SURVEY OF CURRENT BUSINESS

SURVEY OF CURRENT BUSINESS

CONTENTS

THE BUSINESS SITUATION

Reconciliations of Major Statistical Series
Recent Financial Developments
Recent Trends in Automobile Sales
Recent Developments in Inventory-Sales Ratios
First Quarter Foreign Trade
Balance of Payments-additional data for Table 9-U.S. International Transactions, by Areas

National Income and Product Tables
Alternative Estimates of Corporate Depreciation and Profits, 1965-73

International Travel and Passenger Fares in the U.S. Balance of Payments: 1973
U.S. Multinational Companies: Profitability, Financial Leverage, and Effective Income Tax Rates

This month's issue of the SURVEY OF CURRENT BUSINESS appears in two parts. This volume is Part I. Part II, which will be released at a later date, will contain data on local area personal income.

CURRENT BUSINESS STATISTICS

Subject Index (Inside Back Cover)

U.S. Department of Commerce

Frederick B. Dent / Secretary
Sidney L. Jones / Assistant Secretary for Economic Affairs
Edward D. Failor / Administrator, SESA

Bureau of Economic Analysis
George Jaszi / Director
Morris R. Goldman / Deputy Director
Leo V. Barry, Jr. / Statistics Editor
Billy Jo Hurley / Graphics

Staff Contributors to This Issue
Carol S. Carson Max Lechter
John H. Hammond Robert Leftwich
Donald A. King Etienne C. Miller
John C. Musgrave

Annual subscription, including weekly statistical supplement: $\$ 34.45$ domestic, $\$ 43.10$ foreign. Single copy $\$ 2.25$. Order from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, or any Commerce Field Office. Make check payable to Superintendent of Documents.
Annual subscription in micrafiche, excluding weekly supplement: $\$ 9$ domestic, $\$ 12$ foreign. Single copy $\$ 1.45$. Order from National Technical Information Service, Springfield, Va. 22151.
Address change: Send to Superintendent of Documents or NTIS, with copy of mailing label. For exchange or official subscriptions, send to BEA.
Editorial correspondence: Send to Bureau of Economic Analysis, U.S. Department of Commerce, Washington, D.C. 20230.

The Secretary of Commerce has determined that the publication of this periodical is necessary in the transaction of the public business required by law of this Department. Use of funds for printing this periodical has been approved by the Director of the Office of Management and Budget through September 1, 1975.
U.S. DEPARTMENT OF COMMERCE DISTRICT OFFICES

Albuquerque, N. Mex. 87101 316 U.S. Courthouse 766-2386.
Anchorage, Alaska 99501 632 Sixth Ave. 265-4597.
Atlanta, Ga. 30309 1401 Peachtree St. NE. 526-6000.
Baltimore, Md. 21202 415 U.S. Customhouse 962-3560.
$\begin{aligned} & \text { Birmingham, Ala. } \\ & 908 \text { S. 20th St. } \\ & 325-3327 . \end{aligned}$
Boston, Mass. 02116 441 Stuart St. 223-2312.
$\begin{aligned} & \text { Buffalo, N.Y. } 14202 \\ & 111 \text { W. Huron St. } \quad 842-3208 . \end{aligned}$
Charleston, S.C. 29403 334 Meeting St. 577-4171.
Charleston, W. Va. 25301 500 Quarrier St. 343-6181.

Cheyenne, Wyo. ${ }^{\text {82001 }}$ 2120 Capitol Ave. 778-2220.
Chicago, 111. 60603
Room 1406 Mid.Continental Plaza
Bldg. 353-4450.
Cincinnati, Ohio 45202 550 Main St. 684-2944.
Cloveland, Ohio 44114 666 Euclid Ave. $522-4750$.
Dallas, Tex, 75202 1100 Commerce St. 749-1515.
Denver, Colo. 80202 19th \& Stout Sts. 837-3246.
Des Moines, Iowa 50309 609 Federal Bldg. 284-4222.
Detroit, Mich. 48226 445 Federal Bldg. 226-3650.
$\begin{array}{ll} \text { Greenshoro, N.C. } & 27402 \\ 258 \text { Federal Bldg. } & 275-9111 . \end{array}$

Honolulu, Hawaii 96813 286 Alexander Young Bldg. 546-8694.
Houston, Tex. 77002 1017 Old Federal Bldg. 226-4231.
Jacksonville, Fla. 32207 4080 Woodcock Dr. 791-2796.
Kansas City, Mo. 64106 601 East 12th St. 374-3142.
Los Angelea, Calif. 90024 11000 Wilshire Blvd. 824-7591.
Memphis, Tenn. 38103 147 Jefferson Ave. 534-3214.
Miami, Fla. 33130 25 West Flagler St. 350-5267.

Milwauket, Wis. 53203 238 W. Wisconsin Ave. 224-3473.	$\begin{aligned} \text { Reno, Nov. } & 02 \\ 300 \text { Boot } & 784-5203 . \end{aligned}$
Minneapolis, Minn. 55401 306 Federal Bldg. 725-2133.	$\begin{array}{ll} \text { Richmond, } & \text { ?: } \quad 0_{\mathrm{B} 2-2246 .} \\ 8010 \text { Feder: } \end{array}$
Newark, N.J. 07102 24 Commerce St. 645-6214	St. Louis, Mo. \rightarrow Fiederal
$\begin{gathered} \text { New Orleans, La. } \quad 70130 \\ 610 \text { South St. } \\ 527-6546 . \end{gathered}$	$\begin{array}{cc}\text { Salt Lako City, 8tan } & \text { 日4111 } \\ 125 \text { South State St. } & 524-5116 .\end{array}$
New York, N.Y. $\quad 10007$ 26 Federal Plaza $264-0634$.	San Francisco, Calif. 94102 450 Golden Gate Ave. 556-5864.
Philadelphia, Pa. 19106 600 Arch St. $597-2850$.	450 Golden Gate Ave. 556-5864.
$\begin{aligned} & \text { Phoenix, Ariz. } 85004 \\ & 112 \text { N. Central } \\ & 261-3285 . \end{aligned}$	San Juan, Puerto Rico 00902 100 P.O. Bldg. 723-4640.
Pittsburgh, Pa. 15222 1000 Liberty Ave. 644-2850.	Savannah, Ga. 31402 235 U.S. Courthouse and P.O. Bldg. 232-4321.
Portland, Oreg. 97205 921 S.W. Washington St. 221-3001.	Seattle, Wash. 98109 706 Lake Union Bldg. 442-5615.

the BUSINESS SITUATION

RREVISIONS in the first quarter national income and product accounts are small. The profile of the economy as depicted by the preliminary figures published last month remains unchanged. The steep decline in the real volume of GNP is traceable to automobile production and residential construction, and to segments of the economy other than automobiles directly affected by the oil crisis. When these components are subtracted from total GNP, the remainder is seen to have changed little from the fourth quarter. This is apparent whether GNP is viewed as a sum of final demands for GNP or as a sum of economic sectors that contribute to its production.

Measured by the price deflator for GNP, inflation last quarter rose to a two-digit figure. Much of the acceleration was related to the oil crisis. Apart from the prices of energy products, inflation proceeded at a somewhat lower and steadier rate.

First quarter corporate profits

Preliminary estimates of corporate profits round out the view of the economy provided by the accounts. These estimates will be revised next month. The first quarter increase was entirely in inventory profits. These stem from preponderant business accounting methods, which do not expense the full replacement cost of inventories used up or sold when prices are rising. If inventories are expensed at full replacement cost-as they are in the national income and product accounts, by the use of a method that is the same as the last-in first-out method if the physical volume of inventories is rising-total profits declined frnm the fourth quarter of 1973.
This - ine was confined to nonfinancial c porations and occurred in wite of a large increase in oil profits,
including profits from domestic operations as well as profits of foreign branches of domestic corporations and dividends received from foreign subsidiaries (these figures are subject to an unusually wide margin of error.) The profits decline was concentrated in the automobile industry, but extended to other manufacturing industries, mainly those producing durable goods. Profits were lower also in several industries in the transportation, communication, and public utility groups.

Recent developments

Monthly indicators that are now available for April do not cover a large enough area of the economy to permit a comprehensive assessment that goes beyond that based on the first quarter accounts.

Total employment dropped a bit, but the unemployment rate was steady, because-following a prolonged period of employment growth and a few months of stability-the reduction in employment was accompanied by a comparable reduction in the labor force. Personal income increased a little more than in March and industrial production turned up after declining for several months. A pickup in the automobile industry was an important factor in both cases, and also in the April increase in retail sales. The rise in the average of wholesale prices moderated because of a reduction in food prices; industrial prices continued to rise at about the recent pace in spite of a deceleration in the rise of the price of petroleum and other energy products.

The rapid rise in short-term interest rates of all kinds continued in April. The rise, which started in late February and was largely unexpected, was due to several factors. It is not possible to sort out their relative importance;
but inflation was, in one way or another, an element in most of them. Buoyant demand for bank loans (the causes of which, in turn, are extraordinarily difficult to trace) undoubtedly was a major determinant. Higher interest rates abroad may have exerted an upward pull on domestic rates. The end of the oil embargo may have affected interest rates through the anticipation of higher production, sales, and demand for loanable funds. The strength of current-dollar business investment may have had a similar effect. Tighter monetary policy-actual and anticipatedprobably played a major role.

In order to shield the housing market from possible consequences of the rise in rates, the Administration adopted a number of measures-including measures to strengthen the capacity of the saving and loan associations and mutual savings banks to extend credit, to support the secondary mortgage market, and to alleviate the impact of a rise in interest rates on monthly mortgage payments. An authoritative assessment of the quantitative effect of these measures is not available at this time.
The following sections try to shed light on aspects of the business situation that are of particular interest: First, two special tables are presented which help to analyze recent changes in consumer prices and wage rates. These are followed by brief discussions

The May issue of the Survey usually carries BEA's annual estimate of personal income in standard metropolitan statistical areas (SMSA's). This year, estimates of income in non-SMSA counties are being added. To make room for the new information, the estimates will be published separately as Part II of the May issue.
of financial developments, the automobile market, inventory-sales ratios, and foreign trade.

Reconciliations of Major Statistical Series

BEA has completed studies of the sources of difference between the two principal measures of prices paid by consumers and between two principal measures of wage rates. Table 1 shows the sources of difference for the last five quarters between quarterly changes in the implicit price deflator for personal consumption expenditures (PCE) and changes in the consumer price index (CPI). Table 2 shows the sources of difference between quarterly changes in compensation per man-hour and in average hourly earnings in the private nonfarm economy. In some instances, the tables provide only approximate measures of the difference arising from a specified source. Further work is planned to refine them.

In the first and third quarters of 1973, the CPI registered larger increases than did the implicit price deflator for PCE. In the first quarter of 1974, the implicit price deflator registered a larger increase than the CPI. The difference in the first quarter of 1973 was largely due to the contribution of shifting weights in the implicit price deflator. The difference in the third quarter was largely due to items included in the CPI, particularly homeownership costs, which are not included in the implicit price deflator. In the first quarter of the current year, the difference was due to the inclusion of non-CPI items in the implicit price deflator.

Compensation per man-hour increased more than average hourly earnings in three of the last five quarters. Step-ups in employer contributions for social insurance, part of supplements which is included in employee compensation but not in hourly earnings, were the largest source of the first quarter differences. Differences in coverage in the two series as shown in line 3 of table 2 were the source of the larger increase in compensation per man-hour than in average hourly earnings in the fourth quarter of 1973. These also were the main source of the smaller increase in compensation per man-hour than in
average hourly earnings in the second quarter.

Implicit price deflator for PCE and the CPI

Table 1 shows the major sources of difference between quarterly changes in the implicit price deflator for PCE and the CPI which is prepared by the Bureau of Labor Statistics (BLS). The table lists the contributions to the difference in the two indexes that arise from shifting weights in the implicit price deflator, from different weights assigned to CPI components common to the two indexes, and from components that are not common to the two indexes. CP1 components are used to deflate roughly 90 percent of total PCE. The remainder of PCE is deflated largely by components from the BLS wholesale price index and the U.S. Department of Agriculture series of prices paid by farmers, family living items.

The implicit price deflator for PCE (obtained as the ratio of PCE in current prices to PCE in constant 1958 prices) is a weighted average of the price indexes used to deflate the components of PCE; the implicit weights are expenditures in the current quarter valued in prices of the base year, 1958.

The quarter-to-quarter change in the implicit price deflator reflects the effect of changes in expenditure patterns between the two quarters in addition to the effect of changes in prices. Line 2 shows the contribution of thes shifting weights to the differences in the two indexes. Removal of the weight shifts yields the change in the PCE chain price index, in which price changes are weighted by expenditures in the first of the two quarters involved in the change valued in prices of the base year, 1958.
The weights applied to the components of the CPI in the PCE chain price index differ from the weights of those components in the CPI. Most differences arise because (1) the weights in the PCE chain price index are expenditures in the prior quarter while those in the CPI are expenditures in 1960-1961 and (2) the weights in the PCE chain price index are consumption expenditures of all persons (including nonprofit institutions) while those in the CPI are expenditures of urban wage earners and clerical workers, including families and single individuals. The most important differences in weighting are shown below. Line 4 shows the contribution of the differences in weights.

Table 1.-Reconciliation of Changes in the Implicit Price Deflator for Personal Consumption Expenditures and Consumer Price Index, Seasonally Adjusted, Quarterly, 1973 I1974 I

	1973				1974
	I	II	III	IV	I
1. Implicit price deflator for personal consumption expenditures (percent change at annual rate)	5.1	8.1	6.9	9.9	13.1
2. Less: Contribution of shifting weights	-1.3	. 1	. 2	1.4	-. 4
New cars, domestic.	-. 8	. 1	. 1	1.0	. 3
Fuel and ice---	-. 1	-. 0	-. 0	. 1	-4
Gasoline and oil Other items....-	-. 3	-. 0	-. 0	. 2	- 1
3. Equals: Chain price index for PCE (percent change at annual rate)-	6.4	8.0	6.7	8.5	13.5
4. Less: Contribution of difference in weights of items common to the implicit price deflator for PCE and the CPI	-. 2	. 0	-1.0	-1.1	-. 5
Food away from home	$-.1$	$-.2$	-. 3	-. 5	-. 2
Food at home.	-1.0	-. 8	-1.2	-. 7	-. 9
Rent......	. 6	. 5	. 4	. 4	. 5
Automobiles, new	.2	.3	. 2	-. 3	. 1
Gasoline....	-. 1	$-.1$. 0	-. 0	
Other items.	. 2	.3	-. 1	-. 0	. 5
5. Less: Contribution of non-CPI items used to deflate PCE	. 4	. 4	-. 1	- .5	1.8
Services furnished without payment by financial intermediaries. Other items.	.2 .2	.1 .3	$-{ }^{1}$. 4	1. 7
6. Plus: Contribution of CPI items not used to deflate PCE	. 2	. 5	1.5	. 8	. 2
Homeownership costs	. 5	. 3	1.1	1.5	1.4
Automobiles, used..	-. 2	. 5	. 1	-. 4	-. 9
Other items.-.	-. 1	-3	. 3	-. 3	-. 5
7. Equals: Consumer price index (percent change at annual rate)	6.4	8.1	9.3	9.9	12.2

CPI component	CPI	PCE*
Food away from home.	4.54	2.11
Food at home......	17.89	12.88
Rent.	5.50	14.92
dutomobiles, new.	3.18	8. 26
Gasoline.	3.05	2.71
Other items.	41.20	48.77
Total as percent of CPI or PCE	75.36	89.65

*Weights for the second quarter of 1973.
Line 5 shows the contribution of the non-CPI information used in deflating PCE. In addition to the non-CPI price information described above, this line shows the contribution of the deflator for services furnished without payment by financial intermediaries, an imputed transaction in PCE which has no counterpart in the CPI.
Line 6 shows the contribution of components of the CPI that are not used in deflating PCE. Homeownership costs as measured in the CPI include such items as the sales price of houses, real estate taxes, and mortgage interest costs. PCE excludes homeownership costs and imputes a rental payment for owner-occupied housing, which is deflated by the CPI rent index. The CPI used-car index measures the gross price of used cars, while PCE includes only the dealer's markup on used cars.

Compensation and average earnings

Table 2 shows the major sources of difference between quarterly changes in compensation per man-hour and average hourly earnings in the private nonfarm economy.

Compensation per man-hour (line 1) is prepared by the Bureau of Labor Statistics (BLS) and is based on the employee compensation series shown in the quarterly national income and product tables prepared by the Bureau of Economic Analysis (BEA) and on a BLS series on man-hours.

Employee compensation consists of wages and salaries and supplements. The major items in supplements are employer contributions for social insurance and for private pension and health and life insurance plans. BLS adjusts the employee compensation series by
adding an estimate of the labor share of the income of the self-employed. In addition, BLS replaces the BEA estimate of employee compensation in the construction industry with its own estimate.

The man-hours series estimated by BLS covers all employee man-hours paid for, including overtime hours and hours of paid sick, holiday, and vacation time, and man-hours worked by the self-employed and unpaid family workers. The estimates of man-hours for production or related workers in commodity-producing industries and for non-supervisory workers in other industries are the same as those used in the BLS average hourly earnings series.
Average hourly earnings (line 8) are prepared by BLS from data collected monthly on employment, earnings and hours of production and nonsupervisory workers for the pay period including the 12th of the month. Earnings are measured before deduction of social security taxes, withheld income taxes, insurance, etc. Supplements are excluded.
The coverage of average hourly earnings differs from that of the compensation per manhour series in that average hourly earnings exclude employees of private households and government enterprises, unpaid family
workers and the self-employed. The earnings series also excludes nonproduction workers in the commodityproducing industries and supervisory workers in other industries.

Although BLS data on employment, earnings, and hours provide most of the information used by BEA in preparing the quarterly estimates of wages and salaries included in employee compensation, wages and salaries per man-hour (line 4) differs from average hourly earnings (line 8) for several reasons. The effect of the following types of differences are measured in line 5: (1) treatment of supervisory and nonproduction workers, largely in manufacturing; (2) use of non-BLS data for estimating wages in some industries, particularly in services; (3) use of different weighting and seasonal adjustments of the detailed industries; (4) adjustment of the BLS estimates of employment, earnings and hours in the estimation of wages and salaries for months where data for the pay period included in the BLS survey do not appear to represent monthly levels. Line 7 shows the difference which arises because the total average hourly earnings series published by BLS is seasonally adjusted directly, and BEA obtains the total from seasonally adjusted estimates by industry.

