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Abstract 
The National Science Foundation’s Survey of Doctorate Recipients is conducted every two or three years 
and collects detailed information on individuals receiving PhDs in science and engineering in the U.S. 
and some others with PhDs from abroad in these areas. Survey weights adjust for oversampling and non-
response on a cross sectional basis. A signifcant portion of the sample (e.g., 60% on 3 or more surveys 
from 1993-2006) appears in multiple survey years and can be linked across time. No longitudinal weight 
exists that would enable estimation of statistical models or comparison of fnite population characteristics 
using data from multiple survey waves together. This paper applies calibration estimation for construction 
of such a longitudinal weight for this survey. Previous results studied the process of weight construction 
through simulation. Here we report on applications to NSF survey data. Choices of multivariate calibra-
tion targets are compared in a series of analyses. 
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1 Introduction 

The National Science Foundation’s Survey of Doctorate Recipients (NSF SDR) is gathers detailed information on 
people receiving PhDs in science and engineering in the United States and some others with PhDs from abroad in 
these areas. It is conducted every two or three years. Each survey year, survey weights adjust for oversampling and 
nonresponse. This is done on a cross-sectional basis. The survey has many uses, including providing estimates for 
use in reports such as those by the NSF (2008, 2011). Every survey year the target population changes, because 
people enter (e.g., new Ph.D. recipients in the U.S.) or leave (e.g., deaths) the population. Variables cover labor 
force status, academic rank and tenure, salary, feld and institution of degree and employment, age, sex, race/ethnicity, 
marital status, spouse employment, whether children are at home and their ages, U.S. citizenship, work responsibilities, 
management position, professional memberships, reasons for taking a post doctoral position, and questions about a 
career path job. 

Every survey year, survey weights adjust for oversampling and nonresponse. This means that an analysis using the 
survey data with the survey weights in a given year is representative of a corresponding population. A large portion 
of the sample (e.g., 60% on 3 or more surveys from 1993-2006) appears in multiple survey years and can be linked 
across time. Despite that fact the survey weights are not designed for longitudinal analysis of data sampled over 
time. Longitudinal analysis, of course, is still possible, but such an analysis would typically be anchored in a sample 
year. It does mean that there are no longitudinal survey weights that would enable estimation of statistical models or 
comparison of fnite population characteristics. 

1.1 Longitunidal Analysis and the SDR 

As described in Larsen et al. (2011), the type of analysis of change over time that can be accomplished with the Survey 
of Doctorate Recipients is focused on cohorts defned by survey years. If one wants to estimate rates of progression 
or factors associated with advancement in employment within a feld of study, then one can do so using a particular 
cohort or survey year. A consequence of conducting cross-sectional analyses is that sample sizes are more limited 
than they would be if longitudinal analysis was planned into the design. Another limitation occurs when estimating 
statistical models of change over time. Ideally one would use all respondents from all survey years. What should one 
do with the cross-sectional survey weights that each respondent has for each survey in which they participate? If there 
were one longitudinal survey weight for each unique respondent, then combining respondents from different survey 
years would be more readily doable. 

1.2 Surveys Designed for Longitudinal Analysis 

As described in Larsen et al. (2011), some surveys are designed with planned longitudinal, panel, or time series 
analyses in mind. These surveys include the American Community Survey (ACS; http://www.census.gov/acs/www/, 
U. S. Census Bureau 2009; chapter 4) and the Current Population Survey (CPS; http://www.bls.gov/cps/; 
http://www.census.gov/cps/, U. S. Census Bureau 2006), 

There are many other surveys – longitudinal surveys and panel surveys – that are designed to measure change over 
time. Examples include the Survey of Income and Program Participation (SIPP), the National Longitudinal Surveys 
(http://www.bls.gov/nls/), the Panel Study of Income Dynamics (http://psidonline.isr.umich.edu/), the 2009 Panel Sur-
vey of Consumer Finances (http://www.federalreserve.gov/pubs/oss/oss2/scfndex.html), and the Medical Expenditure 
Panel Survey (http://www.meps.ahrq.gov/mepsweb/). An example in the area of environmental surveys is the National 
Resources Inventory (Breidt and Fuller 1999). See also Duncan and Kalton (1987), Fuller (1999), and McDonald 
(2003) and references therein. 
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1.3 Outline 

