespondents (ܴܰைோூீ).   
2.  Sort  the nonrespondents by measure  of size.  
3.  Select a systematic sample with  a rate of  ( 1ൗ )  (once per replicate) ܭ
4.  Simulate  nonresponse  follow-up.  In  a given round  of nonresponse  follow-up  t,  each  unit will respond by data 

collection mode m with  probability ߨ௠,௧, where ∑௠ߨ௠,௧ ൏ 1.  Each mode has a different collection cost.    After  
assigning response status to each unit, compute cumulative collection cost, estimate value, and  sampling  
variance. 



 

 

 

 
								 

 
   

 
																									 

 
																													 

 
																					 

 
 

															  
      

 

5.  Repeat Step 4 until either ten  rounds  of follow-up  have  been  conducted  or the total budget has been  expended.   
If exhaustion of funds occurs within a  round, then follow-up will cease in  that particular  round, without 
pursuing all remaining sampled nonrespondents.  

The reweighting and estimation procedure, explained below,  is repeated independently at each round of follow-up 
within  replication, allowing  us  to  compute cost and  variance estimates through  time.  

We use the modified Horvitz-Thompson estimator ൫ ෠ܻு்൯   to  estimate the population  total for characteristic y shown 
in (1). Our estimator is the sum of two separate estimators.  The first component  ൫ ෠ܻு்,ைோூீ൯   is the weighted sum  of  
the initial respondents ሺܴைோூீሻ using the survey design weights. The second component  ൫ ෠ܻு்,ௌ௎஻൯  represents the 
reweighted sum of the subsampled units that responded to follow-up efforts.   The nonresponse adjustment  
weighting procedure is repeated independently at each round of follow-up within  replicate.  We use an  adjustment-
to-sample nonresponse adjustment  procedure that multiplies sampling  weights by  the inverse response rate of  the 
subsample (Kalton and Flores-Cervantes, 2003) in the ASM application described in  Section 3.  Although this  
estimator is appropriate under MAR,  it does increase the variance of the  estimate. Using a  ratio adjustment 
procedure or  another form  of  calibration with  positively correlated  covariates could  reduce the variance induced  by  
the adjustment  cell weighting. For an  example of ratio estimation in this context, see Bechtel and Thompson (2013).  
Formally, at each round of  follow-up in  replicate s, we estimate  
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Suppressing the notation for replicate s and round t, we estimate 
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Where 
U = the universe (population)
௜ ൌ the value of the characteristic for unit iݕ
 ௜,஺ ൌ the probability of unit i’s inclusion in the initial sampleߨ
IA = 1/0 indicator variable for sample inclusion (=1 for all units in simulation) 
IR = 1/0 indicator variable for response in initial sample (IR = 1 indicates response) 
IK = 1/0 indicator variable for subsample inclusion 
IF = 1/0 indicator variable for response to cumulative set of follow-up rounds 
nK = number of nonresponding units sampled for follow-up 
nF = number of subsampled units that responded to follow-up 
 ௜ = the original sampling weightݓ
෦ݓ ෦= the adjusted sampling weightݓ ൌ  ቀݓ ܭ	

௡

௡
಼

ಷ
ቁప ప ௜ 

Under 100% follow-up  (K =  1) and complete response (sampled nonrespondents), (1) reduces to the standard  
Horvitz-Thompson  estimator (Lahiri, 2012).  In  each  replicate s, after completing  a follow-up  round,  we also  
estimate running cost (cumulative) and an estimate of  the variance of  ෠ܻு்.  The running  total cost after each follow-
up  round is   
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  (2)  
Where 
TC = total cost 
௧ = the mailout cost during round tܱܯ
݊௧ = the number of units mailed a form or letter during round t
௧ = the cost of processing response by mail during round tܴܯ
݊௠,௧ = the number of units responding by mail in round t
ܴܲ௧ = the cost of processing response by phone during round t
݊௣,௧ = the number of units responding by phone in round t 
The estimated variance has three components:  the variance from  the respondents in the  original  sample൫ ෠ܻு்,ைோூீ൯  , 
the variance due to  the estimate derived  from  the nonresponse follow-up  respondents൫ ෠ܻு்,ௌ௎஻൯, and the covariance  
between the  two estimates.  Because initial response  to the survey is a  random  variable, there  is negative covariance 
between  our initial estimator and our follow-up  estimator.  Our estimator  of  the variance of ෠ܻு்  is  given by  

	 	 ൫ݒ		 						 ෠ܻு்൯ ൌ ൫ݒ  ෠ܻு்,ைோூீ൯ ൅ 	 ൫ݒ  ෠ܻு்,ௌ௎஻൯ ൅ 2 ൫ݒ݋ܿ ෠ܻு்,ைோூீ, ෠ܻு்,ௌ௎஻൯		 