Table 2.-Reconciliation of Changes in Compensation Per Man-Hour and Average Hourly Earnings, Private Nonfarm Economy, Seasonally Adjusted, Quarterly, 1973 I-1974 I

	1973				1974
	I	II	III	IV	I
1. Compensation per man-hour, all persons. (percent change at annual rate)	10.7	5.3	8.0	8.4	6.8
2. Less: Contribution of supplements.	3.9	-. 2	0	. 2	. 9
3. Less: Contribution of employees of private households and government enterprises, and selfemployed and unpaid family workers_	. 2	-1.2	-. 6	1.3	. 5
4. Equals: Wages and salaries per man-hour, all employees except private household and government enterprise (percent change at annual rate)	6.6	6.7	8.6	6.9	5.4
5. Less: Contribution of supervisory and nonproduction workers, non BLS data, and detailed weighting, total.	. 8	0	. 3	-. 4	0
Commodity-producing industries.	-. 3	. 9	-. 7	-. 2	-. 6
Manufacturing...............	-. 6	.8	. 4	-. 6	-. 2
Distributive industries.	.2	-. 7	$\stackrel{.}{2}$	-. 2	0
Service industries....-.	1.0	-. 2	: 8	.1	. 5
6. Equals: Average hourly earnings, production and nonsupervisory workers, obtained from seasonally adjusted industry components (percent change at annual rate).	5.8	6.7	8.3	7.3	5.4
7. Less: Contribution of seasonal adjustments by industry .	. 3	-. 5	. 1	. 3	. 6
8. Equals: Average hourly earnings, production and nonsupervisory workers (percent change at annual rate).	5.5	7.2	8.2	7.0	4.8

Recent Financial Developments

The anomaly currently prevailing in credit markets-that of enormous business loan demands and escalating interest rates during a period of weak economic activity-can be traced in large part to inflation. Rapidly increasing prices are generating enlarged demand for credit by raising the nominal value of assets typically

CHART 1

Short- and Long-Term Interest Rates

Data: FRB, HUD, Moody's, Bond Buyer \& Treasury.
NOTE. - Last data plotted are weekly figures through early May.
U.S. Department of Commerce, Bureau of Economic Analysis
financed by borrowing, such as additions to plant and equipment, inventory accumulation, and accounts receivable. Inflation also adds upward pressure to interest rates as lenders raise interest charges to compensate for an expected decline in the real value of their financial assets over time. Credit restraint, the traditional remedy for inflation, combined with large demand for credit, adds to the rise of interest rates in the short run. To judge from recent increases in member bank borrowings and the rapid rise in the Federal funds rate-a target rate for monetary policy-the monetary authorities have recently moved to restrain credit expansion.
From late February to mid-May, short-term interest rates have increased by as much as $31 / 4$ percentage points. The prime business loan rate was raised in seven steps, from 83 percent to $111 / 4$ percent. The escalation of money market rates more than offset the declines that occurred in the 6 months ending in February, and rates currently stand above the record highs of late last summer (table 3). Long-term rates declined a little last fall, then moved higher and were above last summer's levels by late February. Since that time, the rise in most long-term rates has accelerated and most are close to the peaks reached in the spring of 1970.

Credit demands

Rising interest rates in capital markets are in part reflecting a heavy volume of new security offerings by corporations and State and local governments. As already noted, to a large extent corporate demands stem from rising prices of assets which have to be financed. In part, demand also reflects a scarcity of internal sources of funds. Setting aside such funds that stem from inventory profits because they are matched by corresponding increases in the book value of inventories held, internal sources of funds have been insufficient to finance capital spending (see the April issue of the Survey

Data on the volume of funds raised from sales of corporate securities are available only through February; how-

Table 3.-Changes in Selected Interest Rates
[Percentage points]

	$\begin{aligned} & \text { Sept. } 21 \\ & \text { to } \\ & \text { Feb. } 22 \end{aligned}$	Feb. 22 to May 10
Short-term		
Prime business loans.	-1. 25	2.50
Federal funds.	-1.73	2.22
$3-m o n t h ~ T r e a s u r y ~ b i l l s . ~$	-1.31	1. 72
Prime bankers' acceptances..........--	-2.68	2. 92
4-to-6 month prime commercial paper -	-2.76	3.15
90 -day certificates of deposit............	-3.01	3.28
Long-term bonds		
	. 22	. 50
U.S. government	. 13	. 56
Municipal.-..............................--	. 16	. 79

ever, the indications are that corporate borrowing in the first quarter was a little less than the $\$ 10 \frac{1}{4}$ billion in the fourth, but a little more than in any of the first three quarters of last year. Funds raised from sales of State and local securities amounted to $\$ 6$ billion in the first quarter, as compared with $\$ 61 / 2$ billion in the fourth, but were also larger than in any of the first three quarters of last year. The calendar of forthcoming security offerings of both corporations and State and local governments indicates that borrowing may be larger in the second quarter. However, a number of postponements and reductions in the size of new offerings have recently been announced; this is offsetting some of the increases in borrowing, but it is too early to gauge the impact of this on total borrowing for the quarter.

After slowing appreciably in the second half of last year, particularly after mid-summer, business loans increased $\$ 20.4$ billion at a seasonally adjusted annual rate from December to February and at a record $\$ 61.2$ billion rate from February to April (table 4). Apart from the fact that inflation is swelling the cost of inventory accumulation and other working capital requirements, growth of business loans probably reflected anticipatory demand. Some borrowers apparently felt that the termination of the oil boycott would lead to strong economic expansion, big increases in credit demands and tighter monetary policy and, there fore, feared a shortage of credit availability. Also contributing to the rise in business loan demand, but not necessar-
ily to total demand for short-term credit, was a shift from commercial paper sales to bank borrowing in March and April as the rate on commercial paper was rising faster than the business loan rate. Dealer-placed nonbank commercial paper, which is mainly sold by nonfinancial corporations, declined $\$ 23 / 4$ billion from the end of February to the end of April. That decline followed a $\$ 4$ billion expansion from the end of December to the end of February.

Demand for other than business loans has also been fairly strong thus far this year. However, the borrowing pattern has been mixed: Lending to consumers and security dealers has weakened; real estate and agricultural loans have continued to expand at a steady pace; and loans to nonbank financial institutions have increased substantially. Banks have also added moderately to their holdings of securities in March and April, though much less than in January and February when their reserve positions were more comfortable (table 4).

Table 4.-Changes in Loans and Investments at Commercial Banks
[Billions of dollars: seasonally adjusted annual rate]

	19731				1974	
	I	II	III	IV	$\begin{aligned} & \text { Dec. } \\ & \text { to } \\ & \text { Feb. } \end{aligned}$	Feb. April
Total loans and investments.	108.8	73.6	64.8	28.8	93, 6	106.8
Loans,	112.0	58.0	71.2	25.6	61.2	101.4
Business.	48.4	25.6	23.2	9.2	20.4	61.2
Other.-	63.6	32.4	48.0	16.4	40.8	40.2
Investments..	-3.2	15.6	-6.4	3.2	32.4	5.4
ment........	-6.0	4.8	-21.2	-12.4	15.0	2.4
Other........-	2.8	10.8	14.8	15.6	17.4	3.0

1. Changes are computed from final month of each quarter. Source: Federal Reserve Board.

Recent Trends in Automobile Sales

The decline in automobile sales since last summer has been one of the steepest on record. Sales of new cars, counting both domestic-type models and imports, dropped nearly 21 percent, from a seasonally adjusted annual rate of 0.7 million units in the third quarter of 1973 to 9.2 million in the first quarter of this year. Nearly all of the decline has been in sales of domestic-type cars,
which fell from a rate of 10.0 million units to 7.7 million-the lowest rate since the fourth quarter of 1970 when sales were depressed by the strike at General Motors. Sales of imports were at an annual rate of 1.7 million units in both the third and fourth quarters of 1973 and 1.6 million in the first.
Early last year, it began to seem likely that automobile sales would weaken once the 1974 model cars were introduced. The magnitude of the decline was of course not foreseen, since it was largely an outgrowth of the Arab oil boycott. In part, some weakening of sales was expected simply because automobile demand had been exceptionally strong since early 1971. Also, it was known that the 1974 models would carry higher prices and new safety and pollution control devices, which many believed would make the new cars less convenient and less economical to operate. Thus it seemed plausible that a part of the unusually strong demand for 1973 models reflected sales "borrowed" from the 1974 model year.

New car sales rose from a 10.0 million unit rate in the first quarter of 1971 to 12.4 million units in the first quarter of 1973. Sales slackened only a little in the next two quarters and the slower sales rate was probably related to shortages of parts that were apparently holding back both production and sales. Auto sales declined quite sharply in October, the first full month of new-model-year sales, indicating demand weakening even before the oil crisis began to have an impact on the availability and cost of gasoline. The decline was greatly intensified as the Arab oil boycott gave sudden and unexpected visibility to the problem of oil and energy shortages, which had been building for some time.

The sharp decline in sales since last summer has been accompanied by an even larger reduction in output, as producers attempted to bring dealers' inventories into line with sales. Auto assemblies totaled 6.7 million units (seasonally adjusted annual rate) in the first quarter, down from 9.1 million units in the third quarter of last year and 9.0 million in the fourth. As a
result of steep cuts in production, dealers' inventories fell to 1.5 million units (seasonally adjusted) at the end of March, from a peak of 1.8 million in November and December. In spite of that reduction, inventories have remained high relative to sales. Stocks at the end of March were equal to 2.4 months of sales, down from 2.7 months at the end of December, but well above the 1.6 to 1.9 month range of the first 9 months of 1973.

CHART 2

New Car Sales by Weight Class

After 5 successive months of decline, domestic auto sales increased in both March and April, partly because producers initiated major promotion programs aimed at moving excess inventories of large cars. April sales amounted to 8.0 million units, up from the February low of 7.6 million units. Franchised dealers inventory positions also improved further in April as stocks declined to 2.2 months of sales. Currently, producers are expecting further improvement in sales and second quarter production schedules have been set at 7.9 million cars (SAAR), an increase of more than 1 million units above actual assemblies in the first quarter. However, the extent of the improvement in new car sales in the months ahead remains a major uncertainty.

Sales decline by weight class

Breakdowns of domestic auto sales bring out trends which are not visible in the totals. Sales can be classified in various ways-e.g. by manufacturer's classification (subcompact, compact, intermediate, standard or specialty), by list price, by engine size or by weight. The following analysis classifies sales according to weight-size. ${ }^{1}$ This approach was taken for several reasons. Weight size provides a convenient means of differentiating sectors of the market. Also, since weight is a reasonably good proxy for gasoline consumption, this classification is useful for examining sales trends since the energy crisis.

[^0]When domestic automobile sales are classified by weight size, the contraction since last summer is evident in all of the major groups except low weight cars (chart 2). Sales of imports were unchanged in the fourth quarter and declined in each month of the first. Sales of low weight domestic cars increased about 10 percent from the third to the fourth quarter and were little changed in the first. Sales of these cars would apparently have been stronger in the early months of this year had it not been for inventory shortages of the more popular subcompacts, the Vega, Gremlin, and Pinto. Demand for these nameplates has been exceptionally strong since last summer and inventories declined to very low levels. However, for many other nameplates in the low weight group, sales have not been exceptionally strong, and in some cases, excess inventories appear to be as troublesome as in the heavier weight classes. Sales of heavier domestic cars declined in both the fourth and first quarters; since the third quarter, sales have declined more than 35 percent in the low medium group and 50 percent in both the high medium and high weight groups.

Sales trends by weight class

The pattern of automobile sales in the last half of the 1960's and in the early 1970's has been dominated by the growth of the second car market which, to a very large extent, has been a small car phenomenon. Sales of imported
cars, which are almost entirely small cars, first began to make major inroads in the United States automobile market in the late 1950 's, claiming 10 percent of sales in 1959. The import share of the market fell in the early 1960's to percent in 1962 and 1963, and then began to grow again, exceeding 10 percent in 1968 and amounting to about 15 percent from 1970 through 1973.

In the second half of the 1960 's, the increase in import sales came largely at the expense of domestic-type low weight cars whose share of total sales declined from more than 25 percent in 1965 to about $15 \frac{1}{2}$ percent in 1969. The low weight share of the market jumped to 21 percent in 1970, partly because the strike in the latter part of the year mainly depressed sales of heavier weight cars. Also in 1970, domestic producers introduced the subcompact cars-the Pinto, Vega, and Gremlin-and later other nameplates, designed to compete with imports in meeting the growing demand for small cars (table 5). Since 1970, the share of low weight domestic-type cars has increased substantially and accounted for more than 30 percent of total sales in 1972 and 1973. Nearly all of the increase in the low weight share of the market has been attributable to the growth of the subcompact market; the three subcompact nameplates accounted for 1.7 percent of total sales in 1970 and 9.4 percent in 1973.

The slower sales growth of imports as compared with low-weight domestic

Table 5.-Composition of New Car Sales and Number of Domestic-Type Nameplates by Weight Class

	1965	1966	1967	1968	1969	1970	1971	1972	1973
Total (importe and domestic).	Percent								
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Imports.	6.293.89	7.392.7	9.290.8	10.789.3	11.788.3	15.284.8	15.384.7	14.985.1	15.684.4
Domestic.									
Low weight....	$\begin{array}{r} 25.6 \\ 45.0 \\ 19.1 \\ 4.1 \end{array}$	$\begin{array}{r} 20.0 \\ 49.5 \\ 16.0 \end{array}$	$\begin{aligned} & 17.0 \\ & 51.0 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 17.7 \\ & 50.1 \\ & 16.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 50.5 \\ & 17.6 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 43.9 \\ & 16.3 \\ & 16.3 \end{aligned}$	$\begin{array}{r} 23.4 \\ 41.9 \\ 14.7 \\ 4.6 \end{array}$	$\begin{array}{r} 31.5 \\ 34.9 \\ 14.7 \\ 4.0 \end{array}$	30.336.113.24.84.8
Low medium weight									
High medium weight.									
	Number								
Total number of domestic nameplates..	3112865	36111168	39101577	4311171769	44121778	48141888	481717688	50221576	14221677
Low weight.									
Low medium weight..									
High weight.									

cars in the recent past largely reflects the fact that price increases of imports have been much greater than those of small domestic-type cars. Since 1970, the average price of the subcompact Finto, Gremlin, and Vega has increased 6.6 percent per year, while the average price of the most popular imports-the Volkswagen, Toyota, and Datsunhas increased 18.6 percent per year. The differential behavior of prices since 1970 is for the most part attributable to 2 devaluations of the dollar which substantially raised import prices.
The shift in demand to low weight cars in recent years has been mainly at the expense of medium weight domestictype cars. In particular, sales of domestic low medium weight cars have slipped below their levels of the late 1960 's, and that group's share of total sales has declined from over 50 percent to 36 percent. Sales of high medium weight cars have also been running a little behind the rates of the late 1960 's, and their share of total sales has declined from around 17 percent to 13 percent. On the other hand, sales of high weight luxury-type cars have been rising about in line with the growth of total sales, so that their share of the total is not much different than it was in the late 1960's.

Recent Developments in In-ventory-Sales Ratios

Inventory-sales ratios have been followed with special interest during recent quarters. The interest stems in part from the movement of the ratios them-
selves, particularly the decline in the ratio for total manufacturing and trade to very low levels. In addition, the ratios were used to help evaluate the reasonableness of the relatively low levels of inventory investment as measured in the national income and product accounts.

However, the I-S ratios must be used with an awareness of their limitations, one of which is related to the impact of price changes on the underlying data on inventories and sales. The I-S ratios in this review have been calculated using the Census Bureau's monthly data on sales and inventory book values. The inventories are typically valued by the surveyed firms at the lower of "cost" or "market." Cost may be calculated by a number of alternative methods, such as first-in, first-out (FIFO), last-in, first-out (LIFO), average cost, or standard cost. These methods represent alternative assumptions as to the order in which inventories are used up or sold, and thus implicitly as to which inventories remain on hand. These assumptions prescribe the pattern with which any price changes will be reflected in inventory book values; the book values, unlike sales, generally are not valued in prices of the most recent period. Rapid price changes, such as in recent quarters, accentuate differences in the valuation of inventories and sales, which may then be incorporated into the calculated I-S ratios.

To take a simple case, if a one-time general price increase occurs with cost of inventories calculated by the commonly used FIFO method, the higher price is incorporated into inventory book values with a lag, the length of which depends on the rate of inventory turnover. As a result, until all inventories are valued at the higher price, the price-affected I-S ratio will be at a lower level than if there had not been a price increase; this happens because the price increase applies to only a portion of the inventory (in the numerator) but to the whole of sales (in the denominator). Further, the ratio initially will decline to the lower level and then subsequently increase when additional portions of the inventories are valued at the higher price. Thus the changes in the level of the ratio, at different points of time, may be either lower or higher than if there had not been a price increase.

In another simple case, if again a one-time general price increase occurs, but with cost of inventories determined by the LIFO method, the priceaffected I-S ratio will be at a lower level-lower even than with FIFOthan if there had not been a price increase. Under LIFO, the I-S ratio will be at a lower level because the price increase is applied to sales and (if there is no change in the physical volume of inventories) to the inventories charged to cost. The price increase is not, however, applied to the inventories retained in stock, which become the

Table 6.-Inventory-Sales Ratios in Total Manufacturing and Trade and in Manufacturing ${ }^{1}$

p Preliminary.

1. Seasonally adjusted end-of-quarter book values inventories divided by seasonally adjnsted average monthly sales for the quarter. Annual ratios are average of quarterly ratios.
numerator of the I-S ratio. Other cases, for example, involving multiple price increases or differential increases in inventory and sales prices, while more realistic, are more difficult to trace out in terms of their impact on I-S ratios. The possibility of factors such as these affecting the I-S ratios should be kept in mind.
The I-S ratio for total manufacturing and trade has remained at about 1.46 for five quarters (table 6). Both the low level and the steadiness are noteworthy, but more interesting are the offsetting movements of the components of manufacturing and trade which result in the low level and steadiness of the total.

Manufacturing

In manufacturing, the offsetting movements can be examined in terms of the groupings of industries shown in table 6. Primary metals, chemicals, petroleum and coal products, and paper have been grouped together as basic industries. Food is shown separately, and then a residual group-textiles, rubber and plastics, fabricated metals, autos, aircraft, and others-is shown as all other manufacturing. The table shows that the ratio for total manufacturing was steady throughout 1973, as the declining ratios in the basic industries and food balanced the rising ratio in the "all other" group. The rise in the total manufacturing ratio in the first quarter of 1974 - the first since the 1970 recession peak-can be traced to the acceleration in the rise in the ratio for the "all other" group.