This paper explores the construction of longitudinal weights for cross-sectional sample surveys using calibration es-
timation (Deville and Sarndal 1992 and references given below). Section 2 discusses survey calibration weighting ¨ 
and estimation. Section 3 outlines a proposal for the formation of longitudinal survey weights from cross-sectional 
weights. Results of a simulation using this proposal were described in Larsen et al (2011). Section 4 describes appli-
cation of methods to data from the NSF Survey of Doctorate recipients. Section 5 discusses fndings, limitations, and 
future work. 

2 Calibration Weighting 

This section is repeated from Larsen et al. (2011). It provides necessary background for understanding calibration 
estimation and weighting. 

Calibration estimation and calibration weighting methods were described by Deville and S ̈ The con-arndal (1992). 
nection to raking adjustment was demonstrated in Deville, S¨ Reviews of the literature arndal, and Sautory (1993). 
and methods for calibration in sample surveys can be found in Kim and Park (2010) and Särndal (2007). Calibra-
tion methods in survey sampling allow one to adjust survey weights so that they are close to initial weights, such as 
the sampling design weights, but satisfy certain constraints. The closeness of the weights is described by a distance 
function. For example, if xk is a value for a variable X on subject k in the sample and the total for variable X in the 
population is known to be tx, then a constraint could be that the weighted total of the x-values in the sample equal tx:P 

xkwkk∈s = tx. P 
Let {dk} be original survey (design) weights. Let tx = U xk is a known total in the population with indices 
U ; xk can be a vector. The calibrated weights {wk} are “close” to {dk} but satisfy a set of calibration equations: P P 

wkxk = U xk. There are various ways to compute the weights, including in the R survey package (Lumley s 
2011). Calibration weighting can match (published) control totals and reduce mean squared error. A reduction in 
mean squared error might occur when the x variable is suffciently correlated with an outcome y variable. 

Calibration can be implemented in a way to control the minimum and maximum value of weights and to match one or 
more control totals. It is therefore a very fexible methodology. Indeed, Zhang (2000) describes how calibration can 
produce adjusted weights equivalent to those produced with post stratifcation. 

In the context of nonresponse weighting, one can specify the desired post stratifcation adjustments in terms of control 
totals for calibration weighting. For example, the goal could be to have the sum of weights for respondents in a 
weighting class or post stratifcation cell match the sum of weights of sampled units in that cell. One might also want 
to place an upper bound on the largest weight in the cell. Then the survey calibration algorithm provides a procedure 
for adjusting the current weights. The Research Triangle Institute (RTI 2008) implements a general methodology 
that enables this form of calibration. Inherent in the use of calibration, cell-based adjustment, and raking is the need 
to select variables and subgroups to defne the control targets. These methods will be more successful in removing 
non-response bias if cells and control variables are related to probabilities of non-response and to variables used for 
analyses. Mirel et al. (2010) used the RTI SUDAAN program to compare weighting class and more general calibration 
adjustments for weights in the NHANES (2003-2004). 

In some survey settings, researchers have used calibration to adjust weights to match estimated control totals. Esti-
mated control totals have their own degrees of uncertainty associated with them. Variance estimation with calibrated 
estimators when the calibration is based on estimated totals receives further comment in the discussion section below. 
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3 Longitudinal Calibration 

Material in this section is repeated and reorganized from Larsen et al. (2011). It provides necessary background for 
understanding the proposal for longitudinal calibration estimation and weighting. Larsen et al. (2011) contains details 
on the simulation performed for that paper. 

The principle motivation for creating longitudinal weights is a desire to be able to take multiple survey years together. 
Combining data from survey years increase sample size versus a single cohort. Although the NSF SDR survey is 
large by most standards, the number of individuals in certain discipline by rank by demographic group combinations 
in a single survey year can be small. One complication with combining data from different survey years is that each 
individual in each year has survey weight for that year. 