Although the ASM is a Pareto-PPS sample (see Section 3.1), the publication variance estimates are obtained with 
the Poisson sampling variance formula.  Consequently, we use the Poisson sampling formula in our simulation 
study.  However, before presenting the components of our variance estimator, we define the following terms: 
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 ௜,஺ ൌ the probability of unit i’s inclusion in the initial sampleߨ
݊஺ ൌ the number of units selected in the initial sample 
RA ൌ the set of respondents in the initial sample 
 ௜,ோ ൌ the conditional probability of unit i responding to the initial sample given their inclusion in the sampleߨ
݊ோ ൌ the number of respondents in the initial sample 
 ேோ ൌ the number of nonrespondents in the initial sampleݎ݊
 ௜,௄ ൌ the conditional probability of nonresponding unit i being subsampled given their initial nonresponseߨ

ଵ
ቀ݁݉ݑݏݏܣ	ܧ ቀ 

௡಼ 

௄
, ݋ݏ ݐ݄ܽݐ  ௜,௄ ൌߨ

௡಼  
௄
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௡௥ಿೃ
ቁ ൌ  

ଵ

௡௥ಿೃ 
ൌ

݊௄ ൌ the size of the follow-up systematic sample (݁݉ݑݏݏܣ ݊௄ ൌ	 
௡௥

௄
ಿೃሻ

   ௜,ி ൌ the conditional probability of unit i’s responding to the follow-up sample, given their selectionߨ
ቀߨ ݁݉ݑݏݏܣ௜,ி ൌ	 

௡ಷቁ
௡಼

݊ி ൌ the number of responding units from the  follow-up sample 
 ௧ ൌ The set of respondents after round t of follow-up has been completedܨ
,௜ܥ  ௝ ൌ  groups of term treated as a constant during a particular aspect of the variance estimationܥ

The variance estimate of a Horvitz-Thompson estimate from a Poisson sample is given by 

		
	

			 																										෍ 
൫1 െ ߨ௜,஺ ߨ௜,ோ൯ݒ൫ ෠ܻு்,ைோூீ൯ ൌ  ௜ଶݕ 

௜	 ∈ோೀೃ಺ಸ 
 ௜,஺ଶߨ

See Cochran (1977), Sӓrndal et al. (1992), and Lahiri (2012). 

The systematic  subsample of nonrespondents is a two-phase sample. A model-assisted perspective  on nonresponse  
considers the “selection” of responding units from the nonresponse follow-up subsample as another phase of sample  
selection,  where the true  response distribution  exists but is  unknown  (Kott, 1994). The literature refers to  this model 
as the quasi-randomization model since the second phase of sample selection depends on  an unknown response  
distribution. In the ASM application,  we are therefore implementing a three-phase sample.   

Since there is  no workable form  of variance estimator for a systematic sample, we approximate ݒ൫Y෡ு்,ௌ௎஻൯  by  
treating the systematic sample  as a simple random  sample without replacement (Lohr, 2010).  Because  the variance 
from systematic sampling will be less than the variance from simple random sampling, our variance estimate would  



 

     
     

    

 

 

																																								 

 
    

     
 

   
 

 
  

    
   

     
      

 

 

 

  
        

     
   

                                                            
   

     	
  

overestimate the true variance under 100% response in the subsample if each respondent provided complete 
information. We treat the random selecting of respondents from the subsample as a Bernoulli sample. The variance 
of Y෡ୌ୘,ௌ௎஻ is given by 
 

	 	
	 ൫Y෡ு்,ௌ௎஻൯ݒ 												 ൌ  ෍  

	ൣ1	 െ ߨ௜,஺൫1 െ ߨ௜,ோ൯	ߨ௜,௄ ߨ௜,ி൧ ݕ௜ଶ ൅ ෍  ෍ ,௜,௄ܫ௜ܥ൫ݒ݋ܿ  ௝,௄ ൯ܫ௝ܥ
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 ௜,ிଶߨ ௜,௄ଶߨ ௜,஺ଶߨ
௜	 ∈ி೟, ௝	 ∈ி೟,			௜ஷ௝ 

We approximate2  the variance  estimate of ෠ܻு்,ௌ௎஻  as  
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When K = 1 (100% follow-up), the covariance term reduces to 0. However, we must also account for the covariance 
between ෠ܻு்,ைோூீ and ෠ܻு்,ௌ௎஻.  An unbiased estimator of this covariance is given by 

	
	

 

 

,൫Y෡ு்,ைோூீݒ݋௜ଶܿݕ ௜ଶݕ Y෡ு்,ௌ௎஻൯ ൌ
െ	ߨ௜,ோ 	൫1 െ ቌ	௜,ோ൯ߨ  ෍  ൅ ෍  ቍ

2 
௜	 ∈ோೀೃ಺ಸ 

  ∈ி೟	௜,ோ ௜ߨ ௜,஺ߨ
 ௜,ிߨ ௜,௄ߨ	௜,ோ൯ߨ ൫1 െ	 ௜,஺ߨ

See Cochran (1977), Sӓrndal et al. (1992), and Lahiri (2012). 