In the basic manufacturing industries the I-S ratio declined through the first quarter of 1974. Over the past five quarters the sharpest drop occurred in the ratio for primary metals producers, with smaller declines in the ratios for producers of petroleum and coal products, chemicals, and paper. These declining ratios are consonant with the reports of capacity shortages in these industries and, in the case of petroleum, reflect the embargo-induced scarcities. This characterization of the declining ratios is supported by reference to the stage of fabrication breakdowns of their inventories. In each industry, the ratio of finished goods inventories to
sales has been responsible for the bulk of the ten-to-fourteen quarter declines in the overall I-S ratio. In these industries LIFO accounting is used for a substantial portion of inventories, specifically more than half of inventories in primary metals and petroleum and coal products. Of the commonly used alternative methods of inventory accounting, LIFO tends most strongly to result in low book values, so that in these industries there is somewhat more reason than otherwise to speculate that the price effect on I-S ratios mentioned earlier underlies a part of the decline in the ratio.

The ratio for food producers has also declined, continuing into the first quarter of 1974 the downward movement begun in 1972, when the ratio broke below 1.00 for the first time ever. The first-quarter level of .85 is extremely low by historical comparison. In contrast to the pattern by stage of fabrication in basic industries, the falling ratio of materials and supplies to sales largely was responsible for the declining ratio for food producers. These inventories were drawn down in dollar terms in the last half of 1973 with only mild rebuilding by the end of the first quarter. The first-quarter level of materials and supplies was supporting sales more than 25 percent larger than that same inventory had supported five quarters earlier, perhaps reflecting some combination of shortages-those in cereal grains and vegetable oils provide striking exam-ples-and the lag of inventory book values behind product prices.

The I-S ratio for the group of all other manufacturers increased throughout 1973; by mid-1973, across the board, manufacturers in this group were experiencing increasing ratios. The rise accelerated in the first quarter; with the acceleration particularly sharp in the transportation equipment industries. A buildup of stocks of materials and supplies relative to sales accounts for the bulk of the increase since early 1973. Attempts to hedge against reported disruptive material shortages and lengthened delivery times, and against higher prices, may be responsible. To a lesser extent work-in-process inventories also built up relative to sales; most of this buildup was in transportation equipment during the last two quarters when sales declined. Over the past five quarters the ratio of finished goods to sales has not changed significantly, although in the first quarter of 1974 it was up slightly. Thus, the 1973 rise in the overall ratio for this group of manufacturers is unlike a cyclical rise, because typically a rise in the ratio of finished goods to sales accounts for a substantial part of the overall cyclical rise.

Trade

In wholesale trade, the 1974 firstquarter I-S ratio reached its lowest level since a sharp plunge at the outbreak of the Korean War. The current downtrend-which is now over three years old-reflects declines in both the durables and nondurables ratios (table 7). In nondurables, in recent quarters

Table 7.-Inventory-Sales Ratios in Trade ${ }^{1}$

	Retail				Wholesale		
	Total	Durables		$\begin{aligned} & \text { Non- } \\ & \text { durables } \end{aligned}$	Total	Durables	$\begin{aligned} & \text { Non- } \\ & \text { durables } \end{aligned}$
		Autogroup	Durables other than autos				
1970.....	1.48	1.80	2.66	1.18	1.24	1.62	0.93
1971-..--	1.50	1.74	2.66	1.20	1.24	1.62	. 93
1972.....	1.46	1.60	2.57	1.20	1.22	1.56	. 92
1973 I	1.40	1.45	2. 35	1.18	1.17	1.46	. 91
	1.45 1.43	1.56 1.55	2.42	1.20	1.15 1.15	1.45 1.45	. 90
	1.49 1.49	1.80	2.44	1.21	1.12	1.42	.
1974 I P.	1.50	1.88	2.41	1.21	1.09	1.39	. 85

[^1]the downtrend can be traced to the declining ratio for farm products, which constitute 40 percent of nondurables sales, and to a lesser extent to the declining ratio for the "other" nonturables group, which includes coal and farm supply dealers. The ratio for durables is moved lower as declining ratios for wholesalers of machinery, equipment, and business supplies, and especially of metals and metalwork outweigh the currently rising ratios for wholesalers of furniture and home furnishings, and of lumber and construction materials. The declining ratios appear to mirror the shortages experienced in capital goods over the past year, the rising ratios, the decline in home building.

In retail trade, a slump in durables sales, both in autos and in durables other than autos, pushed up the ratios during 1973. In the first quarter of 1974 the ratio for the auto group registered another jump, while that for durables other than autos fell back moderately. Recent developments in outo sales and inventories are discussed in greater detail in another part of this issue (see Recent Trends in Automobile Sales). In durables other than autos, the 1973 softness in sales centered in the lumber, building, and hardware outlets, apparently reflecting, as in wholesale trade, the decline in home building. By the first quarter of 1974 , some recovery of sales in those outlets, accompanied by a

Table 8.-Changes in Value and Volume of Exports and Imports In Current and Constant (1967) Prices

	Changes: 1973 IV-1974 I			
	In currentprices		In constant (1967) prices	
	\$ bil.	Pct.	\$ bil.	Pct.
Merchandise Exports ${ }^{1}$	2.21.61.6	$\begin{aligned} & 10.7 \\ & 11.6 \\ & 10.4 \end{aligned}$	$\begin{array}{r}0.3 \\ (4) \\ \hline\end{array}$	2.4.8 .9
Total--				
Agricultural - ${ }^{\text {Nagricultural }}$				
Merchandise I mports ${ }^{1}$				
Total.-	3.3	17.2	. 3	8.7
Petroleum and products..	1.9	71.8	-. 3	-18.6
Other than petroleum.--.	1.3.31.0	$\begin{array}{r} 8.2 \\ 12.2 \\ 7.5 \end{array}$. 6	6.711.54.8
Agricultural-3......				
Nonagricultural.-.------	1.0		. 4	4.8

*Less than $\$ 50$ million.

1. Adjusted to balance of payments basis.

Nore.-Components may not add to totals because of rounding.

Table 9.-Foreign Trade Related to Domestic Output and Demand

	Average		1970	1971	1972	1973	${ }^{1973}$	${ }_{1974}^{\text {I }}$
	1960-64	1965-69					Seasonally adjusted	
	Percent							
EXPORT share of U.S. goods output:								
(1) In current prices-.........	7.6	7.8	8.9	8.6	9.0	11.4	12.6	13.9
IMPORT share of U.S. domestic demand:								
(3) In current prices.	4.8	5.9	7.0	7.4	8.2	9.2		11.3
(4) In constant (1958) prices.....	5.0	6.4	7.6	7.9	8.4	8.4	8.3	8.7

Note.-Merchandise exports and imports used as the numerators in computing the ratios shown in lines (1) and (3) above are as published by BEA in lines 2 and 16 of table 2 of the regular balance of payments tables: converted; to constant (1958) prices, they are used in the computation if lines (2) and (4). The denominators of the ratios shown are. for exports. the goods component of GNP and, for imports, the goods and structures components of GNP here less net merchandise trade.
sales pickup in the furniture and appliance group, resulted in the moderate reduction of the ratio for durables other than autos. The generally higher ratios for durables, in combination with the ratio for nondurables which held near the upper end of its usually narrow range, boosted the total retail trade ratio in the fourth quarter of 1973 and first of 1974 to a level almost equal to its cyclical high in 1971.

First Quarter Foreign Trade

The merchandise trade balance worsened in the first quarter of 1974, after improving steadily in each quarter of 1973 . The balance was in surplus by $\$ 0.3$ billion, seasonally adjusted, in the first quarter, compared with a surplus of $\$ 1.4$ billion in the fourth quarter of 1973. The surplus narrowed in January and February, and in March a deficit emerged. At a seasonally adjusted annual rate, the first quarter 1974 surplus was $\$ 1.2$ billion compared with $\$ 0.7$ billion for the full year 1973, when deficits in the first half of the year reduced the favorable impact of surpluses in the second.

The $\$ 1.1$ billion reduction in the surplus from the fourth quarter to the first was due largely to a faster rise in the average price (unit value) of imports-led by sharply higher prices for foreign oil-than of exports. Imports rose nearly $\$ 3.3$ billion, to a total of $\$ 22.1$ billion, while exports advanced $\$ 2.2$ billion to $\$ 22.4$ billion. After adjustment for price changes, exports
and imports increased about equally (see table 8).

Imports

Imports of petroleum and products (including imports into the Virgin Islands) rose $\$ 1.9$ billion, or 70 percent, in the first quarter, as a 110 percent rise in the average price of petroleum landed at U.S. ports more than offset a 19 percent decline in volume. This value rise accounted for almost 60 percent of the import increase in the first quarter and brought oil imports to $\$ 4.6$ billion, or 20 percent of total imports. In the first quarter a year ago, petroleum imports, at $\$ 1.5$ billion, were 9 percent of total imports, and for the full year 1973 the comparable figures were $\$ 8.0$ billion and 11 percent. Imports of all other goods in the first quarter- 80 percent of the totalaccounted for the remaining 40 percent of the import rise. The $\$ 1.3$ billion, or 8 percent, increase occurred largely in steel and other metals, paper, foodstuffs, and automotive products (mainly from overseas).

Exports

Both agricultural and nonagricultural (nonmilitary) exports increased in the first quarter, primarily due to higher prices. An 11 percent price rise was responsible for the entire increase in the value of agricultural exports, and a 7 percent price rise accounted for four-fifths of the increase in other exports. Increases in exports of soybeans,
corn, and raw cotton more than offset a decline in wheat shipments. Among nonagricultural goods, the largest increase was in industrial supplies and materials; there were also gains in capital goods (mainly machinery) and nonfood consumer goods (other than autos). Automotive exports were up only moderately, and the rise was limited to shipments to markets other than Canada.

Summary of real changes

Measured in constant prices, exports and imports each increased about $21 / 2$ percent in the first quarter of 1974 ; in the fourth quarter, exports had increased 4 percent and imports had declined 1 percent. The real growth in imports in the first quarter was dampened by the 19 percent drop in the volume of petroleum arrivals resulting from the Arab oil embargo and production cutbacks; all other imports rose about 6 percent in aggregate. Imports of agricultural products, comprising about one-eighth of total imports in the first quarter, rose about 12 percent, while nonagricultural imports (other than petroleum) rose 5 percent. Nonagricultural exports rose 3 percent; agricultural exports, as noted earlier, were unchanged in real terms.

The deflation of current-price trade data to constant prices is based on unit value indexes prepared by the Census Bureau. These indexes are subject to limitations: quantity units are not available for a number of com-modities-mainly finished manu-factures-thus restricting the sampling coverage; also, because the product classification is not sufficiently homogeneous, shifts in product composition are improperly accounted for as changes in price.

Share of domestic output and demand

The increases in both exports and imports from the fourth quarter of 1973 to the first quarter of 1974 were accompanied by an increase in the share of U.S. output exported and a growth in the penetration of the U.S. market by imports (table 9, page 9). The following brief discussion, in real terms
(constant prices), traces the relationship of foreign trade to domestic output and demand since the 1960 's.

Over the latter half of the 1960 's, U.S. imports increased more than exports and the U.S. merchandise trade balance deteriorated. This was accompanied by a marked increase in the share of imports in domestic demand; there was only a minimal change in the share of U.S. output exported, as U.S. products encountered increased competition in foreign markets. In 1970, imports increased less than exports;
the trade balance improved and exports both increased their respective shares in U.S. output and demand. In 1971 and 1972, the trade balance moved into deficit and the import share in domestic demand rose, while the export share of rising U.S. output remained virtually stable. When the trade balance again took a favorable turn in 1973, the situation was reversed; the export share of domestic output rose, especially in the agricultural sector of the economy, while the relationship of imports to domestic demand remained unchanged.

U.S. Balance of Payments Statistics

Balance of payments statistics by area, for imperts of gcods and services, merchandise imports, and errors and omissions and transfers of funds between foreign areas are presented here for the fourth quarter and year 1973. These area data were not published in table 9, U.S. International Transactions, by Areas, pp. 52-55 of the March 1974 Survey because public release of data on imports of crude petroleum for November and December 1973 was discontinued temporarily at the request of the Federal Energy Office, with the approval of the Officer of Management and Budget.

Table 9.-U.S. International Transactions, by Area
[Millions of dollars]

Line	(Credits+; debits-)	EEC(9)		United Kingdom		EEC(6)		Other Western Europe	
		1973 D		1973 р		1973 p		1973 p	
		Total	IV	Total	IV	Total	IV	Total	IV
1516	Imports of goods and eervices.Merchandise, adjusted, excluding military Errors and omissions, and transfers of funds between foreign areas, net. .	-25,742	-6,861	-6,566	-1,707	-18,209	-4,894	-7,435	-1,881
		-15,693	-4,291	-3,519	-933	-11, 508	$-3,161$	-3,791	-1,025
		-6,940	161	-177	-678	-6,743	979	-4,011	-765
		Eastern Europe		Canada		Latin American Republics and other Western Hemisphere		Japan	
		1973		1973 ヵ		1973 D		1973 D	
		Total	IV	Total	IV	Total	IV	Total	IV
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	Imports of goods and services.Merchandise, adjusted, excluding military	-691	-206	-19,717	-5,100	-12,828	-3,734	-12,255	-3,042
		-596	-189	$-17,161$	$-4,546$	-9,619	-2, 925	-9,650	-2,422
64	Errors and omissions, and transfers of funds between foreign areas, net	-737	-245	652	-303	-897	-938	10286	3,000
		Australia, New Zealand and South Africa		Other countries in Asia and Africa		International organizations and unallocated			
		1973 口		1973 p		1973 D			
		Total	IV	Total	IV	Total	IV		
15	Imports of goods and services- Merchandise, adjusted, excluding military...........Errors and omisgions, and transfers of funds between foreign areas, net.................		-703	-13,662		-1,163	-312		
		-1,849	-560	-11, 208	-3,124				
		-1,359	-224	-1,777	-704	10	-367		

- Revised estimate shows real GNP down 6.3 percent in first quarter
- In April: The unemployment rate was about unchanged at 5.0 percent
- The wholesale price index rose 0.5 percent

- In April: Personal income rose $\$ 7$ billion; wages and salaries were up $\$ 41 / 4$ billion
- Advance report shows retail sales up $11 / 2$ percent
- Housing starts rose $91 / 2$ percent

NCOME OF PERSONS

U.S. Department of Commerce, Bureau of Economic Analysis

CONSUMPTION AND SAVING

FIXED INVESTMENT

Billion \$

- In March: Imports rose more than exports and the trade balance moved into deficit
- In first quarter: Federal budget surplus (NIA basis) dropped to $\$ 21 / 2$ billion

- In April: Industrial production rose 0.4 percent
- \quad Short-term interest rates and bond yields moved higher
- In first quarter: Corporate profits before tax (including IVA) declined $\$ 3$ billion

INDUSTRIAL PRODUCTION

U.S. Department of Commerce, Bureau of Economic Analysis

MOMEY, CREDIT, AND SECURITIES MARKETS

PROFITS AND COSTS
Billion \$

NATIONAL INCOME AND PRODUCT TABLES

1972	1973	1972	1973				1974	1972	1973	1972	1973				1974
		Iv	I	II	III	IV	I			IV	I	II	III	IV	I
		Seasonally adjusted at annual rates									ason	adj	at	1 ra	
Billions of current dollars											ons	58			

Table 1.-Gross National Product in Current and Constant Dollars (1.1, 1.2)

Table 2.-Gross National Product by Major Type of Product in Current and Constant Dollars (1.3, 1.5)

Table 3.-Gross National Product by Sector in Current and Constant Dollars (1.7, 1.8)

Grose national product.	1,155. 2	1,289, 1	1,199.2	1,242. 5	1,272.0	1,304. 5	1,337.5	1,352.2	790.7	837.4	812.3	829.3	834.3	841.3	844.6	831.0
Private	1,019,7	1,141.6	1,060,0	1,098, 9	1, 126.2	1,156.3	1, 184,9	1,196,5	729, 5	774.9	750. 3	767.1	772.0	778.8	781.7	767.5
Business..	975.4	1,090.6	1, 013.6	1, 050.5	1, 076.8	1, 105.2	1, 130. 1	1,136.4	706.6	750.7	726.8	742.9	748.3	754.7	756.8	741.5
Nonfarm.	941.0	1,043.0	976. 9	1, 008.9	1, 033.5	1,056. 2	1, 073. 4	1, 079.0	682.0	727.5	702.5	718.1	${ }_{7}^{725.9}$	733.6	732.6	${ }_{23.1}$
Farm....	34.4	47.7	36.7	41.6	43.3	49.0	56.7	57.4	24.6	23.2	24.2	24.8	22.4			
Households and institutions.	36.8	41. 1	37.8	39.3	40.5	41.8	42.9	44.5	17.4	${ }^{18.3}$	17.4	18.0 6.3	18.2 5.5	18.5 5.5	18.5 6.5	18.8 7.2
General government	135.4	147.5	139.2	143.5	145.8	148.2	152.5	155.8	61.1	62.5	62.0 20	62.2 21	62.4 21			
Federal-ciol	50.3 85.1	52.8 94.8	50.5 88.7	52.5 91.1	52.2 93.6	52.3 96.0	54.1 98.4	54.7 101.0	21.8 39.3	21.3 41.1	21.7 40.3	21.6 40.6	21.4 41.0	21.2 41.3	${ }_{41.7}^{21.2}$	21.2 42.3

HISTORICAL STATISTICS

THE national income and product data for 1929-63 are in The National Income and Product Accounts of the United States, 1989-1965, Statistical Tables (available at $\$ 1$ from Commerce Department District Offices or the Superintendent of Documents; see addresses inside front cover). Each July Survey contains preliminary data for the latest 2 years and fully revised data for the preceding 2. The July 1973 issue has data for 1969-72. Prior July issues have fully revised data as follows: 1968-69, July 1972; 1967-68, July 1971; 1966-67, July 1970; 1965-66, July 1969; 1964-65, July 1968. BEA will provide on request a reprint of the fully revised data for the years 1964-69.