Calibration weights for estimation with longitudinal data in the National Long Term Care Survey (NLTCS; 
http://www.nltcs.aas.duke.edu/) has been considered by Ash (2005). Cross-sectional weights for this survey are com-
puted so that weights sum to population totals. This is an example of classical post stratifcation. When the interest 
is the difference between totals at two time points, there are two sets of population totals (earlier totals, later totals) 
that are available. Ash (2005) uses calibration estimation to adjust weights for both sets of known total controls. The 
author investigated one- and two-step calibration approaches, which differ in whether the various calibration totals 
are used simultaneously or one after another in weight adjustment. The NLTCS uses repeated replications in variance 
estimation. 

The interest in the current paper differs from the interest of Ash (2005) in a few important ways. First, the goal here 
is to use several survey years together, not only two. Second, the known population totals are not available; rather, 
estimated totals can be produced in each survey year. Third, a broader set of estimands is being considered; these are 
describe further below. Otherwise, the current paper shares much of the same interest as the paper by Ash (2005). 

Three requirements are considered when producing longitudinal weights. First, the weight needs to be calculable 
from existing data, which means either the public use data sets or the restricted use versions that NSF releases under 
strict licensing. The exact population totals and the exact defnition of post stratifcation cells are not known to the 
researchers outside of the organization that produced the data. Second, the weight needs to be useful for reproducing 
key cross-sectional analyses. This is both a requirement for consistency and an attempt to produce advantages in 
estimation via correlations. If a calibrated set of weights could not reliably reproduce analyses of interest (not with 
exact correspondence necessarily but with reasonable proximity in some metric), then users would be unlikely to utilize 
the new weight set. Third, the weight should be low in variability, because high variability weights are associated 
with low precision in estimation. The third requirement potentially affects all weight adjustment procedures and 
applications. In the area of nonresponse adjustment, fne adjustments to weights often have the potential to remove 
more nonresponse bias than coarse adjustments, but the resulting weights are often more variable, which can negatively 
affect the standard errors for some estimators. 

The process of calibrating cross-sectional weights to produce a set of longitudinal weights for analysis of data from 
combined survey years can be divided into fve steps. 

1. Selection of initial weights for each subject that appears in at least one survey year. 

2. Selection and computation/estimation of control targets from one or more survey years. 

3. Selection of a calibration method from the available options. Some calibration methods require making choices 
such as minimum and maximum allowable weight. 

4. Computation of calibrated weights. 

5. Evaluation of the calibrated weights in terms of analyses of interest. The evaluation includes computation of 
point estimates as well as standard errors. 
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Table 1: Prototype scenario for longitudinal weighting. 

Year Year 1 Year 2 Year 3 
Population U1 U2 U3 
Domain d1 d2 d3 
Variables X1, Y1 X2, Y2 X3, Y3 
Sample s1 s2 s3 

Table 2: Overlap of populations in prototype scenario for longitudinal weighting. Simulation population sizes. Row 
numbers pertain to left portion only. 

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 
Row U1 U2 U3 U1 U2 U3 
1 x 1000 0 0 
2 x x 1000 1000 0 
3 x x x 6000 6000 6000 
4 x x x 0 1000 1000 
5 x 0 0 1000 
6 x x 
7 x N1 = 8000 N2 = 8000 N3 = 8000 

What analysis would beneft from considering a composite population comprised of individual, overlapping popula-
tions from multiple survey years? One analysis that should clearly beneft from using subjects sampled in all years 
would be a regression of Y on X over the time periods. The composite population sample should have larger sample 
size and more observations than any one year sample. Discusssion of this analysis can be found in Larsen et al. (2011). 

3.1 Prototype Population 

Table 1 illustrates a prototype scenario for a cross-sectional survey. The populations in years 1, 2, and 3 are U1, 
U2, and U3, respectively. Within each population is a domain or subpopulation of interest, dj ⊂ Uj , such as female 
doctorate recipients, recent graduates, minority doctorate recipients, or graduates with a degree is a specifc feld of 
study. Variables measured in the population can be numerous, but for estimation and calibration work they will be 
divided into two sets in survey year j: Xj are variables used as covariates or control variables, Yj are outcome variables 
of interest to the study. Within each population, a sample is selected: sj ⊂ Uj in survey year j. 

