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Proving equivalence is increasingly important 

• Testing is expensive & time consuming 

 

• Newer methods and procedures are being 

developed 

 

• Common goal:  assess agreement between two 

methods of measurement 
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Applications to EPA 
problems 

• Demonstrating equivalence between primary and 

secondary methods for measuring formaldehyde 

emissions from composite wood products 
o Large chamber test is expensive (single measurement) 

o Small chamber test is easier and less costly (multiple measurements) 

 

• Prediction of Dioxin-Furan Congener (TEQ) toxicity in 

fresh-water fish based on fatty acid methyl ester 

(FAME) profiles 
o Equivalence between KVL and NERL labs for FAME  

o Equivalence between KVL & ECL labs for TEQ 
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Common methods for assessing agreement 

• Hypothesis testing of the correlation coefficient 

 

• Regression analysis 

 

• Paired t-tests 

 

• Least-squares analysis for intercept and slope 

 

• Within-subject coefficient of variation 
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Mean, variance, covariance approach 
• Some current tests are based only on the mean and 

standard deviation of the differences:  

 

• Does not guarantee equivalence!! 

 

 

• Even high correlation, by itself, does not guarantee 

agreement! 
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Assessing agreement 
• Likelihood ratio test for combined hypothesis: 

 

(Yimprayoon et al., 2006) 

• Interval hypothesis test 

 

 

 
o Extremely difficult and complicated test 

• Equivalence is not the same as equality! 

FCSM Research Conference November 6, 2013 6 



Nonstandard data problem 
• Inference usually based on paired data X and Y 

(bivariate normal assumption) 
• Yinprayoon, Tiensuwan, and Sinha, 2006 

 

• Generalize the LRT approach for nonstandard data 

 

 
o Balanced case: 

 

o Unbalanced case:     
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Restricted dataset 
 

 

• Likelihood function is based on marginal likelihood 

of X and conditional likelihood of Y  
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Likelihood function  
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Unrestricted maximization  
• Maximum likelihood estimates 

 

 

 

 

 

• Maximized likelihood  
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Restricted maximization 
• Maximum likelihood estimates 

 

 

 

 

¹̂½ =
n¹x(1 + ½) + M(¹¹y ¡ ½¹¹x)

M(1¡ ½) + n(1 + ½)

2n¾̂2
½ = Q1(½) = A +

D + C½2 ¡ 2E½

1¡ ½2
+

nM [¹¹y ¡ ¹x + ½ (¹x¡ ¹¹x)]
2
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• Likelihood function, maximized wrt µ and σ2 

 

 

• To maximize the likelihood, minimize wrt ρ 
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i
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Images of U1 
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Likelihood ratio test statistic 
• Test statistic 

 

 

• Reject H0 for large values of T1 

 

 

 

 

• Select cutoff d1 so that  
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Remarks 
• T1 is location and scale invariant 

 

• Composite null hypothesis: determine the cutoff 

value d1 under ρ = ρ0 and verify size is less than or 

equal to αlpha for ρ > ρ0 

 

• Simulations:  different correlation, means, variances, 

and combinations thereof to get an idea of power 
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Unrestricted dataset 

• Likelihood function:  
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Unrestricted maximization  
• Maximum likelihood estimates 

 

 

 

 

 

• Maximized likelihood 
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Restricted maximization 
• Maximum likelihood estimates 

 

 

 

 

¾̂2
½ =

1

n + M
Q2 (½)

• Likelihood maximized wrt µ and σ2 

• To maximize likelihood, minimize  

U2 (½) =
h¡

1¡ ½2
¢
£Q2 (½)

1+ n
M

i
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Likelihood ratio test statistic 
• Test statistic 

 

 

 

 

 

 

 

• Reject H0 for large values of T2 

• Select cutoff d2 so that  
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Restricted dataset 

Simulations:  Type I Error rates 

0.92 0.9 5 1 0.0439 

0.92 0.9 10 1 0.0396 

0.92 0.9 15 1 0.0371 

0.92 0.9 5 3 0.0452 

0.92 0.9 10 3 0.0409 

0.92 0.9 15 3 0.0335 

0.95 0.9 5 1 0.033 

0.95 0.9 10 1 0.0299 

0.95 0.9 15 1 0.0274 

0.95 0.9 5 3 0.0374 

0.95 0.9 10 3 0.0305 

0.95 0.9 15 3 0.0237 

0.99 0.9 5 1 0.0299 

0.99 0.9 10 1 0.0254 

0.99 0.9 15 1 0.0253 

0.99 0.9 5 3 0.0309 

0.99 0.9 10 3 0.0277 

0.99 0.9 15 3 0.0266 
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Type I Error rates  
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Simulations:  Power 