This variance estimator assumes a three-phase sample with a Horvitz-Thompson estimator that uses the quasi-
randomization estimator in the subsample to account for remaining nonresponse. It is appropriate for the ASM 
design and the proposed estimator. In a Census setting, the first component would be greatly reduced (or 
nonexistent), and the ݒ൫Y෡ு்,ௌ௎஻൯ will change with a different nonresponse adjustment procedure (e.g., ratio 
estimation, calibration estimation). For the case of 100% follow-up and full response, our estimator of the variance 
reduces to the standard Poisson sampling variance estimator of the Horvitz-Thompson estimator. 

3.  Case Study 

3.1.  Background on  the  Annual Survey of Manufactures (ASM) 

The purpose of the ASM is to  produce  “sample estimates of  statistics for all  manufacturing establishments with  one 
or more paid employee” (http://www.census.gov/manufacturing/asm/).  The ASM collects general manufacturing 
statistics including  the number of  employees, total payroll,  and  shipments.    The ASM is a Pareto-PPS sample of  
approximately 50,000 establishments selected from a universe of 328,500  manufactures. Approximately 20,000  
establishments are included  with  certainty (probability =1), and the remaining  establishments are selected  with  
probability proportional to  a composite measure of size (30,000  establishments).  Selected  units are in  the sample 
for the  four years between censuses.  Although the ASM  uses a Pareto sample, the publication variance  estimates 
use the Poisson  sampling  variance formula.  Consequently, we use Poisson  sampling  formula with  the initial sample 
in  our  simulation  study. 

The ASM uses a difference estimator to reduce the sampling variance caused by probability sampling. There is a 
strong correlation between current-year-values and the previous Census values for manufacturing establishments, 
which makes a difference estimator ideal for reducing sampling variance when compared to the simple Horvitz-
Thompson estimator (Sӓrndal et al., 1992). Difference estimates are computed at the establishment level 

2 As part of the simple random sample without replacement approximation of the systematic sample, the joint 
conditional probability of being subsampled given initial nonresponse to the sample ൫ߨ௜௝,௄൯ was approximated as the 
product of the individual conditional probabilities ൫ߨ௜,௄ ߨ௝,௄൯, for computational ease, where convenient. 

http://www.census.gov/manufacturing/asm


 

   
    

   

 

 
 

     
  

    
  

 
    

        
  

 
 

   
  

 
    

    
 

 
    

  
 

      
   

     
  

  
         

       
     

 
    

  
    

     
 

                                                            
 

    

(http://www.census.gov/manufacturing/asm/how_the_data_are_collected/index.html). To reduce respondent 
burden, sampled units whose measure of size falls below a predetermined threshold are not mailed a questionnaire. 
Instead, their complete records are imputed using a combination of administrative data substitution and model 
imputation. Likewise, the ASM imputes a complete record for unit nonrespondents. For more details on the ASM 
design and imputation procedures, see the ASM website (http://www.census.gov/manufacturing/asm/). 

Because the  ASM questionnaire is a subset of the manufactures sector questionnaire in  the Economic Census, the 
ASM is  often used to  pretest  new processing  or data collection procedures3. In fact, it is an  excellent vehicle for a 
practical field test.  With  the ASM and the Economic Census, implementing  a probability subsample of  
nonrespondents for  follow-up represents a major  procedural  change. The ASM phone follow-up  procedures focus on  
obtaining respondent data  from  the largest or most difficult to impute cases. The certainty units are thus a higher 
priority for phone  follow-up.  Because a  given company can comprise several establishments, multi-unit  (MU) 
establishments can be designated for phone follow-up, as company data may need to be allocated to  the 
establishment level.  All the  remaining nonresponding cases receive  some  form  of reminder, but the noncertainty 
single unit (SU) establishments are the least likely to receive a phone  follow-up.  

While a field test of the new sampling and data collection procedures is highly desirable before implementing a 
large-scale change in the 2017 Economic Census, the ASM has reliability requirements. Thus, we are constrained to 
subsampling only the noncertainty single units (SU) establishments. These cases represent approximately 5% of the 
total expected value of shipments and 20% of the ASM sample but also contribute approximately 11% to the total 
variance. 