The populations overlap as depicted in left portion of Table 2. The rows are not intended to be proportional to 
population size. Rows 1-4 denote the population in survey year 1. Rows 2-6 denote the population in survey year 2. 
Rows 3-4 and 6-7 denote the population in survey year 3. Some elements in the three populations appear in only one 
survey year: row 1 in year 1, row 5 in year 2, and row 7 in year 3. Other elements appear in two of the three populations: 
row 2 in years 1 and 2 and row 6 in years 2 and 3. In some applications, such as labor force surveys, elements could 
appear in years 1 and 3, but not in year 2. Such a scenario is not considered in this work, but should ft within the 
general framework proposed below. Other elements, represented by rows 3 and 4, exist in all three populations. If the 
populatoin size each year is N1 = N2 = N3 = 8000, each year 1000 individuals enter the population, and each year 
1000 leave the population, then the right portion of Table 2 gives population sizes illustrating the sizes of overlaps 
across years. The rows do not necessarily correspond to rows in previous tables. 

The sampling design for the Survey of Doctorate Recipients is described on the National Science Foundation NCSES 
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Table 3: Prototype sampling design for prototype scenario for longitudinal weighting. x means that the units were 
not in the population that year. Sample weights computed cross-sectionally within strata in prototype scenario for 
longitudinal weighting. Weighting formulas can differ by strata. Final column is the composite weight for three 
survey years together. 

Row Year Year 1 Year 2 Year 3 Composite 
Population U1 U2 U3 U 

1 stratum 1 s1, w1 x x w 
2 stratum 1 s1, w1 s34, w3 w 
3 stratum 1 s1, w1 s21, w2 x w 
4 stratum 1 s1, w1 s21, w2 s31, w3 w 
5 stratum 2 x s22, w2 w 
6 stratum 2 x s22, w2 s32, w3 w 
7 stratum 3 x x s33, w3 w 

(2011) website. The prototype sampling design is depicted in Table 3. The rows are not intended to be proportional 
to sample size. The sample in survey year 1 is s1 ⊂ U1, which is represented in rows 1-4. The sample in survey 
year 2 is s2 = {s21, s22} ⊂ U2 and is represented in rows 3-6. Elements in rows 3 and 4 that were selected in s1 are 
included again in s2. Together they are denoted s21 =⊂ s2. Other elements in U2 are selected for the survey year 2 
sample from elements in the population in U2 that were not in the population in year U1. The subset s22 ⊂ s2 with 
s22 ⊂ U2 \ U1 is in rows 5 and 6. These elements correspond to new PhD’s in the Survey of Doctorate Recipients; 
they received their degrees and entered the survey target population after the years included in survey year 1. 

The x’s in the table indicate that the population in the given column (survey year) did not include the elements covered 
by the rows. For example, rows 5-7 represent elements that were not members of population U1, rows 1 and 7 were 
not in population U2, and rows 1, 3, and 5 were not in population U3. Not depicted in the table are members of the 
population there were not sampled. For example, the elements not sampled in survey year 1 are U1 \ s1. 

The sample in survey year 3 can be found in rows 2, 4, 6, and 7. Elements in row 2 are selected from those that were 
selected in years 1 and 2 (s31 ⊂ s21 ⊂ s1). Units in row 6 (s32) are selected from the elements that were new to 
the population in survey year 2 and selected in s22 ⊂ s2. Units in row 7 (s33) are selected from the new members of T 
population U3. Additional units (row 2, s34) are selected from U1 U3 that were selected in year 1, but not in year 2. 

The set s1 is sampled from stratum 1, which is U1. The set s22 is sampled from stratum 2, which is U2 \ U1. The set 
s33 is sampled from stratum 3, which is U3 \T(U1 ∪U2). Note that s21 ⊂ s1 and s31 ⊂ s21 are taken from stratum 1, s32 
is taken from stratum 2 (U2 \ U1; s32 ⊂ U3 U2 \ U1), and s34 is drawn from stratum 1 (U1; s34 ⊂ s1, s34 ∩ s31 = ∅,T 
s34 ⊂ U1 U3). Sampling rates for the simulation will be determined within strata. 