1972	1973	1972	1973				1974
		IV	I	II	III	IV	I*
		Seasonally adjusted at annual rates					
Billions of dollars							

Table 4.-Relation of Gross National Product, National Income, and Personal Income (1.9)

Gross national produc	1,155. 2	1,289.1	1,199.2	1,242.5	1,272.0	1,304. 5	1,337.5	1,352.2
Less: Capital consumption allowances.	102.4	110.0	105. 1	106.9	109.0	110.5	113.5	115.1
Equals: Net national product.-	1,052.8	1,179.1	1,094.1	1,135.5	1,163.0	1,194.0	1,223.9	1,237.1
Less: Indirect business tax and nontax liability.	109.5	117.8	112.8	115.6	117.2	118.5	119.9	121.1
Business transfer payments.	4.6	4.9	4.7	4. 8	4.9		5.1	5. 2
Statistical discrepancy --	-1.5	2.9	2	1.1	3.2	3.7	3.7	3.1
Plus: Subsidies less current surplus government enterprises.	1.7	4	2.2	. 9			-. 2	-2.9
Equals:	941.8	1,053.9	978.6	1,015.0	1,038.2	1,067.4	1,095. 1	1, 104.8
Less: Corporate profts and inventory valuation adjustment.	91.1	109.0	98.8	104.3	107.9	112.0	111.9	108.9
Contributions for social insurance								
insurance Wage aceruals less disbursements.	73.7 -.5	92.1	75.8 .0	89.3 .0	$-.3$	93.0 .0	95.0 .0	99.9 .0
Plus: Government transfer payments to persons.	98.3	112.6	107.3	108.8	110.8	113.7	116.9	122.3
Interest paid by government (net) and by consumers.	32.7	37.1	33.7	34.7	36.1	38.0	39.7	41. 4
Dividends...	26.0	27.8	26.4	26.9	27.3	28.1	29.0	29.5
Business transfer payments.	6	4.9	4.7	4.8	4.9	5.0	5.1	5.2
Equals: Personal	939.2	1,035.4	976.1	996.6	1,019.0	1,047.1	1,078.9	1,094.4

Table 5.-Gross Auto Product in Current and Constant Dollars (1.15, 1.16)

Gross auto product ${ }^{1}$............	Billions of current dollars							
	43.6	49.7	45.6	51.5	51.2	49.6	46.5	32.6
Personal consumption expenditures	39.4	42.9	41.2	45.1	44.6	44.5	37.4	34.7
Producers' durable equip-	7.0	7.6	7.3	8.0	7.9	7.8	6.6	6.1
Change in dealers' auto inventories.	-. 5	1.5	-. 4	. 9	1.2	-. 5	4.3	-5.0
Net exports.	-2.7	-2.7	-2.9	-2.8	-2.9	-2.7	-2.4	-3.7
Exports.	3.0	3.8	3.3	3.6	3.6	3.8	4.2	4.1
Imports..	5.7	6.5	6.2	6.4	6.5	6.5	6.6	7.8
Addenda:								
New cars, domestic ${ }^{2}$ New cars, foreign	37.9	43.1	39.5	44.0	44.8	43.5	40.3	27.7
	8.6	9.9	9.4	10.6	9.8	9.5	9.9	10.2
	Billions of 1958 dollars							
Personal consumption ex-								
Producers' durable equipment.	6.3	6.8	6.7	7.2	7.0	7.0	5.9	5.5
Change in dealers' auto inventories.	-. 4	1.3	-. 3	. 8	1.0	-.	3.9	-4.3
Net exports.	-2.4	-2.4	-2.6	-2.4	-2.5	-2.4	-2.1	-3.2
Exports.	2.6	3.4	3.0	3.2	3.1	3.3	3.8	3.6
Imports.....................	5.0	5.7	5.5	5.6	5.6	5.7	5.9	6.8
Addenda:								
New cars, domestic ${ }^{2}$	34.6	39.3	36.7	40.6	40.7	39.3	36.7	25.3
New cars, foreign...............	7.9	9.2	8.8	9.9	9.0	8.7	9.1	9.4

1. The gross auto product total includes government purchases.
2. Differs from the gross auto product total by the markup on both used cars and foreign
cars. ${ }_{\text {First }}$ quarter corporate profits (and related components and totals) are preliminary and subject to revision next month.

Table 7,-National Income by Industry Division (1.11)

All industries,	941.8	1053.9	978.6	1015.0	1038.2	1067.4	1095.1	1104.8
Agriculture, forestry, and fisheries	30.4	37.8	32.2		35.1	2		
Mining and construction	59.9	67.2	61.8	64.0	65.5	68.8	70.4	
Manufacturing	252.6	291.2	266. 5	280.8	290.4	295. 0	298.6	
Nondurable goo	99.9	111.0	104.6	107.3	109.9	112.6	114.4	
Durable goods	152.7	180.1	161.9	173.5	180.5	182.4	184.2	
Transportation	36.0	39.3	37.3	38.2	38.5	39.7	40.7	
Communication	20.0	${ }^{21.7}$	20.8	20.9	21.0	22.5	22.	
Electric, gas, and sanitary services	18.2	19.8	18.6	19.1	19.4	20.6	20.5	
Wholesale and retail trade	139.7	151.6	143.2	146.9	149.7	153.4	156.5	
Finance, insurance, and real estate	107.9	119.0	111.6	114.2	117.3	120.8	123.7	
Services.	120.1	133.6	123.9	128.4	131.4	135.4	139.1	
Government and government enter-	149.5	162.9		158.6	160.9		168.5	
Rest of the world.	7.5	9.8	8.7	9.1	8.9	9.3	11.9	

Table 8.-Corporate Profits (Before Tax) and Inventory Valuation Adjustment by Broad Industry Groups (6.12)

All industries, total.	91.1	109.0	98.8	104. 3	107.9	112.0	111.9	108, 9
Financial institutions.	17.5	21,7	18.6	19.8	21.4	22.3	23.2	24.1
Federal Reserve banks.	3.4	4.5	3.4	3.9	4.4	4.8	5.0	5.3
Other financial institutions	14.1	17.2	15.2	16.0	17.0	17.5	18.1	18.9
Nonfinancial corporations	73.6	87.3	80.2	84.5	86.5	89.7	88.7	84.7
Manufacturing	40.1	50.8	44.7	49.7	52.4	51.9	49.2	
Nondurablo goods	20.0	24.2	22.4	22.8	23.9	25.3	${ }_{24}^{24.9}$	
Durable goods....	20.2	26.6	22.3	26.9	28.5	26.6	24.4	
Transportation, communication, and public utilities.	24.3		25.7	-9.2	25.6	10.3 27.5	9.1 30.4	
All other industries	24.2	27.3	25.7		25.6	27.5	30.4	

1. Excludes gross product originating in the rest of the world.
2. This is equal to the deflator for gross product of nonfmancial corporations, with the 3. Personal saving as a percentane of lisp.
3. Personal saving as a percentage of disposable personal income.
rate) in rupees under provisions of the A vricultural Trated to India $\$ 2,015$ million (quarterly Act. Tentatively, this transaction is being treated as capital grants paid to foreigners in the national income and product accounts but as current unilateral transfers in the balance of payments accounts. Accordingly, this transaction is excluded from Federal Government transfers to foreigners and related totals shown in tables 12, 13, and 15, and is included in the first quarter of 1974 as $-\$ 8.1$ billion (annual rate) in capital grants received by the U.S.
shown in tables 12 and 15 . shown in tables 12 and 15.
*See footnote on page 16.

644.3	720.8	670.1	695.4	713.0	731.1	743.7	744.2

Capital consumption allowances. ndirect business taxes plus transfer
payments less subsidies................
ncome originating in nonfinancia
corporations...............................
Compensation of employees.
Wages and salaries..-
Net interest
Corporate proflts and inventory Profits before tax Profits before tax Profits after tax

Undistributed profits
Inventory valuation adjustment
Cash flow, gross of dividends.
Cash flow, net of dividends

Grosg product originating in nonfinancial corporations.

Current dollar cost per unit of 1958 dollar gross produc
originating in nonfinancial

Capital consumption allowances Indirect business taxes plus transfer payments less subsidies..
Net interest.
Corporate profits and inventory valuation adusistent
 tory valuation adjustment.

65.9 60.8	71.4 65.7	68.0	69.3 64.3	70.5 65.2	71.7 66.2	74.2 66.9	75.2 67.5
517.6	583.7	539.5	561.9	577.3	593.2	602.6	601.6
428.9	479.3	444.6	461.6	473.4	485.2	497.0	502.0
373.8	413.8	387.6	398.3	408. 7	419.1	429.0	432.3
55.2	65.5	56.9	63.3	64.6	66.1	68.0	69.7
3.8	3.8	3.7	3.7	3.7	3.8	3.9	4.0
84.9	100.7	91.2	96.6	100.2	104.2	101.7	95.5
91.8	117.9	98.6	111.9	121.3	121.2	117.2	126.7
42.7	55.8	45.9	52.7	57.4	57.6	55.7	59.8
49.1	62.1	52.7	59.2	63.9	63.7	61.5	66.9
23.3	24.6	23.0	23.6	24.1	24.8	25.8	27.8
25.8	37.5	29.7	35. 6	39.8	38.9	35. 7	39.1
-6.9	-17.3	-7.3	-15.4	-21.1	-17.0	-15.5	-31.2
115.0	133.5	120.7	128.5	134.4	135.4	135.6	142.1
91.7	108.9	97.7	104.9	110.3	110.6	109.8	114.3
35.4	41.0	36.8	38.7	40.5	41.8	43.1	44. 4
608.9	679.8	633.2	656.7	672.5	689:3	700.6	699.8
63.2	68.4	65.2	66.3	67.5	68.6	71.0	72.0
58.0	62.6	59.6	61.3	62.2	63.1	63.8	64.3
487.7	548.8	508.4	529.1	542.8	557.5	565.8	563.5
403.0	451.0	417.8	434.1	445. 4	456.7	467.9	472.3
351.5	389.7	364.6	375.0	384.9	394.8	404. 2	407.1
51.5	61.3	53.2	59.2	60.5	61.8	63.7	65.2
17.4	18.8	17.9	18.2	18.6	19.0	19.4	19.8
67.3	79.0	72, 7	76.8	78.8	81.8	78.5	71.4
74.3	96. 2	80.0	92.1	99.9	98.9	94.0	102.6
35.0	46.4	37.8	44.3	48.2	47.7	45.5	49.2
39.2	49.8	42.2	47.8	51.7	51.2	48.5	53.4
21.2	22.3	20.9	21.4	21.9	22.5	23.4	25.2
18.1	27.5	21.2	26.4	29.8	28.6	25.1	28.2
-6.9	-17.3	-7.3	-15.4	-21.1	-17.0	-15.5	-31.2
102. 5	118.2	107.3	114.1	119.2	119.8	119.5	125. 4
81.3	95.9	86.4	92.7	97.3	97.3	96.1	100.2
Billions of 1958 dollars							
475.5	512.1	489.8	503.4	509.6	517.2	517.8	506. 1
Dollars							
1.281	1. 328	1. 293	1.305	1.320	1,333	1. 353	1. 383
. 133	. 134	133	132	132	. 133	. 137	. 142
. 122	. 122	. 122	. 122	. 122	. 122	. 123	. 127
. 8477	. 881	. 853	. 862	. 874	. 883	. 904	. 933
. 037	. 037	. 037	. 036	. 037	. 037	. 037	. 039
. 142	. 154	. 148	. 152	. 155	. 158	. 152	. 141
. 074	. 091	. 077	. 088	. 095	. 092	. 088	. 097
. 068	. 064	. 071	. 064	. 060	. 066	. 064	. 044

-

Exports of goods and services

$$
\begin{aligned}
& \mathbf{I} \\
& \mathbf{T}
\end{aligned}
$$

I

Table 10.-Personal Income and its Disposition (2.1)

Pergonal income.	939.2	1035. 4	976.1	996. 6	1019.0	1047. 1	1078.9	1094. 4
Wage and ealary disburgements.	627.8	691.56	648.7	666.7	682.6	699, 3	717. 2	726.2
Commodity-producing industries.-	226.0	251.9	234.8	241.6	248.6	255.3	262.0	262.6
Manufacturing.	175.9	196.8	183.7	189.1	194.8	199.1	204.1	203.5
Distributive indus	151.5	165.1	156.0	159.5	163.3	167.0	170.6	172.6
Service industries	116. 1	129.0	120.1	123.9	126.9	130.9	134.3	138.1
Government.	134.2	145. 4	137.8	141.6	143.7	146.1	150.3	152.9
Other labor income	40.7	44.9	42.3	43.3	44.2	45.3	46.7	47.9
Proprietors' income	74.2	84.2	77.1	80.6	81.5	85.0	89.8	88.4
Business and profe	54.0	57.5	55.3	56.3	57.1	57.9	58. 5	59.3
Farm	20.2	26.8	21.8	24,3	24.4	27.1	31.3	29.1
Rental income of person	24.1	25.1	24.9	24.7	24.6	25.3	25.7	25.8
Dividends	26.0	27.8	26,4	26.9	27.3	28.1	29.0	29.5
Personal interest income	78.0	87.5	80.3	82.7	85.6	89.1	92.7	96.4
Transfer payments	103.0	117.5	112.0	113.6	115.7	118.7	122.0	127.5
Old-age, survivors, disability, and health insurance benefits.	49.6	60.9	56.4	58.3	60.0	61.8	63.4	64.6
State unemployment insurance benefits.	5.5	4.2	4.7	4.1	4.1	4.1	4.4	5.1
Veterans benefits	12.7	13.6	14.1	13.3	13.4	13.8	13.9	14.7
Other	35.1	38.8	36.8	37.8	38.2	39.0	40.3	43.0
Less: Personal contributions for social insurance.	34.7	43.1	35.7	41.9	42.6	43.6	44.2	47.2
Less: Personal tax and nontax payments.	142.2	152.9	147.4	145.1	149.3	156.0	161. 1	163.0
Equals: Disposable personal	797.0	882.5	828, 7	851.5	869.7	891.1	917.8	931.4
Less: Personal outla	747.2	827.8	774.3	801.5	818.7	840.1	850.8	869.8
Personal consumption expenditures.-	726.5	804. 0	752.6	779.4	795.6	816.0	825. 2	844.6
Interest paid by consumers..-.-.-...	19.7	22.5	20.7	21.2	22,0	23.0	23.8	24.4
Personal transfer payments to foreigners	1.0	1.2	1.1	. 9	1.0	1.1	1.8	. 9
Equals: Personal saving.	49.7	54.8	54.4	50.0	51.0	51.1	67.1	61.5
Addenda:								
Disposable personal income:								
Total, billione of 1958 dollars.	577.9	608.0	595.1	603.9	604.8	609.5	613.2	603.4
Per capita, current dollars.	3,816	4,195	3,955	4,057	4,137	4, 231	4,349	4,406
Per capita, 1958 dollars.	2, 767	2,889	2,841	2,878	2,877	2,894	2,906	2,855
Personal saving rate, ${ }^{8}$ percent	6.2	6.2	6.6	5.9	5.9	5.7	7.3	6.6

Table 11.-Personal Consumption Expenditures by Major Type (2.3)

Peraonal consumption expenditures	726.5	804.0	752.6	779.4	795.6	816.0	825.2	844.6
Durable goods	117.4	130.8	122.9	132, 2	132.8	132.8	125.6	125.0
Automobiles and parts	52.8	57.8	55.7	60.5	59.7	59.2	51.8	48.3
Mobile homes.	4.1	4.6	4.4	5.0	5.0	4.2	4.0	4.1
Furniture and household equipment.	48.1	54. 5	50.0	53.7	54.4	55.0	55.0	57.3
Other	16.5	18.5	17.3	18.0	18.6	18.6	18.8	19.4
Nondurable goods	299.9	335. 9	310.7	322.2	330, 3	341.6	349.6	362.3
Food and beverages	145.3	161. 4	149. 1	154.7	158.1	164.3	168.3	173.6
Clothing and shoe	62.3	69.7	65.1	68.3	69.3	70.3	70.8	73. 4
Gasoline and oil	25.5	29.1	26.6	27.5	28.8	29.4	30.5	32.1
Other.	66.8	75.8	70.0	71.7	74.2	77.5	79.9	83.2
Services.	309.2	337.3	319.0	325.0	332.6	341.6	350.0	357.3
Housing.	105.5	114.5	107.9	110.6	113.3	115.8	118.4	121.5
Household operati	43.8	48.0	45.7	46.5	47.1	48.7	49.5	49.8
Transportation	21.8	23.4	22.2	22.8	23.2 149	153.7	24. 1	160. 7
Other	138.0	151.3	143.1	145.1	149.0	153.4	157.9	160.7

Table 12.-Foreign Transactions in the National Income and Table 12.- Forelgn Product Accounts (4.1)

Receipts from foreigner	74.2	102.0	80.4	89.7	97.2	104.5	116.4	122.3
Exports of goods and services.	73.5	102.0	79.7	89.7	97.2	104.5	116.4	130.4
Capital grants received by the United States (net) ${ }^{4}$	7	0	7	. 0	. 0	0	0	-8.1
Payments to foreignere	74.2	102.0	80.4	89.7	97.2	104.5	116.4	122.
Imports of goods and services	78.1	6.2	83.2	89.7	4.4	97.0	103.6	
Transfers to foreigners	3.7	3.6	3.5	3.0	3.3	3.5	4. 5	
Personal ${ }^{\text {a }}$	${ }_{2}^{1.7}$	1.2	1.1	2.1	1.0	2.5	2.7	
foreign in	-7.6	2.2	-6.	-3.0	5	4.0	8.	-. 6

Table 13.-Federal Government Receipts and Expenditures (3.1,3.2)

Federal Government recel	228.7	265.0	236.9	253.6	262.4	269.5	274.3	284. 9
Personal tax and nontax recel	107.9	114.5	111.3	108.5	111.4	116.9	121.0	123.3
Corporate profits tax accruals. ---..-	37.8	49.4	40.7	46.6	50.8	51.0	49.4	53.0
Indirect business tax and nontax accruals.	19.9	21.0	20.3	20.7	21.2	20.8	21.5	. 5
Contributions for social insurance..-	63.0	80.1	64.6	77.8	79.1	80.8	82.5	87.1
Federal Governmen	244.6	264.0	260.3	258.6	262.4	265.6	269.6	282. 3
Purchases of g	104.4	106.6	102.7	105. 5	107.3	106.8	106.8	112.1
National defe	74.4	73.9	72.4	74.3	74.2	74.2	73.0	76.3
Other	30.1	32.7	30.3	31.2	33.1	32.7	33.8	35.8
Transfer paym	82.9	95.4	91.0	91.8	93.8	96.6	9.6	107.0
To persons.	80.1	93.1	88.5	89.7	91.5	94.2	96.9	104.5
To foreigners (net)	2.7	2.4	2.5	2.1	2.3	2.5	2.7	2.6
Grants-in-aid to State and local governments	37.7	40.9	46.1	41.1	40.5	40.5	41.6	43.3
Net interest paid..........................	13.5	15.9	13.7	14.7	15.6	16.2	17.0	18.0
Subsidies less current surplus of government enterprises.	6.1	5.1	6.7	5. 5	5.1	5.3	4.6	2.0
Subsidies	5. 5	4.0	6. 1	4.6	3.9	3.8	3.7	1.6
Current surplus.-.-.-...---..........-	$-.6$	-1.1	$-.6$	-. 9	-1.2	-1.5	$-.9$	$-.4$
Less: Wage accruals less disbursements	. 0	. 0	. 0	. 0	-. 1	. 0	. 0	. 0
Surplus or deficit (-), national income and product accounts....	-15.9	. 9	-23.4	-5.0	. 0	4.0	4.7	2.6

Table 14.-State and Local Government Receipts and Expenditures (3.3, 3.4)

