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Population Inference from Complex Survey Samples

I Goal: perform inference about a finite population generated from an
unknown model, Pθ0 .

I Data: from under a complex sampling design distribution, Pν
I Probabilities of inclusion πi are often associated with the variable of

interest (purposefully)

I Sampling designs are “informative”: the balance of information in the
sample 6= balance in the population.

I Biased Estimation: estimate Pθ0 without accounting for Pν .
I Use inverse probability weights wi = 1/πi to mitigate bias.

I Incorrect Uncertainty Quantification:
I Failure to account for dependence induced by Pν leads to standard

errors and confidence intervals that are the wrong size.
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Variance Estimation

I The de-facto approach:
I approximate sampling independence of the primary sampling units

(Heeringa et al. 2010).
I within-cluster dependence treated as nuisance

I Two common methods:
I Taylor linearization and replication based methods.
I A variety of implementations are available (Binder 1996, Rao et al.

1992).
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Taylor Linearization

Let yij , Xij , and wij be the observed data for individual i in cluster j of
the sample. Assume the parameter θ is a vector of dimension d with
population model value θ0.

1. Approximate an estimate θ̂, or a ‘residual’ (θ̂ − θ0), as a weighted
sum: θ̂ ≈

∑
i,j wijzij(θ) where zij is a function evaluated at the

current values of yij , Xij , and θ̂.

2. Compute the weighted components for each cluster (e.g., primary
sampling units (PSUs)): θ̂j =

∑
iwijzij(θ).

3. Compute the variance between clusters:

V̂ ar(θ̂) = 1
J−d

∑J
j=1(θ̂ − θ̂j)(θ̂ − θ̂j)T

4. For stratified designs, compute θ̂s and ̂V ar(θ̂s) within strata and sum

V̂ ar(θ̂) =
∑

s
̂V ar(θ̂s).
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Replication

Let yij , Xij , and wij be the observed data for individual i in cluster j of
the sample. Assume the parameter θ is a vector of dimension d with
population model value θ0.

1. Through randomization (bootstrap), leave-one-out (jackknife), or
orthogonal contrasts (balanced repeated replicates), create a set of K
replicate weights (wi)k for all i ∈ S and for every k = 1, . . . ,K.

2. Each set of weights has a modified value (usually 0) for a subset of
clusters, and typically has a weight adjustment to the other clusters
to compensate:

∑
i∈S(wi)k =

∑
i∈S wi for every k.

3. Estimate θ̂k for each replicate k ∈ 1, . . . ,K.

4. Compute the variance between replicates:

V̂ ar(θ̂) = 1
K−d

∑K
k=1(θ̂ − θ̂k)(θ̂ − θ̂k)T .

5. For stratified designs, generate replicates such that each strata is
represented in every replicate.

5 / 10



Challenges

There are two notable trade-offs associated with these methods:
I Taylor linearization: value θ̂ computed once then used in a plug in for
zi(θ).

I Replication methods: estimate θ̂k computed K times.
I Sizable differences in computational effort

I Replication methods: no derivatives are needed.
I Taylor linearization: requires the calculation of a gradient to derive the

analytical form of the first order approximation zi(θ).
I This poses significant analytical challenges for all but the simplest

models.
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Some Improvements

I Abstraction of Derivatives (less analytic work for Taylor Linearization)
I Recent advances in algorithmic differentiation (Margossian 2018),

allows us to specify the model as a log density but only treat the
gradient in the abstract without specifying it analytically.

I Implemented in Stan and Rstan (Carpenter 2015, Stan Development
Team 2016)

I Hybrid Approach or Taylor Linearization for replicate designs (less
computation for Replication approaches)
I Survey package (Lumley 2016) to calculate replication variance of

gradient
I Use plug in for θ, only estimate once
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Example: Design Effect for Survey-Weighted Bayes

I Williams & Savitsky (2018): https://arxiv.org/abs/1807.11796

I Pseudo posterior ∝ Pseudo Likelihood × Prior

ππ (λ|y, w̃) ∝

[
n∏
i=1

π (yi|λ)w̃i

]
π (λ)

I Variances Differ:
I Weighted MLE: H−1θ0 J

π
θ0
H−1θ0 (Robust)

I Weighted Posterior: H−1θ0 (Model-Based)

I Adjust for Design Effect: R−12 R1

I θ̂m ≡ sample pseudo posterior for m = 1, . . . ,M draws with mean θ̄

I θ̂am =
(
θ̂m − θ̄

)
R−12 R1 + θ̄

I where R′1R1 = H−1θ0 J
π
θ0
H−1θ0

I R′2R2 = H−1θ0

8 / 10

https://arxiv.org/abs/1807.11796


R Code Schematic
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