Variance Estimation for Product Sales in the 2017 Economic Census: Utilizing Multiple Imputation to Account for Sampling and Imputation Variance

Matthew Thompson Katherine J. Thompson

U.S. Census Bureau*
GASP! Workshop
August 24-25, 2018

*The views expressed in this presentation are those of the authors and not necessarily those of the U.S. Census Bureau

Economic Census Background

- Not strictly a census
 - Multi-units and large single-units selected with certainty
 - Small single-units sampled

Economic Census Background Data Items Collected

"General Statistics"

- Examples: Total receipts, Annual payroll, and 1st Quarter employment
- Complete universe created using administrative records and imputation

Product Sales

- Only asked of sampled establishments
- Sample weights used to account for non-sampled establishments
- Two types: broad and detail
- Final product sales estimates are produced by calibration to stratum-level receipt totals

Economic Census Background Product Sales Data

Research Challenges

- Dedicated Team
 - Short time frame (≈ 12-15 months)
 - Relative inexperience of team members with variance estimation
- Magnitude of the problem
 - \approx 1,000 industries and \approx 8,000 products
- Historical data limitations
 - Classification differences (to NAPCS)
 - Collection differences (to electronic)
 - Unit collection differences (from varied to \$1,000)

Research Team

Research Team

- ≈ 1,000 industries
- ≈ 8,000 products
 - Broad products
 - Detail products
- Calibration Weighting (i.e., poststratification)

Research Team

Research Team

- \approx 1,000 industries
- ≈ 8,000 products
 - Broad products
 - Detail products
- Calibration Weighting (i.e., poststratification)

Research Team

- $\approx \frac{1,000}{21}$ industries
- ≈ 8,000 Top 4 products
 - Broad products
 - Detail products
- Calibration Weighting (i.e., poststratification)

Research Evaluation

Perform simulation studies

- Two initial studies
 - Sampling Variance (Recommend: FPBB)
 - Variance Due to Imputation (Recommend: ABB)
- Final simulation of recommended method

Recommendation: FPBB-ABB

Finite Population Bayesian Bootstrap (FPBB)

Finite Population Bayesian Bootstrap (FPBB)

• Create an implicate by drawing $N_h - n_h$ establishments from the sample with probability for the kth selection

$$p_{h,k} = \frac{\left(w_i - 1 + \frac{l_{i,k-1}(N_h - n_h)}{n_h}\right)}{N_h - n_h + \frac{(k_h - 1)(N_h - n_h)}{n_h}}$$

• Add the $N_h - n_h$ selected establishments to the original sample to complete the implicate

Approximate Bayesian Bootstrap (ABB)

FPBB-ABB

The FPBB-ABB estimate of variance is

$$\hat{V}_{final} = \hat{V}_{samp} + \frac{1}{B}\hat{V}_{imp}$$

$$\widehat{V}_{samp} = \left(1 + \frac{1}{B}\right) \left(\frac{1}{B-1}\right) \sum_{b=1}^{B} [FPBBAVG_b - AVG]^2$$

$$\widehat{V}_{imp} = \left(1 + \frac{1}{c}\right) \left(\frac{1}{c-1}\right) \sum_{b=1}^{B} \sum_{c=1}^{C} \left[TOT_{b,c} - FPBBAVG_{b}\right]^{2}$$

- B is the number of FPBB implicates
- C is the number of ABB implicates

Implementation Team

Research Team

- 1,000 21 industries
- 8,000 <u>Top 4</u> products
 - Broad products
 - Detail products
- Calibration Weighting (i.e., poststratification)

Implementation Team

- \approx 1,000 industries
- ≈ 8,000 products
 - Broad products
 - Detail products
- Calibration Weighting (i.e., poststratification)
- "Non-donors"
- Zero Receipts cases
- Processing time ...

Implementation Concerns

- Time
 - To prepare the system
 - Variance Estimation run time

 Knowledge transfer from research team to production programmers and methodologists

Inflexibility of existing systems

Implementation Team

- Overlap
 - Research team leads
 - SAS programmer
 - Project Managers w/ functional requirements
- New members
 - Subject Matter Experts
 - Programmers
 - Methodologists

Inflexibility of Existing Systems

Inflexibility of Existing Systems

Existing HDI process fixed:

- Imputation method by imputation cell Random or NN
- Cell collapsing methodology

Handling of detailed products

Conclusions

- Plan ahead Involving potential implementation team members in the later phases of research can be a <u>huge</u> benefit
- Leverage existing resources Give careful thought to areas where existing programs and data can be utilized
- Make sure existing systems are well documented and well understood.

Acknowledgments

Thanks to all of the members of the research and implementation teams.

Contact: matthew.thompson@census.gov