Restricting the universe for subsampling to this small subpopulation helps ensure that the required ASM reliability 
requirements for publication are not adversely impacted by the additional phase of sampling in a field test. At the 
same time, we greatly reduce our probability of demonstrating quality benefits of the respondent subsampling on the 
published measures.  

In the simulation study described in the following sections, we consider a single data item (total value of shipments). 
We do not use the difference estimator implemented in the ASM.  The adjustment weighting model in the simulation 
is equivalent to a mean imputation model, which is less precise than the ratio imputation models used in the ASM 
production. Not only are we constrained to a very restricted setting for subsampling, but we are also using a different 
estimator. For these reasons, the results presented below are not directly applicable to the ASM. 

3.2 Simulation Study Parameters  

The ASM conducts a mail follow-up of nonrespondents at fixed calendar dates. There are four rounds of mail-out 
follow-up.  For the first, third, and fourth rounds, the nonrespondents are sent reminder letters, and the language in 
the letters strengthens at each round. The second round is a re-mail of the appropriate blank form along with the 
reminder letter. Bulk delivery mail-out costs are included in the survey’s annual budget. Mail-out costs per unit are 
not readily available – and are not really meaningful (bulk mail is fixed price, so the cost per unit can actually 
increase when few letters or packages are sent.). Phone costs per unit are equally difficult to obtain, as the collected 
costs do not differentiate between outgoing and incoming calls, and it is impossible to distinguish between 
nonresponse follow-up calls and respondent question calls. Lastly, for large MU establishments, the ASM follow-
up procedure is performed jointly with Census Bureau’s Company Organization Survey (COS) follow-up, adding 
another layer of difficulty to obtain cost per unit estimates. In addition, our study only focuses on single 
noncertainty units, which are not budgeted separately from the rest of the ASM sample. 

We obtained costs per unit for the simulation by proportionally reducing the survey’s aggregate cost estimates to 
create totals for single noncertainty units. Mail out cost ($2.75/form, $0.75/letter), mail response cost ($0.90), and 
phone response cost ($5.60) are all “on average” estimates that were obtained from ASM survey experts. We 
estimated the survey cost for mail out and follow-up (total budget) for single noncertainty units as $68,818. 

3 In years ending in 2 and 7, the ASM is absorbed into the Economic Census; in other years, it is a fixed sample 
chosen without replacement from the recent Economic Census. 

http://www.census.gov/manufacturing/asm
http://www.census.gov/manufacturing/asm/how_the_data_are_collected/index.html


 

     
   
      

     
      

      
    

 
    

  

 

 
 

     
    

     
      

      
 

   
     

            
        

    
 

 
 

    
  

      

 
 

 

 
    

     
     

 
 

 
    

          

Similarly, the ASM does not track response rates for single noncertainty units. We estimated the number of 
responding sample units for a contact attempt to be the difference between the number of mailed packages for two 
consecutive contact attempts. We assume a missing-at-random (MAR) response mechanism at each follow-up 
round. Table 1 provides the response propensities used in our simulation, estimated as the proportion of responding 
sample units to the total number of mailed packages for a contact attempt. Phone and mail response propensities 
were estimated by splitting a contact attempt response propensity by the overall proportion of records that responded 
by mail and phone, respectively. 

Table 1: Estimated Response Propensities for Single Noncertainty Units in the ASM 

Mail Response 
Propensity 

Phone Response 
Propensity 

Overall 
Response 

Propensity 

Nonresponse 
Propensity 

Initial Mail 0.21 0.14 0.35 0.65 
1st Follow-up 0.18 0.12 0.30 0.70 
2nd Follow-up 0.12 0.08 0.20 0.80 
3rd Follow-up 0.11 0.07 0.18 0.82 
4th-10th Follow-up 0.02 0.01 0.03 0.97 

Table 2 provides summary statistics on the population single noncertainty units in the ASM sample. Value of 
shipments has a mildly skewed distribution. Although the units are not homogeneous in size (the sampling weights 
do vary), the range of weights is not large compared to other Economic programs. Sorting the nonresponding units 
by weight will induce a monotone trend – an advantage for systematic sampling – but the trend is not very steep. 
Any selected subsample from this population will be somewhat homogeneous, especially under a MAR response 
mechanism. 

