

Using Computer Vision to Process Vehicle Dashboard Displays in Transportation Safety Research

Kristin Jiating Chen, Alexander Cates, Rick Huey, Marcelo Simas, James Jenness, Gonzalo Rivero

Outline

- Introduction
- Nature of data
 - Videos
 - Icons
- Methodology Machine learning pipeline with OpenCV
- Results
 - Model performance
 - Future research

Introduction – Background of the Overall Study

- Understand driver behavior in the context of driver-assist systems in Toyota Safety Sense system (TSS)
 - Driver-assist systems

Adaptive Cruise Control Lane Departure Alert

Pre-Collision System

 when the systems are triggered, related driver-assist icons appear on the vehicle dashboard displays

When driver-assist icons were presented

When driver-assist systems were used

How drivers interpret and respond to the presence of the icons

How drivers understand systems over time

Introduction – Research Problem

- Problem
 - Identify the presence of icons on the vehicle dashboard displays
- Pilot study
 - Collect data by recording the central dashboard displays while driving instrumented Toyota vehicles

Nature of Data - Videos

- Video recordings of central dashboard display
 - Pilot study data
 - 200+ 1-min videos
 - Study data (estimated)
 - 10-20 instrumented Toyota vehicles
 - 12 weeks participation per vehicle
 - 500+ 1-min videos per week

Nature of Data - Icons

• 10 icons

Adaptive Cruise Control Lane Departure Alert

Leading Car

Brake

Headway Bar Indication

Lane Line Indication

Methodology

- Technique
 - OpenCV: open source computer vision library
- Machine learning Pipeline utilized OpenCV Python API and R

Methodology – Frame Extraction

 Extract frames from videos per half-second

- Feature
- Good feature corner feature

1. Detect features in icons

2. Match same features between two images

1. Detect features in frames

- Matching Criteria
 - 3 matched features between two images

- Scale invariant
- Rotation invariant

Leading Car

- Mismatching
 - Local features detected in the frames are noise
- Strategy
 - Lower noise and narrow target areas for feature matching

Methodology – Image Preprocessing

- Crop the dashboards from the frames focus on region-of-interest
- Deskew the dashboards
- Denoise

Methodology – Image Preprocessing

• Crop into 3 parts

Narrow down the target area

Adaptive Cruise Control

Lane Departure Alert

Methodology – Visualization (R Shiny)

Interactive time series plots

Results – Modeling Performance

- Sample data: 10 icons, 29 selected frames, 290 combinations
- Confusion Matrix

n = 290	Predicted Negative	Predicted Positive	
Actual Negative	TN = 213	FP = 4	217
Actual Positive	FN = 25	TP = 48	73
	238	52	

TPR: 0.66 TNR: 0.98

FPR: 0.018

FNR: 0.342

- Runtime (4 threads multiprocessing)
 - Week 1 subject 1 real study data: 10 icons, 57,000 frames, 570,000 combinations (500+ 1-min videos)
 - Computation time

Frame extraction: 10 mins

Image preprocessing: 2 hours+

Feature matching: 2 hours+

Results - Conclusion & Future Research

- Conclusion: Works well!
 - Leads to 66% true positive rate and 98% true negative rate
 - Meets computation requirement when data scales up

Processes with reasonable computation time

Counts for Brake Icons Matched Features

- Current research
 - Customizes matched features criteria for each icon
 - Balance FP/FN error
- Future research
 - Train customized model

Thank you for listening!

Contact information

Kristin Chen <u>KristinChen@Westat.com</u>
Alexander Cates AlexanderCates@Westat.com

Citation

ANN ARBOR. Mich, (2017, November 15). *Toyota's Collaborative Safety Research Center to Study Societal Acceptance of Connected and Automated Vehicle Technologies*.

Retrieved from

https://corporatenews.pressroom.toyota.com/releases/toyota+collaborative+safety+research +center+study+societal+acceptance+connected+automated+vehicle.htm

https://www.toyota.com/safety-sense/featurevideo/DtoqSOUSR0A

https://docs.opencv.org/3.4/db/d27/tutorial_py_table_of_contents_feature2d.html