State and local government receipts...	177.2	194.5	191.2	190.2	192.8	196, 0	198.9	202.2
Personal tax and nontax receipts.	34.3	38.4	36.1	36.6	37.9	39.1	40.1	39.7
Corporate profits tax accruals..	4.9	6.4	5.2	6.1	6.6	6.6	6.3	6.8
Indirect business tax and nontax								
Contributions for social insura	89.6 10.7	96.8 12.0	92.5 11.3	94.9 11.6	96.0 11.8	${ }^{97.7}$	98. 5	${ }_{12} 9.6$
Federal grants-in-aid	37.7	40.9	46.1	41.1	40.5	40.5	41.6	43.3
State and local government expenditures.	164.0	184,0	171.6	176.4	181.2	185.7	192.9	197.7
Purchases of goods and services	150.5	170.5	158.0	163.0	168.0	172.2	178.8	185.7
Transfer payments to persons	18.2	19.5	18.8	19.1	19.4	19.5	20.0	17.8
Net interest paid....................-	-. 4	-1.3	-. 6	-1.2	-1.6	-1.3	-1.1	
Subsidies less current surplus of government enterprises. Subsidtes		-4.7 .1		$\begin{array}{r}-4.6 \\ \hline 0\end{array}$	-4.7	-4.7	1	1
Current surpius.	4.5	4.8	4.6	4.7	4.7	4.8	4.9	4.9
Less: Wage accruals less disbursements.	. 1	. 0	. 0	. 0	-. 1	0	0	0
Surplus or deficit (-), national income and product accounts...	13.1	10.5	19.6	13.9	11.5	10.4	6.0	4.5

Table 15.-Sources and Uses of Gross Saving (5.1)

Grose private saving	174.2	190.0	186.0	181.5	183.0	188.0	207.7	196.2
Personal savi	49.7	54.8	54.4	50.0	51.0	51.1		61.5
Undistributed corporate profts.	29.3	42.6	33.9	40.0	44.2	43.4	42.6	50.7
justment	-6.9	-17.3	-7.3	-15.4	-21.1	-17.0	-	-31.2
Corporate allowances capital consumption	65.9	71.4	68.0	69.3	70.5	71.7	74.2	75.2
Noncorporate capital consumption allowances	36.	38.6	37.1	37.7	38.6	38.8	39.3	. 9
Wage accruals less disbursements.	-. 3	. 0	. 0	.	38. 1	. 0	,	.
Government surplus or deficit (-), national incomeand productaccounts-	-2.8	11.4	-3.8	8.9	11.6	14.3	10.8	. 1
F	-15.9		-23.4	5.0	. 0	4.0	4.7	2. 6
St	13.1	10.5	19.6	13.9	11.5	10.4	6.0	4.5
Capital grante received by the United Stateo (net)	. 7	0	. 7	. 0	. 0	. 0	. 0	-8.1
Grose investm	170.6	204, 3	183.1	191.5	197.7	206, 0	222.	198.3
Gross private domestic inves Net foreign investment.	$\left.\right\|_{-7.6} ^{178.3}$	$\begin{array}{r} 202.1 \\ 2.2 \end{array}$	${ }_{-6.3}^{189.4}$	$\left\lvert\, \begin{array}{r} 194.5 \\ -3.0 \end{array}\right.$	$\begin{array}{\|r} 198.2 \\ -.5 \end{array}$	202.0 4.0	$\begin{array}{r} 213.9 \\ 8.3 \end{array}$	198.9 -.6
Statistical diserepan	. 5	2.9	. 2	1.1	3.2	3.7	3.7	3.1

*See footnote on page 16.
4 See footnote on page 17.

1972	1973	1972	1973				1974
		IV	I	II	III	IV	I
		Seasonally adjusted					
Inder numbers, 1958=100							

Table 16.-Implicit Price Deflators for Gross National Product (8.1)

Gross national product.	146. 10	153, 94	147.63	149.81	152,46	155.06	158.36	162.73
Personal consumption expenditures. -	137.9	145. 2	139.2	141.0	143.8	146.2	149.7	154.3
Durable goods.	112.8	114.5	112.5	113.0	114.3	115.1		
Nondurable goods	135.7	146.8	137.6	140.8	144.8	148.4	153.	160.1
Services-	153.2	160.1	155.3	157.0	159.0	160.7	163.3	166.6
Gross private domestic investment.....								
Fixed investment.	145.7	153.3	147.6	149.7	152.7	154.4	156.7	159.8
Nonresidential.	141.3	147.1	142.1	143.5	146.5	148.1	150.0	153
Structures.	181.7	194. 5	186.0	190.7	193.9	195.9		200.6
Producers' durable equipme	126.0	129.6	126.3	126.8	129.3	130.3	132.	134.7
Residential structures.	156.3	170.5	161.2	165.6	168.6	171.6	177.1	181.2
Nonlarm	156.4	170.5	161.3	165.6	168.6	171.7	177.2	181.3
Farm	150.8	164.9	156.0	159.2	162.7	165.7	170.9	174
Change in business inventories								
Net exports of goods and serrices.								
Exports.	130.2	150.9	133.7	137.4	145.9	155.0	164.0	
Imports	133.6	157.8	137.8	141.8	154.5	161.7	174.	194.4
Government purchases of goods and services.	178.3	191.6	181.6	186.0	189.6	192.5	198.2	202.8
Federal.		186.6	175.5	181.2	184.4	186.8	194, 5	
State and local	183.2	194. 8	185.9	189.2	193.1	196.1	200.4	206.2

Table 17.-Implicit Price Deflators for Gross National Product by Major Type of Product (8.2)

Grosa national product	146.10	153.94	147.63	149.81	152.46	155.06		
Final sales	146.2	154.0	147.8	149.9	152.5	155.1	158.6	162.7
Goods output	127.7	134.8	128.6	130.4	133.1	136.2	139.	3.4
Durable goods	119.0	121.3	118.8	119.2	120.5	122.2	123.	124.1
Nondurable goods	134.4	146.0	136. 4	139.6	143.7	148.0	152.	158.7
Serrices.	166.5	174.7	168.6	171.3	173.5	175.3	178.	182.5
Structures	170.6	185.3	175.4	180.1	183.6	186.2	191.7	197.3
Addendum: Gross auto product	111.7	112.5	110.1	111.1	112.6	113.7	112.6	112.4

Table 18.-Implicit Price Deflators for Gross National Product by Sector (8.4)

Grosa national product	146. 10	153.94	147.63	149.81	152.46	155.06	158.36	162.73
Private	139.78						151.58	155, 88
Business	138.0	145.3	139.5	141.4	143.9	146.4	149.3	153.3
Nonfarm	138.0	143.4	139.1	140.5	142.4	144.0	146.5	150.2
Farm	139.5	205.7	151.3	167.6	193.0	231.6	234, 0	248.2
Households and institution	212.1	24.8						
Rest of the worl								
General government.	221.5	236.1	224.6	230.8	233.9	237.1	242.6	245.5
Federal	230.5	247.2	232.6	243.2	244.3	246.2		
State and local.	216.5	230.3	220.2	224.2	228.4	232.4	236.1	239.0

Table 19.-Gross National Product: Change from Preceding Period (7.7)

Groes national product:	Percent		Percent at annual rate					
	9.4			15.2		10.6	10.5	4.5
	6.1	5.9	${ }_{8.1}$	8.7	2.4	3.4	1.6	6.3
Implicit price deflator	3.2	5.4	3.3	6.1	7.3	7.0	8.8	11.5
Chain price index....	3.6	5.8	3.9	7.1	7.0	7.0	8.4	12.0
Grose private product:						1.1		. 9
Current dollars...	9.6 6.5	11.9	8.4	$1{ }_{9} 1$	10.3	3. 6		-7.1
Implicit price defiator	$\stackrel{1}{2.9}$	5.4	3.5	5.7	7.6	7.3	8.8	11.8
Chain price index.-	3.1	5.7	3.9	6.5	7.2	7.1	8.3	12.9

Alternative Estimates of Corporate Depreciation and Proits, 1965-73

CORPORATE capital consumption allowances in the national income accounts are based primarily on the depreciation claimed by corporations under Federal tax laws and regulations. Because of the many changes in these laws and regulations since 1940, it has become increasingly difficult to analyze
not only the depreciation data but also the profits figures shown in the accounts. For some types of analyses, it is desirable to use instead figures based on depreciation methods and service lives that are consistent over time.

The valuation of depreciation poses another problem whose solution requires depreciation estimates that differ
from those published. Depreciation in the national accounts is valued in terms of the historical cost of assets and thus reflects a mixture of the prices of the various years in which the investments were made. For this reason, neither corporate depreciation nor corporate profits are comparable over time, nor are they comparable with other com-

Table 4.-Profits Before Taxes ${ }^{1}$ and Profits Before Taxes as a Percent of Gross Product of Nonfinancial Corporations: National Income Accounts Definition Compared with Profits Based on Alternative Methods of Depreciation, 1965-73
[B:llions of dollars]

Source: U.S. Department of Commerce, Bureau of Economic Analysis.
ponents of the accounts for any given year.

Alternative measures of corporate depreciation for the years 1929-66 based on various assumptions as to service lives, depreciation patterns, and bases of valuation were given in an article by Allan H. Young, "Alternative Estimates of Corporate Deprecia-
tion and Profits: Parts I and II," Survey of Current Business, April and May 1968. Those alternative measures were substituted for capital consumption allowances in the national accounts to derive alternative estimates of corporate profits. The alternatives were compared with published profits, and, for each, the ratios of profits to
gross corporate product and to income originating in corporations were compared for the period 1929-66 (tables 4, 5, and 6 of the May 1968 Survey article). The tables presented here extend these comparisons through 1973 based on revised and updated data. The numbering of the tables and lines is keyed to the May 1968 Survey article.

Table 5.-Profits After Taxes ${ }^{1}$ and Profits After Taxes as Percent of Gross Product of Nonfinancial Corporations: National Income Accounts, Definition Compared with Profits Based on Alternative Methods of Depreciation, 1965-73
[Billions of dollars]

[^2] dential properties owned by nonfinancial corporations.
Note.-Service life alternatives are 100 percent, 85 percent, and 75 percent of Bulletin F lives, and 100 percent of Bulletin F lives through 1940, then gradually declining to 75 percent of Bulletin F in 1960 and thereafter.

Table 6.-Profits Before and After Taxes ${ }^{1}$ and Profits Before and After Taxes as Percent of Income Originating in Nonfinancial Corporations: National Income Accounts Definitions Compared With Profits and Income Originating Based on Alternative Methods of Depreciation, 1965-73

[^3]Source: U.S. Department of Commerce, Bureau of Economic Analysis.

International Travel and Passenger Fares in the U.S. Balance of Payments: 1973

NET U.S. payments covering international travel and passenger fare transactions declined nearly $\$ 0.3$ billion to $\$ 3.1$ billion in 1973 , reflecting a larger rise in U.S. receipts from foreign visitors than in U.S. payments for travel abroad. Although net payments were higher than in any previous year

CHART 7

U.S. Payments and Receipts for Travel and Transocean Passenger Fares

U.S. Department of Commerce, Bureau of Economic Analysis

22
except 1972, this was the first reduction in the travel deficit since 1968, when lower U.S. travel expenditures, rather than an increase in travel receipts, accounted for most of the improvement.

Total receipts from foreign visitors in 1973 were $\$ 4.0$ billion, 24 percent more than in 1972. The total includes $\$ 3.3$ billion spent by foreign visitors within the United States and $\$ 0.7$ billion paid to U.S. air carriers for transportation to and from the United States. Vigorous economic expansion in most major foreign countries during 1973, two dollar devaluations (in December 1971 and February 1973), and the subsequent depreciation of the dollar in exchange markets from February to July 1973 probably contributed to the surge in travel receipts. The lower value of the dollar, in terms of appreciated foreign currencies, resulted in effective reductions of the cost of travel in the United States, and helped to generate a substantial increase in the number of visitors from oversea countries. The gain of 45 percent in U.S. air carriers' receipts from foreign visitors last year reflects higher air fares, a greater number of travelers,
and some improvement in the proportion of foreign visitors transported by U.S.-flag airlines, especially on the longer, more lucrative routes across the Atlantic and Pacific Oceans.
U.S. payments to foreign countries for travel and passenger fares were $\$ 7.0$ billion in 1973, up 8 percent from 1972. Although a record number of Americans visited oversea areas, the increase over 1972 was concentrated in the early months of 1973 , and a downtrend was evident by summer. Average per capita expenditures were up less than 6 percent. The depreciation of the U.S. dollar through July and inflation abroad raised the prices of travel services to U.S. travelers by considerably more than 6 percent, indicating that real expenditures declined, as they had in 1972.
This review of developments in international travel discusses total spending by U.S. residents traveling abroad and spending by foreign visitors in the United States. It includes the travel accounts and part of the passenger fare accounts that appear in the U.S. balance of international payments. Not

Table 1.-International Travel and Passenger Fares Transactions [Millions of dollars]

	1969 r	1970 -	1971 .	1972 .	1973 r
1. Total travel and pascenger fare payments	4,453	5,195	5,601	6,540	7,038
2. Travel: Payments by U.S. visitors in foreign countries (line 18)	3,373	3,980	4,311	4,944	5,371
3. Passenger fares: U.S. payments to foreign carriers (line 19).	1,080	1,215	1,290	1,596	1,667
4. Total travel and passenger fare receipts-	${ }_{2}^{2,346}$	2,708	2,871	3,211	3,968
5. Travel: Receipts from foreign visitors in the U.S. (iine 4) 6. Passenger fares: Receipts of U.S. carriers for transportation of foreign visitors to and from the United States ${ }^{1}$.	2,043 303	2,331 377	2,446 425	2,717 494	3,250 718
7. Net travel and passenger fares payments.	2,107	2,487	2,730	3,329	3,070
Memorandum:					
8. Travel payments of U.S. visitors in foreign countries (line 18)	3,373	3,980	4,311	4,944	5,371
9. Plus: U.S. passenger fare payments to foreign carriers (line 19).	1,080	1,285	1, 1,065	1, 1,264	1, 1,278
11. Equals: Total expenses of U.S. visitors.	5,348	6, 180	6,666	7, 804	8,316

r Revised.

1. Excludes fares paid by foreigners to U.S. carriers for transportation between two foreign points.

Nore.-References in parentheses to line 4, 18 and 19 indicate where these estimates may be found in tables 2 and 3 of the regular balance of payments presentations.

Source: U.S. Department of Commerce, Bureau of Economic Analysis.
included are certain earnings of U.S. air carriers for transporting foreign residents between foreign points; these earnings do not involve travel to and from the United States and are included in the transportation account (line 5 of tables 2,3 and 9 of the quarterly balance of payments presentation). On the other hand, information is included on passenger fares paid by U.S. travelers to U.S. transocean carriers, which do not enter into the balance of payments but nonetheless

Table 2.-Travel Payments of U.S. Visitors in Foreign Countries, by Area

	1969 ${ }^{\prime}$	1970	1971 ${ }^{\text {r }}$	1972	1973
Total travel payments	3,373	3,980	4,311	4,944	5,371
Canada	866	1,018	1,079	1,037	1,122
Mexico-...------1.....	692	778	897	1,037	1,152
Persons visiting Mexican border only	405	463	505	685	606
Oversea areas.	1,815	2,184	2,335	2,870	3, 097
Europe and Mediterranean area.	1,160	1,425	1,540	1,853	1,993
Western Europe.	1,075	1,310	1,373	1,645	1,800
United Kingdom..	229	293	324	342	354
France.	141	160	169	200	237
Italy--	140	172	178	215	218
Switzeriand	83	108	99	119	135
Germany .-.-.....-	114	148	126	163	170
Austria.-.........-	4	54	52	64	77
Sweden..	32	39	38	46	42
Sweden.-.-.-.---..	20	24	22	32	27
Norway...-	${ }_{4}^{23}$	31	25	39	33
Nelgium-Luxem-	41	44	44	57	63
bourg-...----...-	18	22	22	31	25
Spain.-	80	85	105	152	201
Portugal.		29		37	
Ireland. .-.	36	42	52	36	45
Greecee----	37	40	63	84	88
Other Western Eu- rope.	13	19	23	28	27
Other Europe and Mediterranean area.	85	115	167	208	193
Israel				124	
Other	41	53	57	84	93
West Indies and Central America.	375	390	408	504	563
Bermuda.	56	63	62	69	80
Bahamas.	132	127	120	144	136
Jamaica.	85	95	90	105	109
Other British West Indies.	42	44	56	60	95
Netherlands West Indies.	16	18	28	40	60
Other West Indies and Central Amer-			28	40	60
	44	43	52	86	96
South America.....-	92	90	92	113	132
Other oversea areas....	188	279	295	400	409
	70				
Hong Kong--.------	35	53	50	70	65
Australia-New Zea- land.	27			50	
Other..............	56	95	110	159	173

r Revised.
Nore.-Excludes travel by military personnel and other Government employees stationed abroad and by their dependents and U.S. citizens residing abroad: Includes shore expenditures of cruise travelers, but not their transportation ares or other passenger fares.
Source: U.S. Department of Commerce, Bureau of Ec-
onomic Analysis.
represent an important part of total spending by U.S. travelers (see table 1 , line 10).

U.S. Expenditures for Travel Abroad

U.S. residents spent $\$ 8.3$ billion for travel to foreign countries in 1973, consisting of $\$ 5.4$ billion for expenses in those countries and $\$ 2.9$ billion paid to U.S. and foreign air and sea carriers for transocean transportation and sea cruises. About $\$ 1.7$ billion of the passenger fare total was paid to foreign carriers, bringing U.S. travel and passenger fare payments to foreign countries to $\$ 7.0$ billion. The remaining $\$ 1.3$ billion was paid by U.S. residents to U.S. carriers, and does not enter into the U.S. balance of payments estimates.

Of the $\$ 5.4$ billion of U.S. travel outlays within foreign countries $\$ 2.3$ billion went to Canada and Mexico, as the two countries upped their combined share of U.S. travel spending slightly to more than 42 percent of
the total. U.S. travel outlays within oversea countries totaled $\$ 3.1$ billion, rising only 8 percent in 1973 compared with 23 percent in 1972. Most of the increase represented higher costs as the number of travelers rose only 2 percent (compared with 20 percent in 1972) and the average length of stay declined.

Over 99 percent of the 6.9 million U.S. travelers to oversea areas in 1973 traveled by air (table 4). Travelers by ship to oversea areas numbered about 57,000 , down more than 20 percent from 1972. Sea cruises continued to grow in popularity however, and about 750,000 U.S. residents took cruises last year, up 14 percent from 1972.

American travelers' payments to foreign carriers increased only 4 percent in 1973 compared with a 25 percent rise in 1972. The official devaluation of the dollar in February 1973 led to an increase, beginning in April 1973, in air fares charged U.S. residents to reflect the new dollar exchange rates.