Table 3 presents cross-sectional weights that would be determined for each survey year. Weighting formulas can differ 
by strata. Each year a subject is included in the sample it receives a weight. The fnal column of Table 3 illustrates the 
goal of a composite or single weight for each subject included in one or more of the samples in survey years 1, 2, and 
3. 

3.2 Calibration Options 

Step 1 in the calibration procedure is to choose initial weights. For initial weights, four options are being considered: 
(1) Equal weighting for elements in s = s1 ∪ s22 ∪ s33. (2) The earliest available weight (w1 for s1, w2 for s22, w3 for 
s33). (3) The average of available weights for each case. (4) The latest available weight (w3 for s3, w2 for s2 excluding 
s3, w1 for the rest). Step 2 in the process of calibrating cross-sectional weights to produce a set of longitudinal weights 
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for analysis of data from combined survey years is to identify targets for calibration. Potential targets that could be 
used singly or in combination include: (A) Population sizes N1, N2, N3. (B) X total estimates (t̂X1, t̂X2, t̂X3). (C) 
Domain sizes (Nd1, Nd2, Nd3). (D) X total estimates in the domain (t̂X1d, t̂X2d, t̂X3d). In the simulation reported in 
Larsen et al. (2011), some combinations of calibration control totals were used. The sets of control totals were (1) A, 
(2) A and B, (3) A and C, (4) A, B, and C, and (5) A through D. Some are known values, such as population sizes, 
whereas others are estimates themselves. Others, including second moments and interactions among variables, could 
have been possible. 

A difference between this simulation and application to the actual NSF Survey of Doctorate Recipients, or to any other 
survey for that matter, is that there could potentially be several domains and auxiliary variables to consider. It is an 
open question as to how many variables can or should be used in survey weight calibration. In general, calibrating 
on many variables has the potential to increase variability of resulting weights, which could dramatically increase 
standard errors for some estimates. 

Step 3 is to select a calibration method. Only two were considered in Larsen et al. (2011): raking and linear regression 
calibration. Both are implemented in the R package survey, which addresses Step 4. 

One of the requirements of the calibrated weights is that the the weight needs to be useful for reproducing key cross-
sectional analyses. This is given as both a requirement for consistency and an attempt to produce advantages in 
estimation via correlations. In addition, it is of interest to examine the impact of weighting on a longitudinal analysis. 
Estimands and corresponding estimators considered for evaluation are listed below. These options were considered in 
Larsen et al. (2011). 

1. Means in year j: estimation using sample sj and new weights w, j = 1, 2, 3. Comparison is made to estimation 
using sample sj and weights for sample year j, wj . 

2. Domain means in year j: estimation using sample sj ∩ dj and new weights w, j = 1, 2, 3. Comparison is made 
to estimation using sample sj ∩ dj and weights for sample year j, wj . 

3. Change in means: estimation using cases sampled in both years. 

4. Change in domain means: estimation using cases sampled in both years. 

5. Linear mixed effects model estimate of slope in population U : estimation of regression slope using single stage 
cluster sample. 

3.3 Simulation Study 

The simulation study in Larsen et al. (2011) was implemented as follows. The population, sample, weighting, and 
variable details described therein were utilized. Conduct the following steps b = 1, . . . , B = 1000 times: 

1. Generate a population in years 1, 2, and 3 from the models given above. 

2. Select a sample in years 1, 2 and 3 according to the stated sampling scheme. 

3. Compute and estimate control totals. 

4. For each combination of starting weights and groups of control totals, compute calibration weights using raking. 
Raking cannot be used when methods A through D are used together due to the interaction between domain size 
and domain total. 

5. For each combination of starting weights and groups of control totals, compute calibration weights using linear 
regression calibration. All groups of controls can be used with linear regression calibration. 
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6. Estimate each estimand and its standard error using each set of calibrated weights. 

