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PART I

MOTIVATION AND

SCIENTIFIC BACKGROUND
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Modeling crop yield with remote sensing data

USDA National Agricultural Statistics Service (NASS) produces
county level estimates of crop yield by combining several sources of
information

Remote sensing technology provides a variety of data to assess the
status of the agriculture

Several challenges arise from

I Land-cover and crop identification

I Non-parametric modeling

Prediction accuracy and computational efficiency
are major concerns
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Use of satellite imagery in agriculture

Remote sensing have been used in several countries to estimate
crop production or yield (Zhao et al., 2007)

“Greenness” of plants is characterized by a spectral signature
that can be used to determine the state, structure and composition
of the crop

Satellite imagery of planted areas shown strong associations
between the spectral signature and crop production or yield

Johnson (2016) investigated correlations between MODIS data and
crop yield at the county level for several commodities
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PART II

MODELING APPROACHES
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Current steps to predict crop yield

1. Discriminating of crop planted in the fields within each county

2. Estimating the average value for the variables of interest at
the county level

3. Combining remote sensing variables with historical yield data

4. Training non-parametric models

5. Performing model selection

6. Producing predictions

Instead of averaging field level data points at the county
level, more information is considered by using empirical
distributions
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USDA NASS Cropland Data Layer

Figure: Land cover in Eddy county (ND) in 2018
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Javascript and Google Earth Engine1

Figure: Median reflectance in 2018 over corn fields

1https://code.earthengine.google.com/
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Using approximate densities as covariates
The distributions of the variables of interest can be used as
functional covariates rather than computing their expected values

For computational reasons, these density functions can be
approximated as histograms
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Measuring distances between densities

The symmetric Kullback-Leibler distances (SKLD) between
histograms is computed as

SKLD =
1

2

∫
R

[
fA(x) − fB(x)

]
log

(
fA(x)

fB(x)

)
dx

Standard data frames for model training are obtained by

1. Multidimensional scaling (MDS, Kruskal, 1964)

2. Principal components (PC, Jolliffe, 1986)

3. Independent components (IC, Hyvarinen, 1999)

applied on the SKLD matrix
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PART III

CASE STUDY
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Case study

Public USDA data on corn yield, and NASA data related to

I Visible red light reflectance

I Near-infrared reflectance

I Afternoon surface temperature

from 2008 to 2017 for most of the counties in IL, IN, IA, KS, MN,
MO, NE, OH, SD, WI (Corn Belt states) are considered

Data from 2008 to 2016 are used for training (to estimate
parameters) and validation (to avoid over-fitting)

Data from 2017 are used for testing the prediction models (to
evaluate the extrapolation on new data)
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A closer look to the data

I Response Variable (unidimensional response)
I Corn yield

I Covariates (3 unidimensional and 138 functional covariates)
I Time (expressed in calendar years)
I Latitude (county centroid in angular degrees)
I Longitude (county centroid in angular degrees)
I Approximate densities for

I 46 visible red light measurements (%)
I 46 near-infrared measurements (%)
I 46 afternoon surface temperature measurements (K)

Histograms with 256 bins are obtained each for each 8-days period
within a year
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Models for studying yield with SKLDs

I Linear

I Multivariate adaptive regression splines (MARS, Friedman
et al., 1991)

I k-nearest neighbors

I Support vector machines (SVM, Cortes and Vapnik, 1995)
I Regression trees (CART, Breiman et al., 1984)

I Bagging (Breiman, 1996) and boosting (Freund et al., 1996)

I Random forests (Breiman, 2001)

I Cubist (Rulequest, 2006)

Ten-fold cross-validation is performed 5 times by randomly
assigning each record to the ten groups (for more details, see Kuhn
and Johnson, 2013)
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Computational Environment

All computations are performed in R, Javascript and C

Specific shell-scripts have been produced to execute parallel
processes on several nodes

USDA ARS resources related to the SCINet project
(https://www.ars.usda.gov/scinet/) have been used:

I 58 HPC nodes with 40 CPU cores and 128GB RAM

I 5 high-memory nodes with 120 CPU cores and 1.48TB RAM

About four days elapsed for predicting all counties in the corn belt
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PART IV

RESULTS AND

CONCLUDING REMARKS
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Multidimensional scaling
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Principal components
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Independent components
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Performance evaluation of Cubist

MDS PC IC

C.V. MAE 9.156 11.592 8.840
C.V. RMSE 12.333 15.205 11.502

C.V. MAE S.D. 0.289 0.337 0.285
C.V. RMSE S.D. 0.444 0.530 0.364

Test MAE 15.511 15.927 15.613
Test RMSE 19.621 20.950 19.877

The use of independent components would be selected by
cross-validation, but multidimensional scaling performs best during
extrapolation
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Prediction errors from the best predictive model

Figure: The map shows unexplained spatial dependence
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Conclusion

I The use of approximate densities as functional covariates
allows to consider a full stochastic process at the field level

I IC analysis produces better results during cross-validation,
but its ability during extrapolation is not fully clear

I Computer clusters and non-standard coding techniques for
I Data storage
I Analyses

I Further research should be conducted for the model
evaluation of
I neural networks
I spatio-temporal dependencies

I Developing an algorithm that is robust to measurements
error on the covariates
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Thank you!

Questions?

Luca Sartore, PhD lsartore@niss.org

Arthur Rosales arthur.rosales@usda.gov

David Johnson david.m.johnson@usda.gov

Mary Frances Dorn, PhD mfdorn@lanl.gov

Clifford Spiegelman, PhD cliff@stat.tamu.edu
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