0.5 0.9 0 1 5 1 0.05 0.2458 

0.5 0.9 0 1 10 1 0.05 0.642 

0.5 0.9 0 1 15 1 0.05 0.8527 

0.5 0.9 0 1 5 3 0.05 0.4265 

0.5 0.9 0 1 10 3 0.05 0.8875 

0.5 0.9 0 1 15 3 0.05 0.9723 

0.9 0.9 1 1 5 1 0.05 0.8815 

0.9 0.9 1 1 10 1 0.05 0.9999 

0.9 0.9 1 1 15 1 0.05 1 

0.9 0.9 1 1 5 3 0.05 0.9996 

0.9 0.9 1 1 10 3 0.05 1 

0.9 0.9 1 1 15 3 0.05 1 
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Simulations:  Power 

0.9 0.9 0 4 5 1 0.05 0.5481 

0.9 0.9 0 4 10 1 0.05 0.961 

0.9 0.9 0 4 15 1 0.05 0.9984 

0.9 0.9 0 4 5 3 0.05 0.9096 

0.9 0.9 0 4 10 3 0.05 0.9996 

0.9 0.9 0 4 15 3 0.05 1 

0.9 0.9 1 4 5 1 0.05 0.8197 

0.9 0.9 1 4 10 1 0.05 0.9976 

0.9 0.9 1 4 15 1 0.05 1 

0.9 0.9 1 4 5 3 0.05 0.9885 

0.9 0.9 1 4 10 3 0.05 1 

0.9 0.9 1 4 15 3 0.05 1 
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Simulations:  Power 

0.5 0.9 1 1 5 1 0.05 0.6795 

0.5 0.9 1 1 10 1 0.05 0.9836 

0.5 0.9 1 1 15 1 0.05 0.9988 

0.5 0.9 1 1 5 3 0.05 0.9515 

0.5 0.9 1 1 10 3 0.05 1 

0.5 0.9 1 1 15 3 0.05 1 

0.5 0.9 0 4 5 1 0.05 0.5043 

0.5 0.9 0 4 10 1 0.05 0.9442 

0.5 0.9 0 4 15 1 0.05 0.9955 

0.5 0.9 0 4 5 3 0.05 0.5077 

0.5 0.9 0 4 10 3 0.05 0.9486 

0.5 0.9 0 4 15 3 0.05 0.9888 
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Simulations 

0.5 0.9 1 4 5 1 0.05 0.6653 

0.5 0.9 1 4 10 1 0.05 0.9862 

0.5 0.9 1 4 15 1 0.05 0.9995 

0.5 0.9 1 4 5 3 0.05 0.8536 

0.5 0.9 1 4 10 3 0.05 0.9978 

0.5 0.9 1 4 15 3 0.05 0.9998 

• Test is most powerful when means are different 

• Least powerful when only variances are different
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Tests based on combinations of P-values 

• Consider the composite hypothesis test 

 

 

 

 

• We consider three separate tests for H01, H02, and 

H03, and combine the resulting P-values to derive an 

overall test. 
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Testing H01 

• Paired t-test: 

 

 

 
o Assumption:    

 

• Reject the null for large values of 

 

 

 

jtdj =

¯
¯
¯
¯

p
n ¹d

sd

¯
¯
¯
¯

di = xi ¡ ¹yi; ¹d =

Pn
i=1 di

n
; s2
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• P-value  
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Testing H02 

• Modified Pittman-Morgan 

 

 

 

 

 

 

• P-value  

 

FCSM Research Conference November 6, 2013 27 



Testing H03 

 

o assume 

 

 

 

 

 

 

• P-value  
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Tests based on P-values 
 

1. Tippett’s test: 

 

 

2. Fisher’s test: 

 

 