Table 2: ASM Population Characteristics (Single Noncertainty Units) 
Variable Mean Q25 Median Q75 Range 

Value of Shipments 10,421 2,407 6,036 12,599 338,530 

Sampling Weight 4.63 1.68 2.85 5.49 19 

Weighted Value of 
Shipments 

24,896 10,497 17,801 29,385 752,533 

3.3. Simulation Procedure  

We applied the simulation procedure described in Section 2 to the fully-imputed 2010 ASM sample and artificially 
induced initial unit nonresponse using empirical probabilities from Table 2 in 5,000 independent replicates. For our 
study, we ignore the unit and item nonresponse present in the ASM population, treating the original imputed values 
as reported. 

In each replicate, we select four independent  systematic subsamples of nonrespondents with subsampling intervals 
(K)  of 1,  1.5, 2  and 4, which represent  100%  follow-up,  two-thirds  subsample, half-subsample  and quarter-
subsample, respectively.   After selecting a subsample, at  each round of follow-up, we randomly assign the response 
status to the units that have still not  responded.  In a given round  t = (1-10), units either  respond  by  phone with  
probability ߨ௣,௧, respond  by  mail with  probability ߨ௠,௧, or do  not respond  with  probability  1 െ ௣,௧ െߨ   ௠,௧.  Afterߨ
round three, ߨ௠,௧ is always equal to .02 and  ߨ௣,௧  is always equal to  .01 (historically, there is almost no  additional 
response after the third follow-up  in  the ASM).   

Within replicate, we compute the running cost and estimate the population total and variance of our estimator after 
each stage of follow-up (K =1, 1.5, 2, 4). With 100% follow-up (K=1), there are four complete rounds of follow-up, 



 

        
      

 
  

      
       
      

 
 

        
  

  
      

 
        

  
 

 
 

 

    
    

        
  

 

 
  

    

                                                            
     

    
     

with a slight budget balance left for a fifth incomplete round (not all planned units for follow-up were contacted). 
With the subsamples, we stop the follow-up after ten rounds, with some remaining funds4. 

We conducted the simulation under two different scenarios (Scenario 1 and Scenario 2).  In Scenario 1, the 
systematic subsample is selected before follow-up begins, so that all rounds of follow-up are applied to the 
probability subsample. In Scenario 2, all nonresponding units are mailed a reminder letter, then a systematic 
subsample is selected. As a result, at least one follow-up contact effort is made for all nonresponding units, not just 
the subsampled units. 

In both scenarios, we track running cost (1) and compute the average variance at each follow-up round (2) over the 
5,000 replicates. In addition, we compute the relative bias of Y෡ு்,௄,௧ (the Horvitz-Thompson estimate with K=k at 
round t of follow-up) as 
 

	

ହ,଴଴଴ 
1

5,000 
෍ 

Y෡ு்,௄,௦,௧ െ ܻ
Relative	Bias:	 

ܻ
௦ୀଵ 

where Y= the “true” total value of shipments in the single noncertainty unit ASM population. 

The Appendix presents selected results from the simulation study under both scenarios. In both scenarios and for all 
subsampling rates, the Horvitz-Thompson estimates are essentially unbiased, as expected with the induced MAR 
response mechanism. 

4.Simulation Results 

4.1 Subsampling Nonrespondents  Before Follow-Up (Scenario 1) 
 

In the first scenario, only subsampled nonrespondents receive any follow-up.  This design maximizes cost savings. 
Figure 1 graphs the running cost against follow-up attempts. The red line represents the current estimated budget for 
follow-up of single noncertainty units. Follow-up attempt zero is the initial cost for mail out and response. Not 
surprisingly, the larger the sampling rate (highest being 100% follow-up, K = 1), the more expensive the follow-up. 

Figure 1:  Follow-Up Attempts vs. Average Running Cost (Scenario 1) 
Source: 2010 ASM Tabulation Microdata (SU Noncertainty Cases) with Artificially Induced Nonresponse 

4 Under Scenario 2, when K=1.5, the total budget was exhausted during but before completion of the tenth round, for 
nearly all of the 5,000 replicates. For some replicates, ten complete rounds of follow-up were conducted.  However, 
for one replicate, funds were exhausted during the ninth round. 



 

 
Figure 2 graphs the unweighted unit  response rates for each subsampling rate, where the unweighted response rate is  
the number of  responding  units divided by  the original number of  single noncertainty units in  the initial sample.   
The red line represents the overall unweighted response rate for ASM, roughly  72 percent.  As expected, only the 
100%  follow-up  plan  comes close to achieving  this rate.  Since the initial response rate is roughly 35  percent, 
subsampling  the remaining  65  percent of  sampling units limits the maximum  achievable unit response rate.  For 
example, K=4  takes a quarter sample of  65  percent of  the initial nonrespondents. The largest possible unit response 
rate for K=4 is  therefore approximately 51  percent.        