Average Length of Stay and Average Daily Expenditure of U.S. Travelers in Europe and the Mediterranean Area, 1966-73

[^4](There had also been a comparable rise in April 1972 following the dollar devaluation in December 1971). The new 1973 fares may have contributed to a shift in oversea passengers to charter air travel, which rose 12 percent over 1972, according to data of the U.S. Immigration and Naturalization Service. A higher proportion of charter travel would effectively reduce both average fare payments and total payments to foreign carriers. Also, the number of Americans using foreign-flag charter fell 25 percent below the number in 1972. U.S. air carriers handled about 85 percent of all U.S. oversea passengers using charters in 1973, and the total number carried increased 23 percent.

Travel to Mexico and Canada

U.S. travelers' expenditures in Mexico during 1973 reached $\$ 1.2$ billion, 11 percent more than in 1972. Continued stability of the exchange rate between Mexican pesos and U.S. dollars, in contrast to the appreciation of a number of foreign currencies vis-a-vis the dollar, may have encouraged trips and purchases in Mexico, although consumer prices rose somewhat faster in Mexico than in the United States.

Travel to Canada, primarily by auto, may have been adversely affected by fuel supply problems that developed in some areas of the United States during the 1973 summer travel season. The number of U.S. residents visiting Canada last year increased less than three percent, with most of the rise occuring in the first half of the year. Total outlays of -U.S. visitors were $\$ 1.1$ billion, 8 percent higher than in 1972; most of the increase reflected higher average outlays, which in turn closely paralleled rises in Canada's consumer price index.

Travel to Europe and the Mediterrean

More than 3.9 billion Americans spent $\$ 2.0$ billion in Europe and the Mediterranean area in 1973. Although both figures were new records, the advance over 1972 was slight. The increase in the number of travelers was only 2 percent, and fewer Americans actually traveled in Europe after midyear than in the same months of 1972. The decline was sharpest in the fourth quarter, partly due to the October Mid-East war, the oil embargo, and their economic aftermaths in Europe. Total outlays in the areas increased

8 percent, mainly because of higher average expenditures (up 6 percent).

The average cost of a U.S. traveler's visit to Europe-including both transatlantic fare and travel expenses in Europe-was about $\$ 880$, compared with $\$ 850$ in 1972 . The average passenger fare remained unchanged at about $\$ 370$ for the third consecutive year, despite the higher air rates introduced in April 1973. Some factors offsetting the higher fares were: increased use of chartered flights, with per person cost well below regular rates; a rise in the proportion of off-peak season travel when low fares apply; and special low fares connected with offseason, shortterm pre-paid tours.

A high rate of inflation in the Euro-pean-Mediterranean area, combined with dollar depreciation, raised the average U.S. visitor's travel expense in the area upward by $\$ 27$ to $\$ 509$. However, the 6 percent rise was considerably less than might have been expected from the change in prices in dollar terms. Average daily expenses, at $\$ 21$, were about 20 percent above those of a year earlier and probably were a better indicator of the relative change in dollar costs from 1972 levels. The total average outlay of the U.S.

Table 3.-Number of U.S. Travelers and Their Average and Total Travel Payments in Europe and the Mediterrean

	1972					1973					Percent Change 1972-73		
	$\underset{\text { of }}{\text { Number }}$ travelers (thousands)	```Percent of total trav- velers```	Average spending per traveler (dollars)	$\begin{gathered} \text { Total } \\ \text { spent } \\ \text { (millions } \\ \text { of } \\ \text { dollars) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { of } \\ \text { total } \\ \text { spending } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { trav- } \\ \text { elers } \\ \text { (thou- } \\ \text { sands) } \end{gathered}$	Percent of total travelers	Average spending per traveler (dollars)	$\begin{gathered} \text { Total } \\ \text { spent } \\ \text { (millions } \\ \text { of } \\ \text { dollars) } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { of } \\ \text { total } \\ \text { spending } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { trav- } \\ \text { elers } \end{gathered}$	Average apending per traveler	Total spent
Europe and Mediterranean	3,843	100.0	482	1,853	100.0	3,915	100.0	509	1,993	100.0	1.9	5.6	7.6
Western Europe..	3,666	95.4	449	1,645	88.8	3,720	95.0	484	1,800	90.3	1.5	7.8	9.4
United Kingdom.	1,492	38.8	229	342	18.5	1,334	34.1	265	354	17.8	-10.6	15.7	3. 5
France......	1,115	29.0	179	200	10.8	1, 106	28.3	215	237	11.9	-8.8	20.1	18.5
Switzeriand	976 811	21.1	147	119	10.6 6.4	897 772	22.9 19.7	175	135	11.9 6.8	-8.1	19.1	13.5
Germany	964	25.1	170	163	8.8	915	23.4	186	170	8.5	-5.1	9.4	4.3
Austria,	537	14.0	119	64	3.5	516	13.2	149	77	3.9	-3.9	25.2	20.3
Denmark.	361	9.4	127	46	2.5 1.7	274	7.0	153	42	2.1	-24.1	20.5	-8.7
Sweden..	212	5.5	148	32	1.7	184	4.7	145	27	1.4	-13.2	-2.0	-15.6
Norway	196	5.1	197	39	2.1	170	4.3	194	33	1.7	-13.3	-1.5	-15.4
Netherlands.	587	15. 3	98	57	3.1	572	14.6	111	63	3.2	-2.6	13.3	10.5
Belgium-Luxembourg	365	9.5	83	31	1.7	342	8.7	72	25	1.3	-6.3	-13.:	-19.4
Spain.-	639	16. 6	237	152	8.2	784	20.0	257	201	10.1	22.7	8.4	32.2
Portugal.	267	6.9	138	37	2.0	332	8.5	173	58	2.9	24.3	25.4	56.8
Ireland.	190	4.9	190	36	1.9	210	5.4	214	45	2.3	10.5	12.6	25.0
Greece	324	8.4	259	84	4.5	315	8.0	280	88	4.4	-2.8	8.1	4.8
Other W. Europe..	264	6.9	n.a.	28	1.5	260	6.6	n.a.	27	1.4	-1.5	n.a.	-3.6
Other Europe and Medi	n.a.	n.a.	n.a.	208	11.2	n.a.	n.a.	n.a.	193	9.7	n.a.	n.a.	-7.2
Israel..	319	8.3	386	124	6.7	261	6.7	383	100	5.0	-18.2	$-.8$	-19.4
Other.	453	11.8	185	84	4.5	496	12.7	188	93	4.7	9.5	1.6	10.7

n.a. Not available.

Note. - For coverage, see table 2; data on average spending exclude shore expenses of cruise travelers.
traveler covered a visit averaging 24 days, 3 days shorter than in 1972. The average tourist visited about 2.5 countries, slightly below the 1971 and 1972 numbers.

Changes in total travel spending in countries of the European-Mediterranean area are shown in table 3. The total expenditure data are affected by the two components shown in the table: changes in the number of travelers and changes in their average expenditure in the country. Changes in average expenditure, in turn, reflect changes in the length of stay in the country and change in the average spending per day (see table 5a). All of these factors are affected by the changing tastes of tourists; changes in local political conditions; official and private tourism promotion programs of various coun+ tries, and changing costs of travel, including the impact of varying rates of inflation and of changing exchange rates.

Most European-Mediterranean countries had fewer American visitors last year. Declines in the number of visitors ranged from less than 1 percent in France to 24 percent in Denmark. Declines were relatively large in other Scandinavian countries as well, and there was a sharp drop in American visitors to Israel. For all countries registering declines, the loss averaged about 8 percent from 1972 levels. Spain and Portugal, on the other hand, experienced increases in the number of American visitors approaching 25 percent in the wake of even greater growth

Table 4.-U.S. Travelers to Oversea Countries by Means of Transportation and by Area

[Thousands of travelers]					
	1969	1970	1971	1972	1973
Total.	4,623	5,260	5,667	6,790	6,933
Sea-	151	120	95	73	${ }^{57}$
Air	4,472	6,140	5,572	6,717	6,876
Europe and Mediterranean.				3,843	3,915
Western Europe..-	2,285	2,783	3,030	3,666	3,720
West Indies and Central America....	1,700	1,663	1,736	1,992	2,032
South America.-	245	249	254	338	383
Other........	315	450	475	617	603

Note.-For coverage, see table 2; excludes cruise travelers, Who numbered about 530,000 in 1969, 557,000 in 1970, 629,000 in 1971,657,000 in 1972, and 750,000 in 1973.

Source: U.S. Department of Commerce, Bureau of Economic Analysis, based on data of U.S. Department of Justice, Immigration and Naturalization Service.
in 1972. About 10 percent more Americans visited Ireland, compared with a 1972 decline of 18 percent. Adequate explanations are lacking for the exceptional performances of these three countries. A shared reputation for relatively low travel costs may have been a factor, although inflation and dollar depreciation were evident in these countries as well as elsewhere.
Increased average expenses more than offiset the smaller number of Americans visiting individual countries, and most European-Mediterranean countries earned more U.S. travel dollars in 1973. The United Kingdom was the most popular destination for U.S. travelers, who spent over $\$ 350$ million there. Average outlays in the U.K. were up nearly 16 percent for a visit of about the same duration as in 1972. Visitors to France stayed an average of one day more than in 1972, and their total expenses rose 19 percent to $\$ 237$ million as their average outlay increased 20 percent. Spain, Portugal, and Ireland each recorded larger-than-average increases in receipts from U.S. travelers, as an increased number of travelers registered higher average spending. In Italy, average expenses per traveler rose only enough to offset the 8 percent decline in American visitors, and total travel receipts were virtually unchanged from 1972.

Among European countries, only Norway, Sweden, and Belgium experienced a decline both in the number of American visitors and in their average outlays, and consequently earned less than in 1972. Americans in Belgium appear to have shortened the duration of their visit, accounting for their lower expenses in that country. In Denmark, increased average outlays were insufficient to offset a sharp reduction in the number of U.S. visitors, and Denmark's total earnings from U.S. travelers declined 9 percent.
U.S. expenditures in Israel were nearly 20 percent lower than in 1972. Most of the decline was due to a sharp decrease in the number of visitors; average expenses were also somewhat reduced although the length of stay increased by about 3 days. Fewer visitors to Israel were evident in the

Table 5.-Average Length of Stay of U.S. Travelers In Selected Regions

[Days]					
Region	1969	1970	1971	1972	1973
Europe and Mediterranean.	29	27	26	27	24
Caribbean area...	n.a.	11	10	11	10
Bermuda Bahamas	$\begin{array}{\|l\|l\|} \text { n.a. } \\ \text { n.a. } \end{array}$	7 5	7	6 6	5
South America. Far East and other areas.	$\left\lvert\, \begin{array}{l\|l\|} \text { n.a. } \\ \text { n.a. } \end{array}\right.$	$\begin{aligned} & 22 \\ & 28 \end{aligned}$	$\begin{aligned} & 20 \\ & 27 \end{aligned}$	${ }_{30}^{21}$	14 28

n.a. Not available.
Note.-For coverage, see table 2; excludes cruise travelers.

Source- U.S. Department of Commerce, Bureau of Economic Analysis.
first half of the year, but the summer season showed strong recovery until October events inhibited travel to the Middle East. About 40 percent of all U.S. visitors to Israel last year visited only that country.

In the West Indies and Caribbean area in 1973, 2 million U.S. travelers spent about $\$ 560$ million. Higher outlays per traveler were mainly responsible for the 12 percent increase over 1972, but earnings from cruise travelers were also higher (the number of cruise travelers is not included with the 2 million visitors), and the number of American visitors rose about 2 percent. The average length of stay was reduced somewhat. Travel spending in the Bahamas was 6 percent lower than in 1972 at $\$ 136$ million but still led the area in receipts from U.S. travelers.

Table 5a.-Average Length of Stay and Average Daily Expenditure of U.S. Travelers in Selected European and Mediteranean Countries, 1973

Country		$\begin{array}{\|c} \begin{array}{c} \text { Average } \\ \text { daill } \end{array} \\ \text { expandtur } \\ \text { (dollars) } \end{array}$
Europe and Mediterranean, total.	13 9 11	21
United Kingdom........		${ }_{24}^{21}$
Ftaly		
Switzerland Germany Austria.	11 11 7	30 17 23
Denmark Netherlands	6 8 8	29 28 21 21
Belgium-Luxembourg Ireland Ireland	$\begin{array}{r}3 \\ 12 \\ 15 \\ 15 \\ \hline\end{array}$	22 21 15
Greece Israel.	14 26	${ }_{15}^{20}$

Note.--Excludes passenger fares and shore expenditures of cruise travelers; excludes transocean transportation. Data have been rounded to the nearest day and dollar.
Source: U.S. Department of Commerce, Bureau of Economic Analysis.

In Jamaica, U.S. travel expenditures were $\$ 109$ million, up 4 percent over 1972, while Bermuda increased its earnings 16 percent to $\$ 80$ million. Spending in other West Indies and Caribbean areas continued the rapid growth pattern of recent years, increasing nearly 30 percent. Further expansion of travel to South America resulted in the expenditure there of $\$ 132$ million by about 380,000 U.S. travelers, up 17 percent and 13 percent, respectively.

The decline in U.S. travel to "other areas," primarily the Pacific and Far East, reflected the withdrawal of U.S. troops from Viet-Nam, increased transportation costs, and higher price levels in those countries. However, higher average spending more than offset the 2 percent decline in the number of visitors to 600,000 , and U.S. travel spending in the area rose slightly to $\$ 409$ million. In Japan, U.S. outlays remained at about the 1972 level of $\$ 120$ million, while travel payments to Hong Kong declined about 7 percent to $\$ 65$ million. U.S. travel to Japan and Hong Kong had experienced strong growth in 1972 after a decline in 1971, and may have been adversely affected in 1973 by the withdrawal of U.S. forces from Viet-Nam (and the consequent reduction of the number of

Table 6.-U.S. Receipts From Foreign Visitors in the United States

[Millions of dollars]					
	1969r	1970	1971	1972	1973
Total U.S. travel receipts	2,043	2,331	2,446	2,717	3,250
Canada	800	859	888	928	1,046
Mexico	530	583	593	620	694
Total oversea countries..--	713	889	965	1,169	1,510
Western Europe-.-	264	318	367	452	559
United Kingdom....--	$\stackrel{43}{4}$	51 39	${ }^{67}$	${ }^{96}$	126
Germany	$\stackrel{35}{55}$	67	79	93	137
Italy.....	24	29	33	40	46
Netherlands.	14	19	22	23	27
Sweden-...	10	14	13	18	19
Switzerland.---....--	16 68	15 84	16 89	$\stackrel{21}{98}$	${ }^{23}$
and South America	276	334	325	343	403
South America-......--	144	164	162	174	198
Other oversea countries.	172	237	273	374	
Japan.	67	101	134	205	334

r Revised.
Nore.- Includes expenditures of travelers for business and pleasure, foreigners in transit through the United States. and students: excludes expenditures by foreign government personnel and foreign businessmen employed in the United purposes). Transocean passenger lares are also excluded.
Source: U.S. Department of Commerce. Bureau of Economics Analysis.
friends and families of military personnel visiting the area). Australia and New Zealand may have been affected similarly but to a lesser extent, and their receipts from American travelers showed little change from the 1972 level. The small rise in travel dollar receipts registered for "other areas" occurred in countries for which no separate estimates are made.

Foreign Visitors to the United States

Residents of foreign countries spent almost $\$ 3.3$ billion for travel within the United States in 1973, up 20 percent from 1972. Those visiting from oversea countries increased their spending here nearly 30 percent to $\$ 1.5$ billion, and in addition paid over $\$ 0.7$ billion to U.S. transocean air carriers for passage to and from the United States.

Canadian visitors' expenditures in this country rose 13 percent and exceeded $\$ 1$ billion for the first time last year, although actual and potential fuel supply problems may have inhibited expansion of Canadian travel to the U.S. Nearly 90 percent of the Canadians visiting the U.S. traveled by auto, and although their number increased only 1 percent during 1973, average outlays increased substantially. Visitors from Mexico spent a record $\$ 0.7$ billion in the United States. Their expenditures rose 12 percent in 1973, compared with increases of under 5 percent in 1971 and 1972.
Oversea residents visited the United States in record numbers in 1973, their total number rising 24 percent to 3.6 million. More than three-fourths came on pleasure trips, the remainder on business, in transit to other destinations, and as students.
The number of Japanese visitors swelled to 640,000 , over 200,000 more than in 1972, and led all other oversea countries in travel to the U.S. Their travel expenditures here jumped 63 percent to $\$ 334$ million, the highest of all overseas countries. In the two years following the December 1971 Smithsonian Agreement, which included a substantial devaluation of the dollar against the Japanese yen, Japanese
travel spending here has increased $21 / 2$ times.

About 1.6 million European visitors to the United States spent about $\$ 560$ million here last year, each showing a 24 percent rise. About 30 percent of the Europeans were residents of the United Kingdom. The number of British visitors increased about 25 percent to 485,000 , and they spent $\$ 126$ million. Their average expenses were about 5 percent higher, raising total U.S. receipts from the U.K. by 30 percent. The number of German visitors increased 40 percent to 334,000 , and their expenses in the United States totaled $\$ 137$ million, up 47 percent. Receipts from German visitors accounted for one-fourth of all receipts from European travelers, while their numbers accounted for only one-fifth of all visitors from Europe. The number of French visitors increased 23 percent to nearly 200,000 and their expenses here increased 20 percent to $\$ 76$ million.

The number of visitors from the West Indies and Central America increased about 10 percent in 1973, to about 500,000 . The average visitor from the area spent more than in 1972, and U.S. receipts were up 21 percent to $\$ 205$ million. Receipts from 358,000 South American visitors amounted to $\$ 198$ million, both figures were about 15 percent above the 1972 totals.

Table 7.-Foreign Visitors to the United States From Oversea Countries, by Area and Type of Visa

[Thousands of travelers]					
	Total	Busi- ness	Pleasure	$\underset{\text { Sit }}{\text { Tran- }^{-}}$	Student
Oversea countries, total:					
1973..----	3,554	471	2,772	224	87
1972.	2,861	370	2, 194	222	75
Europe:					
1973-.	1,623	242	1,261	109	11
1972.	1,306	203	986	104	13
West Indies and Central Amer- ica: 197					
1973.-.-.......-.	497	31	424	26	16
1972.	451	23	387	27	14
South America:					
$1973 .$	358	31	293	23	11
1972.	312	24	253	24	11
Other oversea areas: 1,076 167 794 66 49					
1972-.-------------	792	120	568	67	37

Note.-Excludes visitors from Canada and Mexico, excludes foreign government personnel and foreign businessmen employed in the United States. Data are not adjusted
for multiple entries on a single trip.
Source: U.S. Department of Commerce, Bureau of Eco-
nomic Analysis, based on data of U.S. Department of nomic Analysis, based on data of U.S. Department of Justice, Immigration and Naturalization Service.