3. Stouffer’s test:  
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Tests based on P-values 

Simulations:  Type I Error rates 
Tippett Fisher Stouffer 

0.92 0.9 5 1 0.0498 0.0481 0.0358 

0.92 0.9 10 1 0.0468 0.0439 0.0327 

0.92 0.9 15 1 0.0409 0.0343 0.0248 

0.92 0.9 5 3 0.0484 0.0448 0.0349 

0.92 0.9 10 3 0.0416 0.0354 0.0271 

0.92 0.9 15 3 0.0412 0.0402 0.0271 

0.95 0.9 5 1 0.0457 0.0402 0.0183 

0.95 0.9 10 1 0.0388 0.0314 0.0092 

0.95 0.9 15 1 0.039 0.025 0.0053 

0.95 0.9 5 3 0.0474 0.0442 0.0172 

0.95 0.9 10 3 0.0473 0.0421 0.0116 

0.95 0.9 15 3 0.0551 0.0427 0.0088 

0.99 0.9 5 1 0.0399 0.0309 0.0007 

0.99 0.9 10 1 0.0386 0.0262 0 

0.99 0.9 15 1 0.0388 0.023 0 

0.99 0.9 5 3 0.1112 0.1067 0.0018 

0.99 0.9 10 3 0.3148 0.2344 0.0001 

0.99 0.9 15 3 0.5378 0.4211 0 
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Simulations: Power 

0.5 0.9 0 1 5 1 0.2151 0.2762 0.3224 

0.5 0.9 0 1 10 1 0.6453 0.6981 0.5593 

0.5 0.9 0 1 15 1 0.8661 0.8714 0.6836 

0.5 0.9 0 1 5 3 0.2984 0.3835 0.4372 

0.5 0.9 0 1 10 3 0.8323 0.8956 0.7832 

0.5 0.9 0 1 15 3 0.9764 0.9898 0.9391 

0.9 0.9 1 1 5 1 0.8507 0.8843 0.6941 

0.9 0.9 1 1 10 1 0.9998 0.9998 0.9243 

0.9 0.9 1 1 15 1 1 1 0.9796 

0.9 0.9 1 1 5 3 0.9981 0.9984 0.8461 

0.9 0.9 1 1 10 3 1 1 0.9781 

0.9 0.9 1 1 15 3 1 1 0.9987 
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Simulations: Power 

0.9 0.9 0 4 5 1 0.403 0.4249 0.3596 

0.9 0.9 0 4 10 1 0.9154 0.9615 0.754 

0.9 0.9 0 4 15 1 0.994 0.9984 0.9189 

0.9 0.9 0 4 5 3 0.6942 0.7543 0.5457 

0.9 0.9 0 4 10 3 0.9971 0.9994 0.916 

0.9 0.9 0 4 15 3 1 1 0.9925 

0.9 0.9 1 4 5 1 0.5252 0.7668 0.7903 

0.9 0.9 1 4 10 1 0.9759 0.9979 0.9904 

0.9 0.9 1 4 15 1 0.9991 0.9999 0.9993 

0.9 0.9 1 4 5 3 0.823 0.9734 0.9505 

0.9 0.9 1 4 10 3 1 1 0.9994 

0.9 0.9 1 4 15 3 1 1 1 
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Simulations: Power 

0.5 0.9 1 1 5 1 0.4099 0.6822 0.7232 

0.5 0.9 1 1 10 1 0.9163 0.9835 0.9622 

0.5 0.9 1 1 15 1 0.9957 0.9997 0.9963 

0.5 0.9 1 1 5 3 0.6486 0.9415 0.9381 

0.5 0.9 1 1 10 3 0.995 0.9999 0.9993 

0.5 0.9 1 1 15 3 1 1 1 

0.5 0.9 0 4 5 1 0.3051 0.5042 0.5782 

0.5 0.9 0 4 10 1 0.8448 0.9602 0.9209 

0.5 0.9 0 4 15 1 0.9982 0.9969 0.9846 

0.5 0.9 0 4 5 3 0.3223 0.458 0.5203 

0.5 0.9 0 4 10 3 0.8789 0.9489 0.8779 

0.5 0.9 0 4 15 3 0.9886 0.9962 0.9783 
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Simulations: Power 

0.5 0.9 1 4 5 1 0.3575 0.6788 0.7638 

0.5 0.9 1 4 10 1 0.8987 0.9887 0.979 

0.5 0.9 1 4 15 1 0.9929 0.9995 0.9984 

0.5 0.9 1 4 5 3 0.5109 0.852 0.8831 

0.5 0.9 1 4 10 3 0.9796 0.9987 0.9964 

0.5 0.9 1 4 15 3 0.9999 1 0.9998 

• Stouffer’s test has the lowest Type I Error rates (of all tests, 
including LRT) 

 

• LRT and Fisher’s tests have similar power 
o Fisher’s test has the highest power of the combined P-value tests in almost 

every case  

o Stouffer’s has a higher power in some small sample size (n=5) cases 

 