 

 
    

    
  

   
 

       
  

    
   

 
   

   
     

 
  

  
 

 

Figure 2: Follow-Up Attempts vs. Average Unweighted Response Rate (Scenario 1) 
Source: 2010 ASM Tabulation Microdata (SU Noncertainty Cases) with Artificially Induced Nonresponse 

Recall though that the single noncertainty units represent a portion of the complete survey sample units (about 
twenty percent). Consequently, a decreased unit response rate caused by subsampling nonrespondents would have 
an impact on the ASM unit response rates. 

The Appendix presents the relative bias computed for totals shipments after each follow-up by sampling rate. All 
estimates are essentially unbiased, with relative biases of less than 0.07 percent. Of course, the simulation design 
employs a MAR response mechanism, so this unbiasedness is more likely a reflection on the simulation’s correct 
implementation than a general commentary on the estimator used. 

Figures 3 and 4 plot the average variance estimates against follow-up round for each sampling interval. The red line 
marks the estimated Poisson sample variance for single noncertainty units under full response. Recall that the ASM 
imputes nonrespondents with administrative data substitution and ratio imputation. We did not use similar (more 
precise) imputation procedures.  The ASM difference estimates are also more precise than our Horvitz-Thompson 
estimates.  Thus, the ASM production variance estimates should be, and are, much smaller than our l00% follow-up 
variance estimates. 

Alone, systematic subsampling increases each variance estimate for the nonrespondents  subsample by ܭଶ. With  
K=4, this an unacceptably large increase.  Moreover, the  remaining nonresponse in the subsamples increases the 
variance and is reflected  by  the large and  quite variable adjustment  cell weighting  factors.  This phenomenon  is 
further discussed in Section 4.2.    



 

 
    

 

 
   

         
        

 

 
 

Figure 3:  Follow-Up Attempts vs. Average Estimated Variance (Scenario 1) 
Source: 2010 ASM Tabulation Microdata (SU Noncertainty Cases) with Artificially Induced Nonresponse 

Overall, these are not unexpected results. Subsampling nonrespondents increases the sampling variance.  
Conversely, selecting a subsample of nonrespondents for follow-up greatly reduces the cost and the smaller number 
of eligible units allows for increased number of rounds of follow-up for the same budget. Ultimately, the decision to 
subsample depends on how much precision in terms of sampling variance can be sacrificed for lower costs. 

Figure 4 provides a tool for this  decision, graphing the relationship between cost, variance, and follow-up round.   
Each circle represents  an estimate of cost and variance after a follow-up  round.  For example, when K=2, the top  left 
yellow circle represents an  average total cost of $41,417 with  an  average estimated variance of roughly 5.64 X 10ଵଷ  
after one  round of follow-up.  By the third  follow-up,  with K=2, the variance estimate has nearly halved  for the 
additional $10,000,  but is still considerably larger than  the variance after three rounds of  follow-up  for either K=1 or 
K=1.5. 
 



 

   
    

   
    

 
  

   
    

 

 
  

      
    

Figure 4: Running Cost vs. Average Estimated Variance by Follow-Up Round (Scenario 1) 
Source: 2010 ASM Tabulation Microdata (SU Noncertainty Cases) with Artificially Induced Nonresponse 

Figure 4 show how many additional rounds of follow-up are needed to achieve the comparable levels of variance 
under the alternative nonrespondent subsampling designs. With our propensity model, the later rounds of follow-up 
yield minimal improvements in variance because the response propensity is very close to zero after the third follow-
up.  We use this graph to compare the effects of alternative sampling intervals on variance.  However, one can also 
use the graph to determine the additional variance that would be induced in the estimate if planned follow-up rounds 
were “cut short” due to budget constraints. 

4.2 Subsampling Nonrespondents after the First Round of Follow-up (Scenario  2)  

In an adaptive design framework, a data collection procedure should not change until it reaches a “phase capacity.” 
Clearly, the ASM follow-up has not reached this state before the first follow-up, which is very beneficial in 
increasing response. To keep the benefit of a complete recontact of nonrespondents at the first follow-up, we 



 

  
  

    
 

         
     

 

 

    
 

modified the subsample design to begin subsampling nonrespondents after completing the first round of contact. 
Subsampling before the second round fits well into our cost model because the second round is a re-mail of the 
initial survey package, which is considerably more expensive than mailing a reminder letter. The costs for K=1 only 
differ minutely from Scenario 1 due to random fluctuations, but costs are somewhat increased for the other 
subsampling intervals as one round of complete follow-up is now conducted before subsampling. Thus, the cost 
figures are virtually identical after round 1 for all values of K, but diverge after round 2. 

