Statistical Disclosure Limitation and Edit Imputation

Hang Kim, Alan Karr, Jerry Reiter

Department of Statistical Science, Duke University

Supported by the NSF NCRN grant to Duke/NISS: NSF-SES-11-31897

November 1, 2013

Outline of Talk

How should one integrate statistical disclosure limitation and edit-imputation?

- Background
 - ► Statistical disclosure limitation (SDL)
 - Editing and imputation
- Two broad strategies
 - Editing after SDL
 - Edit-preserving SDL
- Empirical illustration with manufacturing data

SDL Setting

- Agency seeks to disseminate microdata on individual records.
- We work with data that are all continuous, although similar issues apply when data include categorical variables.
- Exemplary SDL strategies for continuous data:
 - Noise addition
 - Microaggregation
 - Microaggregation followed by noise addition
 - Rank swapping
 - Synthetic data

Edit and Imputation Setting

- Values must satisfy certain logical constraints.
- Continuous data: constraints include range restrictions (e.g., $y_j > 0$) and ratio edits (e.g., $0 < y_j/y_k < 1000$).
- Typical process includes
 - ▶ identify records that fail the constraints,
 - select set of fields that could be changed to create a record that satisfies constraints,
 - change those fields in a way that satisfies constraints.
- First two talks of this session offer examples of this process.

SDL and Edit Imputation

- Some SDL processes can create edit rule violations.
- What should one do?
 - ▶ Ignore it, option 1: release data with violations. Not desirable.
 - ▶ Ignore it, option 2: delete records with violations. Bias inducing.
 - Run usual SDL first, fix up any violations that result by blanking and imputing.
 - Modify SDL procedure so that it automatically generates data that satisfy constraints.
- Discuss and illustrate these with empirical example.

Empirical Example: 1991 Columbia Manufacturing Survey

Variable	Label	Range restriction
Skilled labor	SL	0.9-400
Unskilled labor	UL	0.9-1,000
Wages paid to skill labor	SW	300-3,000,000
Wages paid to unskilled labor	UW	600-4,000,000
Real value added	VA	50-1,000,000
Real material used in products	MU	10-1,000,000
Capital	CP	5-1,000,000

- 6521 observations, 7 variables.
- Hypothetical, data-derived range restrictions.

Empirical Example: Hypothetical Ratio Edits

		V_2					
V_1	SL	UL	SW	UW	VA	MU	CP
SL	1	20	0.01	0.01	0.1	0.3	2
UL	50	1	0.1	0.005	0.3	5	5
SW	20000	100000	1	50	300	500	1000
UW	66666.7	10000	100	1	200	5000	5000
VA	10000	20000	10	10	1	200	700
MU	50000	100000	33.3	100	100	1	1000
CP	20000	10000	10	16.7	100	100	1

Data-derived ratio edits $(V_1/V_2 \le b)$ for the 1991 Colombia Manufacturing Survey.

Empirical Example: SDL then edit

- Mask number of skilled employees, number of unskilled employees, and capital. Leave the remaining variables unaltered.
- Don't worry about edit violations when doing SDL.
- Work with the natural logarithms of all variables.
- SDL techniques
 - ▶ Add noise from $N(0, c\Sigma)$, where c = 0.16.
 - ► Rank swapping separately for each variable with interval of 10%.
 - Microaggregation with 3 establishments per cluster based on principal components clustering.
 - Microaggregation followed by adding noise.
- Edits done by blanking all three variables and imputing using the mixture normal engine of Kim *et al.* (2013).

Empirical Example: Edit-preserving SDL

- Rank swapping and two noise addition methods: use rejection sampling approach (keep trying until you get dataset that satisfies constraints).
- Partially synthetic data generated by
 - Estimating joint distribution of all 7 variables using the mixture normal distribution of Kim et al. (2013).
 - Deriving conditional distributions from this model.
 - ▶ Imputing replacement values from the conditional distributions.
- These approaches guaranteed to generate values that satisfy all constraints.

Empirical Example: Measures of Risk

- We use the *percentage of linked* criterion (Domingo Ferrer *et al.* 2001).
- First, compute the distances

$$d_{i,j} = \sqrt{\sum_{k} (y_{ik} - \tilde{y}_{jk})^2}, \quad \forall i,j = 1, \dots, n,$$

where $k \in (SL, UL, CP)$ and \tilde{y}_{jk} is the perturbed version of y_{jk} .

- For each i, find the record j that achieves the minimum value of $d_{i,j}$.
- Let $t_i = 1$ when the index of i and j belong to the same record, i.e., the record in D^{rel} is linked correctly to D based on matching the available variables; let $t_i = 0$ otherwise.
- The risk measure is $PL = \sum_{i=1}^{n} t_i / n$.

Empirical Example: KL Measure of Utility

- Approximate Kullback-Leibler (KL) divergence of released data D^{rel} from original data D.
- Use a closed-form expression based on a normality assumption,

$$KL = \frac{1}{2} \left[\operatorname{tr} \left\{ (\Sigma^{rel})^{-1} \Sigma \right\} + \left(\overline{y}^{rel} - \overline{y} \right)^{T} (\Sigma^{rel})^{-1} \left(\overline{y}^{rel} - \overline{y} \right) - p - \log \left(\frac{|\Sigma^{rel}|}{|\Sigma|} \right) \right]$$

- \overline{y} and Σ are the sample mean and the sample covariance in D.
- \overline{y}^{rel} and Σ^{rel} are the sample mean and the sample covariance in D^{rel} .

Empirical Example: Propensity Score Measure of Utility

- Propensity score (U) utility measure (Woo et al. 2009).
- Concatenate D^{rel} and D, and add an indicator variable whose values equal one for all records in D^{rel} and equal zero for all records in D.
- Use indicator variable as outcome in the logistic regression,

$$\log \frac{p_i}{1-p_i} = \beta_0 + \sum_{a=1}^7 \beta_a \log Y_{ia} + \sum_{a,b} \log Y_{ia} \log Y_{ib}$$
$$+ \sum_{a,b,c} \beta_{abc} \log Y_{ia} \log Y_{ib} \log Y_{ic}.$$

- For i = 1, ..., 2n, compute the set of predicted probabilities \hat{p}_i .
- The risk measure is

$$U = \frac{1}{2n} \sum_{i=1}^{2n} \hat{p}_i - \frac{1}{2}^2.$$

Empirical Example: SDL Causes Edit Violations

Numbers of records that violate edit rules across 20 replications after implementing perturbative SDL methods.

Methods	Mean (%)	SD
Noise	157.8 (2.45)	10.1
Swap	134.2 (2.09)	6.6
Mic	5.0 (0.08)	_
MicN	84.1 (1.31)	6.7

Empirical Example: Results

Measured data utility and disclosure risk. Entries include the averages of KL, U_{prop} and PL from 20 replications of each method.

	Approach	Noise	Swap	Mic	MicN	Synt
KL	I	.34	.24	1.34	.64	_
	II	.35	_	_	.66	.02
U _{prop}	I	.0225	.0013	.0463	.0406	_
	II	.0225	_	_	.0425	.0007
PL	I	2.05	1.12	.78	.45	-
	II	2.26	_	_	.45	.70

Concluding Remarks

- Differences in risk-utility profiles from SDL-then-edit versus edit-preserving SDL minor, especially compared to differences across SDL methods.
- Partially synthetic data: dominates on utility with one of lowest risk values. Microaggregation plus noise also on the frontier of R-U map.
- One could use partial synthesis to impute missing data and simultaneously do edit-preserving SDL. Appropriate inference methods should be identical to those in Reiter (2004).