U.S. Multinational Companies: Proititability, Financial Leverag̣e, and Elifective Income Tax Rates

THIS article analyzes 1966 and 1970 data on the profitability, financial leverage, and effective income tax rates of a sample of large U.S. multinational companies (MNC's) responding to a special voluntary survey taken by the Bureau of Economic Analysis. The MNC sample consists of 298 U.S. reporters (U.S. parents) and their 5,237 majority-owned foreign affiliates (MOFA's). ${ }^{1}$

The article is in three major parts. The first discusses the profitability of U.S. parents and their MOFA's, compares the profitability of U.S. manufacturing parents with that of all U.S. manufacturing corporations, and examines the effect of age and size on MOFA profitability. Profitability is measured by rates of return on assets and on net worth. The second part deals with the financial leverage exercised by U.S. parents and their MOFA's, and compares the financial leverage of U.S. manufacturing parents with that of all U.S. manufacturing corporations. Financial leverage can be defined as the use of funds (usually debt) bearing a fixed return to finance a portion of a firm's assets. The third part compares the effective income tax rates of U.S. parents with those of all U.S. corporations, by industry; discusses the effect of foreign tax credits on all U.S. corporations' income tax liabilities; and compares effective income tax rates of the MOFA's, by country and industry.

Because of differences in accounting methods, problems of comparability were encountered, especially between data for all U.S. corporations and U.S. parent companies. These problems have been partially resolved; where comparability could not be achieved, it is so indicated.

[^5]
Major findings

The major findings of this article are:

1. The after-tax rates of return on assets and net worth of U.S. manufacturing parents and of all U.S. manufacturing corporations declined significantly from 1966 to 1970 . The rates of return of U.S. manufacturing parents were higher than those of all U.S. manufacturing corporations in both 1966 and 1970, primarily because of the greater share of foreign-source income in the U.S. parents' earnings.
2. The after-tax rate of return on assets of manufacturing MOFA's was lower than that of their U.S. parents in 1966 but slightly higher in 1970, partly reflecting changes in business conditions here and abroad from 1966 to 1970 .
3. Petroleum affiliates in developing countries had much higher before-tax rates of return than in developed countries. There was little difference between the before-tax rates of return of manufacturing affiliates in the two areas.
4. In European manufacturing, younger affiliates had lower before-tax rates of return on assets and a higher incidence of losses than older affiliates, and medium-sized affiliates usually had markedly higher rates of return than large or small affiliates.
5. The MOFA's sampled were much more highly levered than their U.S. parents.
6. Effective U.S. income tax rates of the U.S. parents were lower than those of all U.S. corporations, primarily because of the foreign tax credit received by the parents.
7. MOFA's had higher effective income tax rates in developing than in developed countries, mainly reflect-
Note.-Patricia C. Walker, Smith W. Allnutt, Arnold A. Gilbert, and Lester B. Koransky made significant statistical contributions to this article.
ing the large royalty payments by petroleum producing affiliates in developing countries which were often reported as income taxes. MOFA's in manufacturing, however, had higher income tax rates in developed countries.

The data

The data on MNC profitability and income tax rates used in this article are primarily from the 1970 BEA special survey. The survey provided data on before- and after-tax profits, income taxes, sales, assets, and net worth of the 298 U.S. parent companies for 1966 and 1970 and of their 5,237 MOFA's for $1970 .{ }^{2}$ Similar 1966 data for the MOFA's in the sample were drawn from BEA's 1966 benchmark survey of the universe of all MNC's.

The relative importance of the sample in the MNC universe is suggested by comparing the sample of 298 firms with all $3,300 \mathrm{MNC}$'s reporting in the 1966 benchmark survey. In 1966, the 298 U.S. parents in the sample accounted for 39 percent of the U.S. assets of all MNC's and their 5,237 MOFA's held 55 percent of the assets of all MOFA's.

The 298 U.S. parents in the sample included a significantly higher proportion of manufacturing and integrated petroleum companies-measured both by number of firms and by amount of assets-and a correspondingly lower proportion of firms in other industries than the MNC universe. In 1966, the U.S. assets of the 298 MNC's were distributed 57 percent in manufacturing (excluding petroleum refining and related industries), 19 percent in petroleum, and 24 percent in other industries; the distribution of U.S. assets of all MNC's was 34 percent in manufacturing, 9 percent in petroleum, and 57

[^6]percent in other industries. The reason for this difference is that the 1970 special survey focused on the larger nonfinancial MNC's, which tend to have a heavier concentration in manufacturing and petroleum than all MNC's.

The data for the 298 U.S. parents in the sample are consolidated for all domestic affiliates usually included in consolidated company reports. The data for the MOFA's are unconsolidated, except in the case of MOFA's of the same U.S. parent which are classified in the same country and industry. Such MOFA's could be consolidated at the reporter's option. ${ }^{3}$

The industry classification of U.S. parents was based on the major activity (as defined by that activity's share in sales) of the entire consolidated U.S. enterprise; MOFA's were classified by their own major activity rather than that of their U.S. parents.

The data for all U.S. corporations which are compared with the data for the 298 parents were collected by the Internal Revenue Service. A major comparability problem arose because the IRS data are on a tax accounting basis, while the MNC data reported to BEA are on a book accounting basis. This problem was partly resolved in analyzing the profitability of the two groups by using IRS data which reconcile corporations' after-tax profits per IRS Code with their after-tax profits per books of account. However, primarily because of the level of industry detail provided in the IRS reconciliation, profitability comparisons between the two groups were limited to manufacturing. (See the technical appendix for the method used to adjust the profits of all U.S. manufacturing corporations to a book accounting basis.)

Another comparability problem resulted from the lesser degree of consolidation employed for all U.S. corporations than for U.S. parents. This problem could not be alleviated; thus, sales and assets of all U.S. corporations are overstated relative to those of U.S. parents.

[^7]There were also differences in sampling techniques employed by BEA and the IRS. The IRS sample is a stratified random sample with all of the largest firms covered and the coverage of smaller firms declining with size. The BEA sample was not random since only the largest U.S. parents were asked to report and their response was voluntary. Thus, small firms were underrepresented in the MNC data compared with the IRS data. However, this was not a major problem because small firms receive little weight in the IRS data and because the overall profitability and effective income tax rates in this article are weighted averages of the rates of individual firms. Thus, the rates presented for both samples are roughly comparable, primarily reflecting the impact of the larger firms.
Other problems in interpreting the data presented in this article should also be noted. A high level of industry aggregation has been used, resulting in firms with somewhat different product mixes being included in the same industry.
Industry differences in the extent to which leased equipment is employed may have affected the measures of profitability and financial leverage. The value of leased equipment may not be reflected in a firm's total assets and the associated rents paid, which are deducted as an expense in calculating profits, may not provide a full offset.
Also, the age distribution and capital intensity of firms in various industries differ. Since this article employs total assets net of depreciation in analyzing profitability and financial leverage, the industry comparisons may be affected by differences in the amount of depreciation reserves of firms of differing ages or capital intensities.
Another factor limiting the comparability of the data, from an economic rather than a conventional accounting standpoint, is that companies generally depreciate the acquisition cost of their fixed assets rather than their current replacement cost. This practice introduces differences among the measures of profitability used in this
article to the extent that rates of inflation vary among countries and types of fixed assets, and to the extent that the durability of these assets differs. Analogous problems stem from the valuation of business inventories.

Profitability

In measuring the relative performance of firms, three measures of return on investment are employed in this article:
$\begin{aligned} & \text { After-tax rate } \\ & \text { of return on } \\ & \text { net worth }\end{aligned}=\frac{\text { net income after all }}{\text { income taxes }}$ net worth at yearend,
$\begin{aligned} & \text { After-tax rate } \\ & \text { of return on } \\ & \text { assets }\end{aligned}=\frac{\text { net income after all }}{\text { income taxes }}$
total assets at yearend,
where total assets are net of depreciation.

In the numerator of the last two measures, it might be preferable from an economic standpoint if net income were calculated before deducting interest paid. The resulting ratios would reflect the return to all those (including creditors) with claims on the firm's assets. This measure was not employed in the article because the necessary data on interest paid were not available from the 1970 special survey.

The industry rates of return presented are generally averages of the rates of return of the individual firms in each industry, weighted by firm size, so that the rates of return of larger firms receive more weight than those of smaller firms. ${ }^{4}$

In analyzing the profitability of the MNC's, the data on after-tax rates of return on assets are broken down into after-tax profit margins and asset turnover ratios. The after-tax profit margin is the amount of net income, after all income taxes, generated by a dollar of sales (net of allowances and returns) or

After-tax profit margin $=\frac{\begin{array}{c}\text { net income } \\ \text { after all } \\ \text { income taxes }\end{array}}{\text { sales }}$.

[^8]The asset turnover ratio is the amount of sales generated by a dollar of assets, that is

$$
\text { Asset turnover ratio }=\frac{\text { sales }}{\text { total assets }} \text { at yearend }
$$

Thus, the after-tax rate of return on assets equals the product of the aftertax profit margin and the asset turnover ratio.

In comparing profit margins and asset turnover ratios, it should be noted that firms in both the IRS and the MNC samples were given the option of reporting their sales either inclusive or exclusive of excise and sales taxes. It was not possible to ascertain the resulting direction or degree of bias.

Domestic after-tax profitability, by

 industryThe 1966 and 1970 after-tax rates of return on net worth of MNC parents were 12.5 percent and 8.8 percent, respectively (table 1). Their lower profitability in 1970 was due to the fact that U.S. economic activity was cyclically lower in 1970 than in 1966 and also to a basic downtrend in profitability that appears to have characterized large parts of the postWorld War II period.

Of the major industries examined, U.S. parents in manufacturing experienced the sharpest decline in their rate of return on net worth-from 14.0 percent in 1966 to 8.6 percent in 1970 . The rate of return on net worth of U.S.
petroleum parents declined from 10.6 percent to 8.9 percent, while that of U.S. mining parents increased slightly.

Within manufacturing, all industries shown in table 1 had declining rates of return during the 1966-70 period. U.S. parents in transportation equipment experienced the sharpest drop, with their rate declining from 15.7 to 6.4 percent.

The industrial pattern of declining profitability of U.S. parents was similar when measured by after-tax rates of return on total assets. Declining profit margins rather than declining asset turnover ratios were primarily responsible.

Based on after-tax rates of return on net worth in 1966, U.S. parents in

Table 1.-The Profitability and Financial Leverage of U.S. Parents and MOFA's in Sample, by Industry, and of All U.S. Manufacturing Corporations ${ }^{1,2}$

Industry	After-tax rates of return on net worth ${ }^{3}$ (A)		After-tax rates of return on assets 4 $(\mathrm{B})=(\mathrm{C} \times \mathrm{D})$		After-tax profit margins ${ }^{5}$ (C)		$\begin{aligned} & \text { Asset turnover } \\ & \text { ratios }{ }^{\circ} \text { (D) } \\ & \text { (D) } \end{aligned}$		$\begin{aligned} & \text { Financial leverage } \\ & \text { ratios } 7 \\ & (\mathrm{E})(\mathrm{A} / \mathrm{B}) \end{aligned}$	
	1966	1970	1966	1970	1966	1970	1966	1970	1966	1970
U.S. parents in sample.	12.5	8.8	7.4	4.7	7.7	5.3	0.96	0.88	1.69	1.88
Manufacturing	14.0	8.6	8.1	4.5	6.9	4.4	1.17	1.04	1.74	1.91
Food products -	13.7	12.3	8.1	6. 5	4.0	3.8	2.04	1.70	1.69	1.88
Chemicals and allied products.	15.0 10.5	10.0 6.5	9.7	6.1 3.3	9.5 6.3		1.02 .97	. 88	1.54 1.71	1.64 1.98
Machinery	14.0	8.7	7.8	4.5	6.5	4.5	1.19	. 99	1.80	1. 93
Transportation equipment.	15.7	6.4	8.1	3.0	6.5	2.6	1. 24	1.12	1.94	2.16
Other.--.....................	13.6	10.4	8.4	5.8	7.4	5.8	1.13	1.00	1.62	1.79
Petroleum.	10.6	8.9	7.4	5.8	10.8	8.3	. 69	. 70	1.43	1. 53
Other industries.	10.6	9.1	5.8	4.1	8.6	6.3	. 67	. 66	1.84	2.22
Mining..	(D)	13.3	(D)		13.4	13.0				
Trade.-	(D)	11.8 8.0	(D)	8. 5. 3	$\begin{array}{r}13.8 \\ 11.8 \\ \hline\end{array}$	3.3 7.8	(D)	$\begin{array}{r}1.59 \\ \hline 45\end{array}$	(D)	2. 24 2. 29
Majority-owned foreign affiliates in sa	13.8	17.1	6.4	7.1	6.0	6.3	1.08	1.12	2.15	2.41
Manufacturing.	10.7	11.7	4.9	5.1	4.2	4.2	1.15	1.22	2.18	2.27
Food products	12.6	11.4	6.5	5.1	4.1	3. 3	1.58	1.56	1. 94	2. 24
Chemicals and allied products.	10.0 7.4	12.3 9.6	4. ${ }^{4}$	5.4 4	4.9 3.4	5.6 3.8	. 94	1.97	2.19 2.37	2.29 2.39
Primary and labricated metals.	11.4	15.5	4. 9	6. 6	3. 4 4.6	6.0	1.07	1.09	2.33	2.36
Transportation equipment.	11.3	9.2	4.9	3.9	3.5	2.5	1.40	1.58	2.31	2.37
Other.	9.7	9.2	5.2	4.6	4.8	. 40	1.06	1.16	1.88	2.01
Petroleum.	17.7	26.5	8.3	10.0	7.2	8.2	1. 16	1.21	2.13	2.65
Other industries...	13.8	15.0	6.6	6.4	8.1	7.8	. 82	. 82	2.10	2.34
Mining..	20.6	14.1	13.9	8.5	22.9	17.4	. 61	49	1.48	1. 65
Trade....	13.6 9.9	16.1 14.6	6.5 4.0	7.0 5.3	4.2 11.7	4.2 14.4	1.55	$\begin{array}{r}1.66 \\ .37 \\ \hline\end{array}$	2.09 2.49	2.30 2.74
All U.S. manufacturing corporations.	13.2	7.1	7.3	3.5	6.2	3.4	1.17	1.04	1.80	2.02
Food products.	10.8	9.3	6.0	4.8	2.9	2.8	2.04	1.70	1.79	1. 93
Chemicals and allied products.	15.0	11.7	9. 1	${ }_{6}^{6.7}$	88	$\begin{array}{r}6.8 \\ \hline 8\end{array}$	1.02	- 88	1.66	1. 1.74
Primary and fabricated metals.	12.0	4.7 7.2	8.5	2.4 3.4	7.1	3.4	1.19	. 99	1.81	2. 13
Transportation equipment.	15.5	4.0	7.5	1. 6	6.0	$\stackrel{1.4}{3.8}$	1. 1.24	${ }_{1}^{1.120}$	2. ${ }_{1}^{2.07}$	2. 48
Other.-.	11.6	7.2	6.6	3.8	5.8	3.8	1.13	1.00	1.78	1.90

D Suppressed to avoid disclosure of data for individual reporters.

1. All ratios are weighted averages of the individual irms' ratios. Data on all U.S. manu${ }_{1970}$ IR ${ }^{1}$ corporations are from the Internal Revenue Service's 1966 Statistics of Income and corporations was converted from a tax to a book accounting basis. Data on U.S. parents and their majority-owned foreign affiliates are per books of account and are from tables 1 and 3 of BEA's Special Survey of U.S. Multinational Companies, 1970. All U.S. manufacturing corporations are classi :ed by major activity of the corporation or affiliated group of corporations for which a consolidated tax return was filed. U.S. parents in the MNC survey are classi ed by the major industry of the consolidated U.S. enterprise. The level of consolidation of all U.S. manufacturing corporations may differ from that of the U.S. parents in the 1970 sample survey.
Foreign affiliates are classified by industry of the foreign affiliate.
2. The petroleum industry is deined on an integrated basis, the usual practice for direct
investment statistics.
3. Equals net income after all income taxes and tax credits divided by net worth at yearend 4. Equals net income after all income taxes and tax credits divided by total assets at year-
end. Column B may only approximate column C times column D due to rounding. Net inend. Column B may only approximate column C times column D due to rounding. Net in5. Equals net income after all income taxes and tax credits divided by sales net of allowances and returns.
4. Equals. sales net of allowances and returns divided by total assets at yearend. Assets of U.S. companies include investments in foreign affiliates.
5. Also equals total assets at yearend divided by net worth at yearend. Thus, the greater L the greater debt inancing relative to equity t.nancing. Column E may only approximate column A divided by column B due to rounding.

Source: U.S. Department of Commerce, Bureau of Economic Analysis.
transportation equipment had the highest rate of return (15.7 percent), followed by U.S. parents in chemicals (15 percent). In 1970, U.S. parents in mining were most profitable, achieving a return of 13.3 percent; U.S. parents in food products were next with a 12.3 percent return.