Figure 5 graphs the relationship between cost, variance,  and follow-up  round under this scenario, using  the same  
axis as Figure 4  for comparison.  Since subsampling  in this scenario  does not  begin  until the first round  of  follow-up  
is completed,  the first circle from  left to  right on  Figure 5 represents the running cost and average variance after the 
second  round  of  follow-up. 

Figure 5: Running Cost vs. Average Estimated Variance by Follow-Up Round (Scenario 2) 
Source: 2010 ASM Tabulation Microdata (SU Noncertainty Cases) with Artificially Induced Nonresponse 



 

       
       

     
      

  
    

        
  

  
 

 
 

    
 

By delaying subsampling, the unit response rates increase for K=1.5, 2, and 4. Despite this increase, the estimated 
variance of the total estimate is notably larger under Scenario 2 as compared to Scenario 1. This result was 
counterintuitive. In this scenario, the “initial” sample contains more respondent units with unadjusted weights than 
in the first scenario. Unfortunately, the probability of responding after the first round of follow-up is not high, which 
increases the value of the nonresponse weight adjustment factors for the responding subsampled cases. The 
Appendix presents the nonresponse adjustment factors for each round of subsampling in Scenarios 1 and 2. The 
additional unadjusted weights did not offset the increase of the nonresponse adjustment factor applied to the smaller 
subsample. In addition, the ASM noncertainty units are fairly homogeneous, so the reduced subsample is more 
variable than a larger subsample. 

Figures 6 and 7 plot the running cost and cumulative variance, respectively, for Scenarios 1 and 2 again the total  
number of  follow-ups  for  K=1 and K=2.   

Figure 6: Side-by-Side Comparison of Running Cost (Scenarios 1 and 2). 
Source: 2010 ASM Tabulation Microdata (SU Noncertainty Cases) with Artificially Induced Nonresponse 



 

 
     

    
 

    
      

   
    

         
  

 

 
    

 
 

      
 

  
      

     
       

     
    

   
   

 
      

       
   

          
       

      
    

    

Figure 7: Side-by –Side Comparison of Average Variance for Scenarios 1 and 2 
Source: 2010 ASM Tabulation Microdata (SU Noncertainty Cases) with Artificially Induced Nonresponse 

The running costs are the same in both scenarios for K=1 (100% follow-up), but differ for K=2 after the first follow-
up round. Both K=2 subsamples complete ten rounds of follow-up for less cost than four rounds of follow-up with 
K=1.  After seven rounds of follow-up in both subsamples, the difference in average variance is fairly trivial. In 
using the more adaptive design, the slight increase in sampling variance costs an additional $5,000 (about seven-
percent of the allocated budget), with potential quality gains that could be realized by using different collection 
procedures on the smaller subsample of nonrespondents.  

5. Conclusion  

In this paper, we present an approach for evaluating alternative allocation rates for sampling nonrespondents, 
subsampling considering both cost and variance.  Using a simulation approach, we examined the relationship 
between cost and variance for various allocation rates.  Unfortunately, our approach does not account for other 
quality benefits of subsampling, such as reduced estimation bias from the more representative sample. 

We examine the cost and variance trade-offs in systematically subsampling nonrespondents with one estimator and a 
single item, where the subsampled population is fairly homogeneous. The estimator is sample-based and does not 
incorporate any auxiliary information. Moreover, our variance estimator is conservative and could be a large upper 
bound on the true variance from a systematic subsample. Even so, it would be difficult to advocate selecting a 
probability subsample of nonrespondents from this survey subpopulation with this estimator if the decision were 
based on variance considerations alone. However, cost is always a factor, and “fixed” budgets are becoming quite 
elusive. Our simulation approach gives a tool for assessing the cost and variance trade-offs for a given design at any 
round of follow-up (see Figures 4 and 5). 

It is important to remember that there are important differences in non-response follow-up in our controlled study 
versus in practice. In this study, we did not assume any differentiation in quality of responses between the 
scenarios. However, it is likely that following up a smaller number of cases through systematic subsampling would 
lead to improved response quality as analyst resources target a smaller number of cases. In a true adaptive design 
setting, data collection procedures would change in the later rounds of follow-up, once it is determined that the 
current procedures are no longer working. Another factor to consider is our assignment of response propensities 
throughout the follow-up process. Whereas our study assumes that all response propensities are uniformly 
distributed across units, response is correlated with unit size in business surveys.  In this setting, the subsampling 



 

       
     

 
     

   
           

     
      

    
    

   
     

   
 

     
        

       
   

      
 

 
 

 
      

          

 
 

 
  

 
 

 
  

 
  

 
  

  
  

 
   

 
    

 
   

 
 

    
 

 

 
    

 

procedure might benefit from an initial stratification of nonrespondents by unit size, then a more proportional 
allocation focusing on smaller units. 