FCSM Research Conference November 6, 2013 34 



Applications 
• Application to EPA data:  measuring concentrations 

of pollutants in groundwater 

 
o Conventional purging methods i.e. low-flow sampling methods 

• A pump slowly collects groundwater so that the sample is not 

contaminated by water at different levels 

 

o New HydraSleeve method 

• A tube is lowered into the well and left there long enough for 

sediment etc. to settle, then water is collected as the tube is 

pulled upwards 

 

• Focus:  specific pollutants 

FCSM Research Conference November 6, 2013 35 



Results 
• TCE 

Test Cutoff Test Statistic Conclusion 

LRT 2.37547 2.206056 Do not reject 

Tippett 0.01803122 0.2217555 Do not reject 

Fisher 11.74769 5.849823 Do not reject 

Souffer -2.473122 0.4399887 Do not reject 
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Results 
• DCA 

Test Cutoff Test Statistic Conclusion 

LRT 2.462177 3.641468 Reject 

Tippett 0.01858661 0.0007817254 Reject 

Fisher 11.65932 20.72726 Reject 

Souffer -2.418705 -4.703667 Reject 
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Strong resemblance to 
bioequivalence testing 

• In an equivalence trial, the aim is to show that two 

treatments are not too different in characteristics 

 

• Not too different is defined in a clinical manner 

 

• Called bioequivalence testing 

 

• Nature of the data for bioequivalence testing 
o Same patients 

o Washout period 

o Crossover designs 
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Bioequivalence testing 
• Often data are collected from healthy volunteers 

 

• If two drug products perform the same in healthy 

volunteers, the assumption is made that they will 

perform the same in patients with the disease 

 

• Data obtained on three patient characteristics 
o Area under the curve (AUC) 

o Maximum blood concentration Cmax 

o Time to reach the maximum concentration Tmax 
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Bioequivalence testing 
• Two drug products are bioequivalent if they have 

similar rate and extent of absorption into the blood. 

 

• Two drug products are therapeutically equivalent if 

they provide similar therapeutic effects. 

 

• Fundamental bioequivalence assumption: If two 

drug products are bioequivalent, they are also 

therapeutically equivalent 
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Data for  
bioequivalence testing 
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Experimental designs 
• Reference drug (R) 

• Test drug (T) 

• Each subject receives both R and T, separated by a 

washout period 

• Crossover designs are used 

• A two sequence−two period crossover design: 
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Average bioequivalence  
• Let μT, μR: average responses among the population 

of patients who will take the test drug, and the 

reference drug, respectively. 

 

• The response is usually AUC, after log-transformation 

(could be Cmax or Tmax). 

 

• Average bioequivalence holds if μT and μR are 

equivalent, i.e., they are “close“ 
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Average bioequivalence 
• μT and μR are considered equivalent if                       

|μT − μR| < ln(1.25). 

 

• Hypothesis to be tested: 

 

 

• Conclude average bioequivalence if H0 is rejected 

after a statistical test based on the log-transformed 

AUC data. 
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A canonical form 
• Under an appropriate model for the log-transformed 

data, a canonical form is 

 

 

 

• Rewrite as 

 

 

 

• Average bioequivalence is concluded if both H01 
and H02 are rejected. 
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Assessing bioequivalence 
• Carry out t-tests: conclude average bioequivalence at 

significance level  α 

 

if

• Equivalently, if 

 

• Two one-sided t-test (TOST) 
o Schuirmann (1981), Biometrics 

o Schuirmann (1987), Journal of Pharmacokinetics and Biopharmaceutics 

 

• Main drawback:  not scale invariant 
o Performance depends on unknown σ
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Type I Error rate:  TOST 
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Improvements on TOST 
• The TOST can be quite conservative as σ gets large 

 

• Improved tests due to: 
o Anderson and Hauck (1983), Communications in Statistics 

o Munk (1993), Biometrics 

o Berger and Hsu (1996), Statistical Science 

o Brown, Hwang and Munk (1997), Annals of Statistics 

o Munk, Brown and Hwang (2000), Biometrical Journal 

o Cao and Mathew (2008), Biometrical Journal 

 

• Improvement in power at values of σ that are 

unlikely. 
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Criterion for equivalence 

• If the probability that Y/X is around 1 is large, conclude 
that the standard device and the alternative device are 
equivalent. 

 

• Let 

 

 for small δ. 

• If θ is large, conclude that the standard device and the 
alternative device are equivalent.
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Criterion for equivalence 
• A usual choice is δ= 0.25 

 

 

 

• Use the data to test 

 

 

• Accept equivalence if H0 is rejected, i.e., if θ ≥ 0.90 

is concluded.  
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