Results of the simulation were given in Larsen et al. (2011). As reported in that article, the proposed estimation 
methods seem to work well. One suggestion from that article is to consider ways to properly account for uncertainty 
due to estimated contorl totals in estimation with calibrated weights. Propagation of uncertainty in another scenario, 
namely, analysis of fles created through record linkage, was considered by Lahiri and Larsen (2005). Development of 
methods for improved variance estimation will be reported in subsequent work. 

4 Application to the SDR 

Methods were applied to multiple survey years of the NSF Survey of Doctorate Recipients. Longitudinal calibration 
was implemented for either three survey years or fve survey years. The combination of three survey years was 1993, 
1995, and 1997. The combination of fve survey years added 1999 and 2001 to the trio used previously. The entire 
SDR sample was used in calibrating weights. The response variable chosen for analysis is the respondent salary. 
Two domains of interest were females and minorities. Both variables are binary variables in this analysis. Different 
combinations of calibration factors were used as described below. Computations were performed using the survey 
package (Lumley 2011) in R (2008). Linear regression calibration was used in all cases. No negative weights were 
encountered. Replication variance estimation methods were not used in this study as the control totals were treated as 
if they had been known before calibration. This is reasonable in this case, because the population numbers presumably 
would have been known by those designing the sampling plan for the survey. 

Calibration totals were chosen to be population size totals for the population in the chosen survey years and for a 
domain in the chosen survey years. Three calibration combinations were considered when three surveys were used 
together in calibration weighting. 

1. Calibrate on the population total only in years 1993, 1995, and 1997. The population total in each year was 
taken to be the sum of the survey (expansion) weights in each year. 

2. Calibrate on the population total and the number of females (the size of the female domain group) in years 1993, 
1995, and 1997. Implicitly one then calibrates on the number of males (the size of the male domain group) in 
those years as well. 

3. Calibrate on the population total, the number of females (the size of the female domain group), and the number 
of minorities (the size of the minority domain) in years 1993, 1995, and 1997. 

The same three calibration combinations were considered when fve surveys were used together in calibration weight-
ing. For the fve survey application, however, totals in years 1993, 1995, 1997, 1999, and 2001 were used. Thus, 
option 1 calibrated to three (fve) totals, option 2 calibrated to six (ten) totals, and option 3 calibrated to nine (ffteen) 
totals in the three (fve) survey year application. 

Means and standard errors were computed for the average salary overall, for females, and for minorities by survey year. 
Table 4 reports results for the the average salary overall. Estimated means, standard errors, and percent difference in 
means in 1993, 1995, 1997, 1999, and 2001 surveys are reported. Results are reported for different combinations 
of calibration targets. Calibration used data from fve surveys together or three surveys together. The original mean 
estimates and standard errors are based on single surveys. 

First, comparing the result of calibrations in the case of three survey years versus the case of fve survey years, it 
is clear that the calibrated means of average salary from the three surveys are much closer to the original means of 
salary than are the calibrated means of average salary from the fve surveys. That is, for the population mean overall, 
the percent difference between the original means and the calibrated means are smaller then three surveys are used 
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instead of fve surveys. This makes sense because with more surveys the weights need to be modifed more to match 
the additional control population size totals. 

Second, as the number of calibration totals is increased, in either the three survey or fve survey application, the percent 
difference between the original means and the calibrated means decreases. This result is consistent across years and 
both numbers of surveys. 

Third, standard errors tend to be larger for the calibrated data than originally. For estimating salary in a given year, 
as estimating is implemented here, there is no increase in sample size with the calibrated data. An alternative, such 
a generalized least squares regression (e.g., Breidt and Fuller 1999), might realize an advantage due to correlations 
over time. The increase in standard errors makes sense, because the calibration weighting tends to make weights more 
variable, which tends to lead to higher variability of estimators. The effect is seen less for the three survey application 
than for the fve survey application. 

Table 5 reports results for the mean salary among females. The percent difference between the original and calibrated 
mean estimates are small, generally less than one-and-a-half percent. For the female group, in contrast to the situation 
overall, adding control totals does not seem to appreciably impact calibrated standard errors. It also does not seem to 
impact the percent difference in means. As with the overall mean, standard errors tend to be larger for the calibrated 
data than originally. The effect is greater for the fve survey application than for the three survey application. 

