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Graphs are made up of things




Things are also known as nodes




Things are also known as vertices




Things are connected by relationships

Relationship




Relationships are also known as links

Relationship
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Relationships are also known as edges

Relationship




Relationships can have direction




Things can have multiple relationships

Relationship



Everything can have attrirbutes
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Attributes can be visualized
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Node attributes can be represented as nodes themselves
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Direct relationships can be inferred from indirect relationships

~ Color - Shape
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These projected relationships enrich our data

Same'shape
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An example of a bipartite graph: an author writes publications
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Other authors collaborated on those publications
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We can now infer a relationship




Information can be stored in publications




Information can be transfered to authors




Information can be stored in relationships




Collaboration Network:

Authors writing about network science & agent based models
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20 largest components for exploration
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Bag of Words

The fox jumped over the other fox
The dog ran at the foxes

The foxes ran away from the dog
The cat napped on my lap

The lion napped on the hill

The cat jumped on the fox

A standard data structure for text analysis is the Document Term Matrix (DTM). This is a matrix in which
the rows represent the documents in your corpus and the columns represent every word

at away cat dog fox foxes from hill jumped lap lion my napped on other over ran the

doc.1 0 O 0 0 2 0 0 0 1 0 0 0 0 0 1 1 0 2
doc 2 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 2
doc. 3 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1
doc 4 0 O 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1
doc. 5 0 O 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 2
doc 6 0 O 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 2
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Remove Stop Words

For computational reasons, we generally want to remove words that are so common they don’t really provide
us with significant meaning or context.

fox jumped fox

dog ran foxes

foxes ran dog

cat napped lap

lion napped hill

cat jumped fox

cat | dog | fox | foxes | hill | jumped | lap | lion | napped | ran

doc 10 |0 |2 |0 0 |1 0 [0 |0 0
doc_ 210 |1 |0 |1 0 |0 0 [0 |0 1
doc 3/0 |1 |0 |1 0 |0 0 [0 |0 1
doc 4|1 |0 |0 |0 0 |0 1 [0 |1 0
doc 5/0 |0 |0 |0 1 |0 0 |1 |1 0
doc 6|1 |0 |1 |0 0 |1 0 [0 |0 0
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Unsupervised Topic Modelling

Latent Dirichlet Allocation (LDA) and Structural Topic Modelling (STM) are two methods of classifying text
without providing clues to what we want. These methods are great if we have a large corpus of documents,
but we don’t really know what we’re looking for. The only parameter needed is the number of categories we
want returned

Unsupervised Topic Modelling: K = 3

Unsupervised Topic Modelling: K = 2

doc 1
doc_ 2
doc_ 3

doc_4
doc_H
doc_6
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STM Categories: K = 3

If we run an STM model on all the publications in our collaboration network, we get the following three

categories
Topic 1 Topic 2
walking- - stress- -
protein- - biological- -
binding- - pulmanary- -
% structure- - models- -
models- - abm- -
interventions- - response- -
conformational - - land- -
data- - molecular- -
mode- - cells- -
transmission- - cell- -
0.000 0.005 0.010 0.000 0.005
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Topic 3

visual-
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20 Largest Components: STM Categories
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But why are we running an unsupurvised algorithm?

What if a subject matter expert sees three clusters of authors and says, “These authors come from very focused
labs and work on very differnt things.”?

¥s .:“
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Start Over

We can use that information to define the categories we want. We have a network of authors and we should
use that information to inform our topic model.
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Term Frequencies

fox fox

FOX is considered important for DOCUMENT 1 because it is the most frequently used word in that document
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Inverse Document Frequencies
The
The
The
The
The

The

THE is considered unimportant because it can be found in all documents
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Inverse Document Frequencies

lion

LION is considered important because it is only found in one document
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Which document is most similar to document 1?7

cat | dog | fox | foxes | hill | jumped | lap | lion | napped | ran

0 0 P 0 0 1 0 0 0 0
doc 2|0 1 0 1 0 0 0 0 0 1
doc_3 | 0 1 0 1 0 0 0 0 0 1
doc 4|1 0 0 0 0 0 1 0 1 0
doc_ 5| 0 0 0 0 1 0 0 1 1 0
1 0 1 0 0 1 0 0 0 0
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TF-IDF Categories: 3 Largest Components

Let’s run a TF-IDF on the three largest components and see what words differentiate them from one another

177 50 59
elastic- signals-
vibration- hve-
Cc5-
coarse- songs-
alpha- rimitives-
nma- learning-
0.000 0.005 0.010 0.015 0.020 0.000 0.005 0.010 0.015 0.000 0.005 0010 0.015

tf-idf
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3 Largest Components: TF-IDF

L R\
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20 Largest Components: TF-IDF

Let’s use the words associated with these three largest components and compare them to the words of all the
other components. This will tell us which groups are similar to the three groups we ran the initial TF-IDF on.
This comparison can be done with cosine similarity because the underlying data structure of the text data is

a matrix.
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Two Similar Components

326
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Why are these two components similar?
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How have these categories changed overtime?
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tidytextmining.com
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Text Mining
with R
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kateto.net /tutorials/
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Network Science Tutorials

This page contains information about the most recent versions of several network tutorials that | have developed

and frequently update. The tutorials come from workshops and invited talks | give for students, colleagues, and

computationally curious bystanders. You can also find some of these materials (and other interesting bits and Katherine Ognyanova
pieces) on my GitHub page.

If you find the materials on this site to be useful, please cite them in your work. This helps me {and the LS i W At
computational research community) to make the case that the open publishing of digital materials, data, and code s L T L
. . . _—— Mortheastern & Harvard.
is a meaningful academic contribution. -

= PhD in Communication:
If you want to invite me to give a talk or a workshop at your institution, email workshop@ ognyanova.net. o RELL bmrapli

»infa® N

E-mail: kateto@ognyanova.net

Static and dynamic network visualization with R

This is a comprehensive tutorial on network visualization with R. It
covers data input and network formats, parameters and layouts for one-
maode and bipartite graphs; interactive and animated visualizations, Recent Tweets
temporal networks and visualizing networks on geographic maps.
@0Ognyanova and @ baileyfosdick

Most recent version: 06/2018 (Polnet Conference) will be offering workshops in
Downloads: Web version | Code & data | PDF tutorial. visualization and latent space
P e e L Y e N TN e e mndels recnartivaly
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