We present an analysis approach. Before making specific recommendations for the survey, we need to investigate 
other estimators that use auxiliary data in the nonresponse adjustment. Bechtel and Thompson (2013) show very 
promising results with ratio estimation instead of adjustment cell weighting, and we should explore that in future 
simulations. Another possibility is to use auxiliary information to predict the probability of response to any 
potential nonresponse follow-up and then re-weight the respondents based on their predicted probability of response. 
Using random auxiliary variables in this way would not increase the variance of the total estimator, provided that 
there is no misspecification in the nonresponse model (Beaumont, 2005). In fact, Little and Vartivarian (2005) 
argue that including such auxiliary variables related to the variable of interest should reduce any nonresponse 
variance (as cited in Beaumont, 2005). The first investigation is a simple change to our simulation programs; the 
second is more involved. 

Of course, the potential benefits of either 100% follow-up or selecting a probability subsample of nonrespondents 
depend on the structure of the population under study. Conducting complete follow-up on populations is expensive 
and may lead to biased samples if certain types of units are more likely to respond than other types. That said, 
systematically subsampling populations that do not exhibit a clear monotone trend simply increases the sampling 
variance (Lohr, 2010). Using an adaptive design to take the route that achieves the most benefit at any time allows 
us to come closest to achieving an optimal design. 
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Appendix: Simulation Study Results 
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Variance 

x1013 
Response Rate Relative Bias 
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(Multiply by K) 
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S15 S26 S1 S2 S1 S2 S1 S2 S1 S2 
0 36,406 

46,427 
61,068 
65,464 
67,858 
68,819 

36,406 
46,429 
61,066 
65,462 
67,856 
68,819 

2.97 
2.00 3.41 
1.62 2.07 
1.58 1.96 
1.56 1.93 

35.0% 
54.5% 54.5% 
63.6% 63.6% 
70.2% 70.2% 
71.1% 71.0% 
71.4% 71.4% 

-0.02% 
0.00% -0.01% 
0.00% 0.01% 
0.00% -0.01% 
0.00% 0.00% 

3.33 
2.27 5.00 
1.85 2.91 
1.80 2.75 
1.76 2.61 

1 
2 
3 
4 
5 

Su
bs

am
pl

in
g 

Fa
ct

or
K

 =
 1

.5
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52,846 
55,777 
57,374 
58,922 
60,424 
61,882 
63,294 
64,665 
65,995 
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56,185 
59,116 
60,713 
62,262 
63,763 
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66,634 
68,004 
68,817 
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2.10 2.46 
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1.95 2.18 
1.91 2.14 
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61.2% 67.7% 
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62.3% 68.6% 
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3.69 6.32 
2.91 3.65 
2.83 3.45 
2.75 3.27 
2.68 3.12 
2.61 2.98 
2.55 2.86 
2.49 2.75 
2.44 2.65 

35.0% 
44.8% 54.5% 
49.3% 59.1% 
52.6% 62.3% 
53.0% 62.8% 
53.5% 63.2% 
53.9% 63.6% 
54.3% 64.0% 
54.7% 64.4% 
55.1% 64.8% 
55.4% 65.2% 

0.00% 
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0.01% -0.01% 
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0.01% -0.01% 
0.01% -0.01% 
0.01% -0.02% 
0.00% -0.02% 
0.01% -0.02% 
0.01% -0.02% 

3.33 
2.27 5.00 
1.85 2.91 
1.80 2.75 
1.76 2.61 
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1.68 2.39 
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1.62 2.20 
1.59 2.13 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Su
bs

am
pl

in
g 

Fa
ct

or
K

 =
 4
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44,268 
44,848 
45,411 
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46,488 
47,001 
47,500 
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46,432 
50,089 
51,188 
51,787 
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53,476 
54,006 
54,520 
55,018 

10.98 
7.10 12.33 
5.52 6.87 
5.35 6.46 
5.19 6.10 
5.05 5.79 
4.92 5.52 
4.80 5.27 
4.68 5.05 
4.57 4.86 

35.0% 
39.9% 54.5% 
42.2% 56.8% 
43.8% 58.4% 
44.0% 58.7% 
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-0.02% 
0.00% 0.04% 

-0.04% 0.04% 
-0.05% 0.03% 
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-0.06% 0.03% 
-0.06% 0.03% 
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5  S1 refers to  Scenario  1.   For additional information  regarding Scenario  1,  refer to p. 10. 
6 S2 refers to Scenario 2. For additional information regarding Scenario 2, refer to p. 10. 
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