Table 6 reports results for the mean salary among minorities. The results for the mean salary among minorities 
are consistent with those for the overall mean salary reported in Table 4. the calibrated means of average salary 
for minorities from the three surveys are much closer to the original means of salary than are the calibrated means 
of average salary from the fve surveys. That is, for the minority mean overall, the percent difference between the 
original means and the calibrated means are smaller then three surveys are used instead of fve surveys. As the number 
of calibration totals is increased, in either the three survey or fve survey application, the percent difference between 
the original means and the calibrated means for minority average salary decreases. Standard errors tend to be larger, 
more so for the fve survey application than for the three survey application, for the calibrated data than originally. 

Overall, the calibrated weights do well in the application. The percentage of difference between the calibrated means 
and the original means are almost all smaller than 1.5%. 

5 Discussion 

The proposed method for computing longitudinal survey weights from cross sectional survey weights using calibration 
weighting was applied to NSF SDR data from fve years. Initial evidence suggests that calibration can create useful 
longitudinal weights. Weights preserve means by year and domains without infating standard errors much in these 
preliminary applications. It is anticipated that as more control totals, especially estimated control totals, are added to 
the calibration targets that methods to properly account for variance will make a bigger difference from naive variance 
estimation methods. 

As described in Larsen et al. (2011), a critical question is, how should one estimate variance when calibration totals 
are in fact themselves estimated? The survey estimates used as control totals have their own uncertainty that should be 
propagated into the standard errors. It is hypothesized that variance estimation with longitudinally calibrated survey 
weights must take into account the fact that some of the target control values are estimated from the separate surveys 
rather than based on a known population value. The NSF SDR utilizes Generalized Variance Functions (GVFs) for 
variance estimation (Jang 2001), but replicate weights are available under a restricted use license. 

Dever and Valliant (2010) cite examples of surveys in which researchers have estimated control totals and then used 
post stratifcation. Dever and Valliant (2010) then compare methods of variance estimation in this context. Elliott et al. 
(2010) combine samples from two sources in order to improve estimation. In order to combine samples, the authors 
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estimate weights that they refer to as pseudo-weights. In order to incorporate uncertainty due to weight estimation, the 
authors use a jackknife approach. Breidt and Opsomer (2008) study post stratifcation where the post strata are formed 
based on an estimated classifcation function. They call this endogenous post stratifcation (ESP). These and other 
sources could be informative for the issue of variance estimation when control totals are estimated with uncertainty. 

Future work will expand the application to the NSF Survey of Doctorate Reciptient data for the puspose of studying 
career paths of doctoral recipients in Science, Health and Medicine, and Engineering. 
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Table 4: Estimated means, standard errors, and percent difference in means in 1993, 1995, 1997, 1999, and 2001 
surveys. Results are reported for different combinations of calibration targets. Calibration used data from fve surveys 
together or three surveys together. The original mean estimates and standard errors are based on single surveys. 

Calibration on population 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 64135 219.07 63203 181.03 1.47 
1995 64444 235.46 63517 203.61 1.46 
1997 67869 241.34 67426 229.49 0.66 
1999 72081 247.71 71502 220.98 0.81 
2001 78244 259.61 77786 234.24 0.59 

Calibration on population and female size 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 63839 216.92 63203 181.03 1.01 
1995 64094 233.75 63517 203.61 0.91 
1997 67633 239.54 67426 229.49 0.31 
1999 71629 246.36 71502 220.98 0.18 
2001 77736 258.19 77786 234.24 -0.06 

Calibration on population total, female and minority 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 63832 216.9 63203 181.03 1.00 
1995 64087 233.76 63517 203.61 0.90 
1997 67640 239.62 67426 229.49 0.32 
1999 71627 246.4 71502 220.98 0.17 
2001 77732 258.23 77786 234.24 -0.07 

Calibration on population total only 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 63758 198.93 63203 181.03 0.88 
1995 64213 215.2 63517 203.61 1.10 
1997 67766 222.16 67426 229.49 0.50 

