MISSUITE: A Shiny Application for Clinical Trial Missing Data Analysis

GASP 2018

Chenguang Wang

Johns Hopkins University

Motivation

MISSING DATA

- Missing data is *ubiquitous* in clinical trials
- Validity of statistical analysis results are threatened by missing data
- Inference requires untestable assumptions about missing data mechanism
- Rigorous sensitivity analyses examining sensitivity to missing data mechanism assumptions are crucial and should even be mandatory

GLOBAL SENSITIVITY ANALYSIS

- Apply benchmark assumptions to identify the full data model
- Consider <u>deviations</u> from the benchmark assumptions and examine the robustness
- Exploring the basics of the missing data helps to design the sensitivity analysis

- To develop a statistical software that is user-friendly with interactive features
- To aid users to <u>efficiently</u> apply missing data <u>imputation</u> methods in existing software packages
- · To explore the nature of the missing data
- To serve as the *first step* of rigorous missing data sensitivity analysis

Imputation Algorithms

GENERAL SETTING

- Z: treatment assignment
- $X_1, ... X_P$: baseline covariates
- Y_1, \ldots, Y_K : post-randomization outcomes
- $D = \{D_1, \dots, D_J\} = \{X_1, \dots, X_p, Y_1, \dots, Y_K\}$: all data
- $M = \{M_1, \dots, M_J\}$: missing data indicator
- · Dobs: observed data
- D_{mis}: missing data
- $D_{-j} = \{D_1, \dots, D_{j-1}, D_{j+1}, \dots D_J\}$

MISSING AT RANDOM

- $M|D = M|D_{obs}$
- $D_{mis}|M, D_{obs} = Y_{mis}|D_{obs}$

DATA TYPE

- Binary
- · Unordered-Categorical
- · Ordered-Categorical
- · Continuous
 - Proportion
 - Non-Negative

MULTIPLE IMPUTATION SOFTWARE PACKAGES

- MICE: Multivariate Imputation by Chained Equations
- · Amelia: A Program for Missing Data
- missForest: Nonparametric Missing Value Imputation using Random Forest
- · Hmisc: Harrell Miscellaneous
- · mi: Missing Data Imputation and Model Checking

- Multiple imputation using Fully Conditional Specification (FCS), also known as multiple imputation using chained equations (MICE)
- Imputation models specified conditionally for each variable

$$f(D_1|D_{-1},\theta_1)$$

$$f(D_2|D_{-2},\theta_2)$$

$$\vdots$$

At tth iteration

$$heta_{j}^{(t)} \sim \pi(\theta_{j}|D_{j,obs},D_{-j}^{(t-1)}) \\ D_{j,mis}^{(t)} \sim f(D_{j}|D_{-j}^{(t-1)},\theta_{j}^{(t)})$$

AMELIA

- Assume $D \sim N(\mu, \Sigma)$
- · Imputation by EM with bootstrapping (EMB) algorithm
 - Apply EM to find the mode of the posterior given the bootstrapped sample
 - Draw D_{mis} from $f(D_{mis}|D_{obs},\mu,\Sigma)$
- · Ordinal data are considered continuous
- Nominal data are re-coded using dummy variables that are further considered continuous

MISSFOREST

- An implementation of non-parametric random forest (RF) algorithm
- For j, train an RF on the observed data $D_{obs,j}|D_{obs,-j}$, then predict the missing values $D_{mis,j}|D_{mis,-j}$
- · Proceed iteratively until convergence
- By averaging over trees, random forest intrinsically constitutes a multiple imputation scheme

HMISC

- A multiple purpose package for data analysis, graphics, model fitting, etc.
- Provides function aregImpute for multiple imputation using additive regression, bootstrapping, and predictive mean matching
 - · continuous variables: restricted cubic splines
 - · categorical variables: Fisher's optimum scoring method
 - each imputation uses a different bootstrap sample

- Also implements the chained equation approach
- Implements Bayesian imputation models such as Bayesian generalized linear models
- Provide diagnostic tools for checking the fit of the imputation models

Visualization

SOFTWARE PACKAGE

- · VIM: Visualization and Imputation of Missing Values
- · Different type of plots
 - Aggregation plot
 - Histogram
 - Spinogram
 - Marginal plot
 - Scatter plot
 - Jitter plot
 - Matrix plot
 - Spaghetti plot

Missuite

SHINY

- RStudio product
- · A web application framework for R
- Turn R code into interactive web applications
- · No HTML, CSS, or JavaScript knowledge required

ARCHITECTURE

ACCESS MISSUITE

• Demo on
 https://olssol.shinyapps.io/missuite/

Discussion

STATISTICAL SOFTWARE FOR REGULATORY APPLICATIONS

- Communication
- Efficiency
- · Reproducible research
- Education

ADDITIONAL EXAMPLE

- · IDEM
- · Composite Endpoint Death Truncated Data Analysis
- Available on CRAN
- Demo on https://olssol.shinyapps.io/idem/

