The Role of the Hospital Characteristics in Setting Appropriate Yardsticks for Hospital Profiling

November 5, 2013

Presentation to the Federal Committee on Statistical Methodology
Research Conference
Washington, DC
Frank Yoon

Overview

- Recap: statistical model
- Illustration: Pneumonia mortality rate Inpatient Quality Indicator #20
- Look ahead: the role of hospital characteristics
 - Risk adjustment
 - Stabilization

Risk Adjustment

Patient-level model

Patient i, event Y_i , attributes X_i $Y_i|p_i \sim \text{Bernoulli}(p_i), \, \log \text{it}(p_i) = X_i'\beta$

Hospital-level rates

Hospital h, patients A_h , volume n_h Observed rate, $O_h = \frac{1}{n_h} \sum_{i \in A_h} Y_i$ Expected rate, $E_h = \frac{1}{n_h} \sum_{i \in A_h} \hat{Y}_i$

Risk-adjusted rate

$$RAR_h = \frac{O_h}{E_h} \cdot \overline{Y}$$
, where $\overline{Y} = \frac{\sum_i Y_i}{N}$

Smoothing

Signal extraction framework

$$RAR_h = \theta_h + \epsilon_h$$

= signal + noise

where
$$E(\theta_h) = \mu$$
, $Var(\theta_h) = \tau^2$
 $E(\epsilon_h) = 0$, $Var(\epsilon_h) = \sigma_h^2$

Smoothing

Reliability weighting

$$\theta_h = \underbrace{\mu + \lambda_h \cdot (RAR_h - \mu)}_{\text{Smoothed rate}} + \omega_h$$

where
$$E(\omega_h) = 0$$
, $Var(\omega_h) < \infty$

OLS

$$\lambda_h = \frac{Cov(\theta_h, RAR_h)}{Var(RAR_h)} = \frac{Var(\theta_h)}{Var(\theta_h) + Var(\epsilon_h)} = \frac{\tau^2}{\tau^2 + \sigma_h^2}$$

Smoothing

Noise variance

$$Var(\epsilon_h) \approx Var(RAR_h|\theta_h)$$

$$= Var\left(\overline{Y} \cdot \frac{O_h}{E_h}\right)$$

$$\Rightarrow \hat{\sigma}_h^2 = \left(\frac{\overline{Y}}{n_h \cdot E_h}\right)^2 \sum_{i \in A_h} \hat{Y}_i \left(1 - \hat{Y}_i\right)$$

Signal variance

$$\begin{aligned} Var(\theta_h) &= Var(RAR_h) - Var(\epsilon_h) \\ \Rightarrow \hat{\tau}^2 &= \frac{1}{H-1} \sum_h \left\{ \left(RAR_h - \overline{RAR} \right)^2 - \hat{\sigma}_h^2 \right\} \end{aligned}$$

Pneumonia Mortality Rate

1-3 cases/month

20+ cases/month

Statistical Context

Risk adjustment

- Remove variation due to patient case mix
- Recalibrate expectation of quality

Stabilization

- Smoothing unstable estimates might mask true variation
- Prior assumptions play a big role
 - Bigger in low-information settings
 - Statistical challenge: what is the prior?

Policy Context

Risk adjustment

- Level the playing field
- Certain hospital types may take on unobserved risk

Stabilization

- Small hospitals present unstable estimates
- Variation in quality may depend on hospital type
- Prior assumptions set different expectations
 - Empirically testable
 - Policy challenge: what is the message?

Hospital Characteristics in Risk Adjustment

Patient-level model

Patient i, event Y_i , attributes X_i , hospital characteristics Z_h

$$Y_i|p_i \sim \mathsf{Bernoulli}(p_i)$$

$$logit(p_i) = X_i'\beta + Z_{h[i]}'\gamma$$

Hospital Characteristics in Stabilization

Signal extraction framework

$$RAR_h = \theta_h^* + \epsilon_h$$

where
$$heta_h^*= heta_h+Z_h'\gamma$$

$$E(heta_h^*)=\mu+Z_h'\gamma,\ Var(heta_h)= au^2$$

$$E(\epsilon_h)=0,\ Var(\epsilon_h)=\sigma_h^2$$

Potential Enhancements

- Empirical Bayes framework
 - Elucidate assumptions about prior distribution
 - Achieve credible posterior inferences
- Unified modeling
 - Perform risk adjustment and stabilization in one fell swoop
 - Computationally feasible

Empirical Bayes in Hospital Profiling

Decomposition of signal and noise

$$RAR_h = \theta_h + \varepsilon_h$$

True rate $\theta_n \sim \text{Prior}$

Error $\varepsilon_h \sim N(0, \sigma_h^2)$

Data $RAR_h \mid \theta_h$

Posterior $\theta_h \mid RAR_h$

Setting the Yardstick

Yardstick from a Gamma Prior

Addressing Overshrinkage

Does smoothing mask variation in true rate?

- Restrictive prior distributions can hide possible outliers
- Prior means of true rate may or may not depend on peer grouping
- In the policy context expectations matter

The Effect of Stabilization

1-3 cases/month

20+ cases/month

Mixture of Normals by Volume Quintile

1-3 cases/month

20+ cases/month

Yardstick from a Gamma Prior

Yardstick from Volume Peer Groups

Peer Groups by Volume Quintiles

Policy Implication

- It depends on the application
 - Self-monitoring
 - Public reporting
 - Pay for performance
- What is the message?
 - Leveling the playing field in risk adjustment is not a testable exercise
 - Setting expectations via the prior is empirically justifiable, "potentially resolvable"

Research Implications

- Standing by our prior, with or without peer grouping
- Empirical justification
 - Literature review
 - Exploratory data analysis
 - Hypothesis driven
 - Simulation based

For More Information

- Please contact:
 - Frank Yoon
 - fyoon@mathematica-mpr.com