Calibration on population and female 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 63594 197.87 63203 181.03 0.62 
1995 63984 214.34 63517 203.61 0.74 
1997 67554 221.17 67426 229.49 0.19 

Calibration on population, female and minority 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 63585 197.81 63203 181.03 0.60 
1995 63976 214.27 63517 203.61 0.72 
1997 67554 221.13 67426 229.49 0.19 
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Table 5: Estimated means, standard errors, and percent difference in means for FEMALES in 1993, 1995, 1997, 1999, 
and 2001 surveys. Results are reported for different combinations of Calibration targets. Calibration used data from 
fve surveys together or three surveys together. The original mean estimates and standard errors are based on single 
surveys. 

Calibration on population 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 51342 342.81 51487 274.15 -0.28 
1995 50314 392.09 51079 362.28 -1.50 
1997 53592 371 54134 347.04 -1.00 
1999 56795 394.36 57492 376.82 -1.21 
2001 62825 408.86 63427 394.88 -0.95 

Calibration on population and female size 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 51333 342.18 51487 274.15 0.30 
1995 50396 392.78 51079 362.28 -1.34 
1997 53875 378 54134 347.04 -0.48 
1999 56803 395.01 57492 376.82 -1.20 
2001 62800 407.58 63427 394.88 -0.99 

Calibration on population total, female and minority 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 51333 342.26 51487 274.15 -0.30 
1995 50396 392.78 51079 362.28 -1.34 
1997 53875 378 54134 347.04 -0.48 
1999 56803 395.01 57492 376.82 -1.20 
2001 62800 407.58 63427 394.88 -0.99 

Calibration on population total only 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 51432 309.4 51487 274.15 -0.11 
1995 50515 353.93 51079 362.28 -1.10 
1997 53735 347.97 54134 347.04 -0.74 

Calibration on population and female 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 51428 310.54 51487 274.15 -0.11 
1995 50501 353.69 51079 362.28 -1.13 
1997 53779 348.81 54134 347.04 -0.66 

Calibration on population, female and minority 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 51426 310.33 51487 274.15 -0.12 
1995 50498 353.43 51079 362.28 -1.14 
1997 53777 348.78 54134 347.04 -0.66 
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Table 6: Estimated means, standard errors, and percent difference in means for MINORITIES in 1993, 1995, 1997, 
1999, and 2001 surveys. Results are reported for different combinations of Calibration targets. Calibration used data 
from fve surveys together or three surveys together. The original mean estimates and standard errors are based on 
single surveys. 

Calibration on population 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 57312 821.33 56701 654.04 1.08 
1995 58193 849.59 57581 699.65 1.06 
1997 61923 853.16 61997 806.74 -0.12 
1999 65210 807.99 64279 745.38 1.45 
2001 71284 821.5 70044 751.09 1.77 

Calibration on population and female size 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 57030 804.15 56701 654.04 0.58 
1995 57938 838.94 57581 699.65 0.62 
1997 61739 847.8 61997 806.74 -0.42 
1999 64821 799.41 64279 745.38 0.84 
2001 70804 814.6 70044 751.09 1.09 

Calibration on population total, female and minority 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 56910 787.21 56701 654.04 0.37 
1995 57856 827.63 57581 699.65 0.48 
1997 62024 851.19 61997 806.74 0.04 
1999 64846 797.84 64279 745.38 0.88 
2001 70756 811.42 70044 751.09 1.02 

Calibration on population total only 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 57578 765.06 56701 654.04 1.55 
1995 58605 789.82 57581 699.65 1.78 
1997 61967 783.81 61997 806.74 -0.05 

Calibration on population and female 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 57417 755.42 56701 654.04 1.26 
1995 58411 783.42 57581 699.65 1.44 
1997 61779 778.48 61997 806.74 -0.35 

Calibration on population, female and minority 
Survey calibrated original % difference 
Year mean SE mean SE in means 
1993 57350 745.55 56701 654.04 1.14 
1995 58365 775.73 57581 699.65 1.36 
1997 61969 778.8 61997 806.74 -0.05 
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