The after-tax rate of return on net worth of all U.S. manufacturing corporations, like that of U.S. manufacturing parents, declined sharply from 1966 to 1970. In both years, U.S. manufacturing parents had higher overall rates of return than all U.S. manufacturing corporations. The rate of return
of all U.S. manufacturing corporations was 13.2 percent in 1966 and 7.1 percent in 1970, compared with 14.0 and 8.6 percent for U.S. manufacturing parents. Profits of both groups include branch earnings, dividends, interest, and fees and royalties received from foreign affiliates. The somewhat greater dif-

Table 2.-Before- and After-Tax Rates of Return on Assets of Majority-Owned Foreign Affiliates in Sample, by Country and Industry 1, 2

Area or country	Before-tax rates f return on assets								After-tax rates of return on assets							
	$\underset{\text { industries }}{\text { All }}$		Petroleum		Manufacturing		Other industries		$\underset{\text { industries }}{\text { All }}$		Petroleum		Manufacturing		Other industries	
	1966	1970	1966	1970	1966	1970	1966	1970	1966	1970	1966	1970	1966	1970	1966	1970
All areas.	12.9	13.2	18.5	20.1	9.0	9.2	11.9	10.1	6.5	7.1	8.3	9.9	4.9	5.1	7.0	6.2
Developed countries.	6.9	7.9	2.2	3.5	8.9	9.5	8.4	10.0	3.8	4.6	1.0	2.1	4.7	5.4	5.1	6.1
Canada.	8.9	8.0	7.8	8.2	10.5	8.3	7.0	7.2	5.0	4.8	5.7	5.6	5.2	4.7	4.1	4.1
Europe.	5.8	7.4	$-.7$. 7	8.1	9.5	8.8	11.0	3.0	4.2	-1.3	. 1	4.3	5.4	5.5	6.8
United Kingdom.	6.2	6.5	-1.9	-1.6	7.9	7.6	13.1	13.9	3.7	3.3	-1.8	-1.4	5.0	4.1	7.7	7.5
European Economic Community (6)..........	5.0	8.3	$-.3$	1.9	8.0	11.6	4.5	6.8	1.9	4.8	-1.1	. 9	3.5	6.8	2.2	4.0
Belgium and Luxembourg.............-. --	3.3	5.3	(D)	(D)	2.6	6.4	7.2	5.9	1. 5	3.5	(D)	(D)	. 6	4.0	5.3	4.5
France-.-	5.8	8. 6	(D)	(D)	8.4	11.2	-1.4	3. 4	2.4	4.4	(D)	(D)	3.8	5.9	-3.0	1.2
Germany	6. 1	11.8	-1.3	3.8	10.6	15.9	6.1	10.2	2.3	7.3	-2.2	3.0	4.7	9.6	4.0	6.6
Italy-..-.	2.5	4.7	-2.2	-2.8	5.7	9.4	3. 1	6.1	$\stackrel{.}{8}$	1.6	-2.3	-3.3	2.0	5.1	$-.2$	1.0
Netherlands	5.4	5.6	1.6	2.9	7.1	6.7	14.4	10.4	2.8	3.4	.3	1.5	3.8	4.3	9.2	6.7
Other Western Europe.	7.0	6.4	-. 2	0.8	9.4	5.1	10.4	12. 5	4.7	4.1	-1.1	0.1	6.5	2.8	7.5	8.9
Denmark.	2.6	2.9	(D)	(D)	5.6	1.6	11.5	16.5	1.5	1.6	(D)	(D)	2.0	1.0	8.8	10.9
Norway.	3.3	3.7	(D)	(D)	7.3	8.4	14.3	14. 1	0.4	1.2	(D)	(D)	3.5	4.8	8.4	8.6
Spain	5.2	3. 2	(D)	(D)	4.8	1. 1	11. 7	13.3	2.8	1. 0	(D)	(D)	2.7	$-.4$	6.9	8.0
Sweden.	3.7	5.1	(D)	(D)	7.0	5. 5	14.2	12.4	1.9	2.6	(D)	(D)	3.1	3.0	10.1	5.6
Switzerland	7.6	10.0	(D)	(D)	13.3	15.6	6.8	9.4	6.2	7.9	(D)	(D)	10.7	10.7	5. 6	7.7
Other.	13.5	7.5	(D)	(D)	11.6	2.7	29.1	26.2	8.7	4.6	(D)	(D)	4.6	3.3	18.2	17.8
Japan.	6.1	9.1	2.2	3.8	9.5	13.9	13.9	13.8	2.7	4.9	1.2	2.0	4.1	7.4	6.1	8.0
Australia, New Zealand, and South Africa_	8.0	10.8	3.1	6.5	9.0	10.7	11.3	15.0	4.8	6.2	1.1	3.7	5.6	5.9	6.9	9.0
Australia.	6.1	9.8	(D)	(D)	8.3	10.2	7.5	13.7	3.4	5.6	(D)	(D)	5.1	5.5	4.3	8.3
New Zealand	12.4	15.9	(D)	(D)	22.6	18.2	8. 5	18.8	5.5	8.2	(D)	(D)	11.4	8.9	3.3	9.1
South Africa.	14.8	14.2	(D)	(D)	9.2	11.5	34.6	22.1	10.3	8.6	(D)	(D)	6.5	7.1	23.8	13.6
Developing countries.	31.4	31.0	50.4	52.7	9.6	7.4	20.0	12.6	14.8	14.2	22.2	23.2	5.8	4.0	10.8	7.3
Latin American Republics and other Western Hemisphere.	18.6	14.5	25.7	26.3	9.7	6.9	21.1	13.8	9.9	7.0	13.1	10.9	6.0	3.8	11.0	8.1
Latin American Republics.	19.5	15.5	29.0	29.8	10.2	7.6	21.6	15.1	9.9	7.2	14.5	11.8	6.4	4.3	9.7	7.9
Mexico.	9.9	9.8	(D)	(D)	10.3	10.7	9.0	7.4	5.3	4.9	(D)	(D)	5. 7	5. 2	4.7	3.9
Panama.	5.8	9.9	(D)	(D)	(D)	(D)	6. 6	10.7	5.0	8.0	(D)	(D)	(D)	(D)	5. 8	8.6
Other Central America	6.3	2.3	(D)	${ }^{(D)}$	1.9	2.1	19.4	7.1	4.4	0.6	(D)	(D)	-0.1		16.5	5.6
Argentina.	13.3	7.2	21.5	14.3	11.0	4. 6	13.8	10.9	8.1	4.8	14.8	8.5	6.3	3.3	8.3	7.7
Brazil	11.1	7.3	(D)	(D)	11.8	6. 6	6.0	4.3	7.6	4.8	(D)	(D)	8. 2	4.2	3.5	2.8
Chile C -	27.3 9.4	8.7	(D)	(D)	11.1	2.8	29.0 8.8	(D) 3	9.4 5.7	5. 1	(D)	(D)	7.5	-7.7	9.7 4 4	(D) 5
Peru..	18.1	23.4	(D)	(D)	8.0	-3.1	23.9	(D)	12.3	8.4	(D)	(D)	6.5	-6.3	17.2	(D) ${ }^{\text {a }}$
Venezuela.	32.8	37.2	38.2	50.5	9.4	12.6	32.8	23.9	15.4	14.1	18.4	17.4	5.8	8.3	10.2	10.3
Other.-	8.5	13.3	(D)	(D)	(D)	(D)	(D)	(D)	8.5	7.9	(D)	(D)	(D)	(D)	(D)	(D)
Other Western Hemisphere.	12.2	8.1	12.2	10.1	0.3	-15.4	18.7	10.6	10.2	5.7	6. 5	6.4	-0.1	-14.9	17.1	8.5
Other Airica.	32.8	36.2	39.8	41.6	1.5	2.5	13.8	7.2	14.1	12.7	16.7	14.6	0.9	1.3	8.5	4.1
Liberia.	15.1	6.1	(D)	(D)		-1.2	17.5	(D)	10.1	2.1	(D)	(D)		-1.2	11.7	(D)
Libya.	81.0	60.6	81.1	60.6			1.8		37.3	20.4	37.4	20.4	44.7		1.4	
Other.	-. 5	6.6	(D)	(D)	1.6	3.4	13.5	(D)	-2.3	4.7	(D)	(D)	1.0	1.2	7.8	(D)
Middle East.	117.6	119.5	126.8	125.4	4.6	6.9	16.0	14.5	49.4	58.5	52.7	61.3	3.4	3.7	13.8	7.1
Other Asia and Pacific.	14.3	16.9	15. 7	22.1	11.2	12.6	14.8	8.6	7.3	8.1	7.2	10.1	5.9	6.9	9.7	4.6
India.	7.7	13.3	(D)	(D)	16.2	18.4			1.9	5. 4	(D)		6.1	7.8		
Philippines	8.4	4.8	8.2	-1.0	8.5	13.8	8.7	5. 1	5.8	1.6	5.7	-3.7	5.3	7.0	(D. 7	(D) ${ }^{\text {. }}$
Other.	20.6	21.9	(D)	(D)	12.6	10.1	(${ }^{(1)}$	(D)	10.9	12.2	(D)	(D)	8.4	6.6	(D)	(D)
	5.9	10.0	3.7	12.5			11.6	6.3	5.2	9.3	3.4	12.0			9.8	5.3

2. The petroleum industry is defined on an integrated basis, the usual practice for direct investment statistics.
Source: U.S. Department of Commerce, Bureau of Economic Analysis
ference between these two groups' rates of return in 1970 than in 1966 is probably due to better business conditions abroad than in the United States and the fact that foreign-source income is a much larger share of profits for the MNC parents than for all U.S. corporations in manufacturing.

Similar declines occurred in the after-tax rates of return on total assets of all U.S. corporations and MNC parents in manufacturing from 1966 to 1970 , primarily reflecting sharp reductions in profit margins.

The asset turnover ratios of all U.S. corporations and of U.S. parents in manufacturing also declined, but not as rapidly as profit margins from 1966 to 1970. The asset turnover ratio of all U.S. manufacturing corporations fell from 1.17 to 1.04 while that of U.S. manufacturing parents fell from .96 to .88 .

After-tax profitability of MOFA's compared with U.S. parents, by industry

The overall after-tax rate of return on net worth of MOFA's was 13.8 percent in 1966 and 17.1 percent in 1970. The rates of return on net worth of MOFA's in manufacturing were below the all-industry averages (particularly in 1970), while those of MOFA's in petroleum were well above them.

In comparing the profitability of MOFA's and U.S. parents, the rate of return on total assets is perhaps a better measure than the rate of return on net worth. The distinction between assets of an affiliate financed by equity and those financed by debt is not clearcut when a parent-affiliate relationship is involved, since parent companies can easily substitute debt and equity in financing the operations of their affiliates.

Comparisons of the profitability of MOFA's and their U.S. parents, particularly in manufacturing, are affected by differences in U.S. and foreign business conditions. In 1966, the U.S. economy was buoyant while economic conditions abroad, particularly in Western Europe, were sluggish. In that year, after-tax rates of return on assets of MOFA's were significantly lower
than those of U.S. parents in every manufacturing industry presented in table 1. In 1970, on the other hand, the U.S. economy was in a recession while Europe was at or near the peak of economic expansion. Partly reflecting these differences in business conditions, the profitability of manufacturing MOFA's was slightly higher than that of U.S. manufacturing parents.
In the petroleum industry, MOFA's had significantly higher rates of return on assets than U.S. parents in both 1966 and 1970. MOFA's in mining performed substantially better than U.S. mining parents in 1966, while in 1970 they had virtually the same rates of return. Trade affiliates had about the same rates of return in 1966 but higher rates in 1970 (7.0 percent versus 5.3 percent) than trade parents.

As with their U.S. parents, changes in profit margins rather than asset turnover ratios of MOFA's generally explained most of the changes in their after-tax rates of return between 1966 and 1970.

Profitability of MOFA's, by country and industry

Table 2 presents before- and aftertax rates of return on assets of MOFA's for major countries and industries. Both measures of profitability are useful. For example, tax considerations may influence the location of an MNC's direct investments abroad, and in deciding where to invest, after-tax rates of return of MOFA's in different countries should be examined. On the other hand, there is some evidence that parents generally use before-tax rates of return in evaluating and comparing the performance of their existing affiliates. ${ }^{5}$ For this reason, this section focuses mainly on before-tax rates of return. (Effective income tax rates of MOFA's are discussed later.)

There was only a small difference between the before-tax rates of return of manufacturing MOFA's in developed and developing countries. Their rates in developed countries were 8.9 percent in 1966 and 9.5 percent in 1970, compared with 9.6 and 7.4 percent, re-

[^9]spectively, in developing countries. The high rates of return of Latin American affiliates in the "other industries" category primarily reflect highly profitable mining operations. However, mining profits in Latin America were heavily taxed, as evidenced by the much lower after-tax rates of return of these affiliates.

For petroleum MOFA's, before-tax rates of return on assets in developing countries were 50.4 percent in 1966 and 52.7 percent in 1970 compared with 2.2 and 3.5 percent, respectively, in developed countries. The differences between the rates in the two areas partially reflect intercompany pricing policies of petroleum MOFA's. The high rates of return in the developing countries, where petroleum production is concentrated, primarily result from the use of posted prices by the producing affiliates in valuing their sales. Posted prices, which are official prices set for tax purposes by some of the producing countries, generally exceed market prices. The low rates of return in the developed countries reflect the fact that many oil producing affiliates in the North Sea, primarily classified in the United Kingdom, were in a relatively unprofitable exploration and development stage during the 1966-70 period. Also, the petroleum industry in Western Europe was unusually competitive from 1966 to 1970 , as evidenced by the price wars and low profits of refining and distribution affiliates there.

Two determinants of MOFA's profitability

This section relates the 1970 beforetax rates of return on assets and the incidence of losses of the 1,077 European manufacturing MOFA's in the sample to two factors often considered positively correlated with affiliate profitabil-ity-namely, the affiliate's size and age. European manufacturing affiliates were examined mainly because of their importance in the MNC sample. In addition, this procedure ensured greater homogeneity in the data than would have been present if data for affiliates in several areas had been combined.

Total assets were used to measure affiliate size. MOFA's were classified as

Table 3.-1970 Before-Tax Rates of Return on Assets of Majority-Owned European Manufacturing Affiliates in Sample, by Size and Age of Affiliate

Affiliate size $\underset{\text { assets }}{\text { as measured by total }}$	Total		Affliates established ior acquired in or before 1966		Affilia es established or acquired after 1966	
	Number of affiliates	Rate of return ${ }^{1}$	Number of affiliates	Rate of return ${ }^{1}$	Number of affliates	Rate of return ${ }^{1}$
		Percent		Percent		Percent
Small (under \$5 million)....-.---.	500	7.1	352	8.2	148	4.6
Medium (\$5-24.9 million) .-. .-....-	403	9.5	328	10.4	75	5.9
Large (\$25 million and over) .-.-...-	174	7.6	154	8.0	20	4.4
Total..	1,077	8.1	834	9.0	243	5.0

1. All rates of return are unweighted averages of the individual firms' rates of return.

Source: U.S. Department of Commerce, Bureau of Economic Analysis.
small, medium, or large depending on whether their total assets were under $\$ 5$ million, $\$ 5-24.9$ million or $\$ 25$ million and over.

To determine the impact of age, MOFA's were divided into two age classes: those established or acquired in or before 1966 and those established or acquired after 1966. Available data do not permit newly-formed firms to be distinguished from take-overs of existing firms within these age groups.

Table 3 shows before-tax rates of return for the 1,077 European manufacturing affiliates, by age and size. ${ }^{6}$ Within both age groups, medium-sized affiliates had markedly higher rates of return than did either large or small affiliates. For example, medium-sized affiliates in the older group had an average rate of return of 10.4 percent in 1970 compared with rates of 8.2 and 8.0 percent for small and large affiliates.

Within each size class, rates of return of older affiliates were approximately 75 percent higher than those of younger ones. Newly-formed affiliates often begin operations in an unfamiliar environment, without goodwill, established markets, trained labor, or established lines of credit. Also, startup costs reduce initial profits. To a lesser extent, these problems affect "young" affiliates acquired via take-overs as well.

Younger affiliates are likely to incur losses for similar reasons. In table 4, which shows 1970 losses of European manufacturing affiliates by age and size, younger affiliates had a much higher incidence of losses than older ones.
6. In order to show the full effects of differences in affiliate size, the rates of return shown in table 3 are not weighted by each affiliate's share of total assets. Instead, all affiliates within a size class are weighted equally in the results, regardless
of their particular size.

Financial Leverage

Table 1 indicates that rates of return on net worth are significantly higher than those on total assets. The difference reflects the extent to which borrowed funds are used to finance the firm's activities. Thus, a firm's rate of return on net worth mirrors its financial policies as well as its effectiveness in using the assets atits command.

A firm can increase its rate of return on net worth through financial leverage, i.e., the use of debt bearing a fixed return. ${ }^{7}$ Leverage can be measured by
$\mathrm{L}=\frac{\text { after-tax rate of return on net worth }}{\text { after-tax rate of return on total assets }}$

$$
=\frac{\text { total assets }}{\text { net worth }}{ }^{8}
$$

Since assets include debt but net worth does not, the more debt a firm uses to finance a given amount of assets, the higher are assets relative to net worth and the higher the leverage.
Table 1 presents leverage ratios of all U.S. manufacturing corporations and of the MNC parents and MOFA's. In both 1966 and 1970, the leverage ratio of U.S. manufacturing parents was approximately 20 percent higher than that of U.S. petroleum parents. For example, in 1970, the ratio was 1.91 for U.S. manufacturing parents, but

[^10]1.53 for U.S. petroleum parents. Within manufacturing, U.S. parents in the transportation equipment industry had the highest leverage ratios in both years, 1.94 and 2.16, respectively. In 1970, the leverage ratio of U.S. parents in trade was 2.24 and in mining 1.55.
U.S. manufacturing parents generally had slightly lower-usually by 2 to 10 percent-leverage ratios than all U.S. manufacturing corporations. As with U.S. manufacturing parents, the highest leverage ratios of all U.S. manufacturing corporations were in the transportation equipment industry.

Financial leverage may not always be advantageous to the borrower since, after some point, the cost of additional capital generally rises with the degree of leverage. Furthermore, financial leverage involves increased risk to the borrower, as a highly levered firm may have trouble meeting its interest payments on debt, especially during an economic downturn. However, the disadvantages of leverage are less for MOFA's to the extent that their debt is owed to their U.S. parents. For example, in an economic downturn, it is unlikely that a U.S. parent would force its foreign affiliate to convert assets into cash in order to make interest payments on intercompany debt. Instead, the parent would probably treat the interest due as additional investment in the affiliate. Furthermore, an affiliate can generally borrow more funds from its U.S. parent than from others before encountering rising costs of capital.

Table 4.-Percent of Majority-Owned European Manufacturing Affiliates in Sample with Losses in 1970, by Size and Age of Affiliate

Affiliate size as measured by total assets	Percent of affiliates with losses in 1970	Percent of affiliates established or acquired in or before 1966 with losses in 1970	Percent of affiliates established or acquired after 1966 with losses in 1970
Small (under (5 million)....	27.2	25.0	32.4
Medium (\$524.9 million) -	18.6	16. 5	28.0
Large (\$25 million and over)	17.8	16.9	25.0
Total	22.5	20.1	30.5

Source: U.S. Department of Commerce, Bureau of Economic Analysis.

Table 5.-Effective U.S. Income Tax Rates of All U.S. Corporations and of U.S. Parents in Sample, by Industry ${ }^{1,2}$

1. Data used to compute effective income tax rates of all U.S. corporations are from the Internal Revenue Service's 1966 Statistics of Income and 1970 IRS Source Book. Data used in deriving U.S. parents' effective income tax rates are from table 1, lines 19 and 20, of BEA's Special Survey of U.S. Multinational Companies, 1970. Both sets of data exclude firms with losses.
U.S. parents whose provisions for income taxes were negative are also excluded.
2. The petroleum industry is defined on an integrated basis, the usual practice for direct investment statistics. Data for
3. Effective income tax rates of all U.S. corporations are ratios of Federal income taxes after Federal tax credits to net income before Federal income taxes. Effective income tax rates of the U.S. parents, however, are ratios of Federal, State, and local income taxes after Federal tax credits to net income before all income taxes. Effective income tax rates of all U.S. corporations are therefore biased downward compared to rates of the U.S. parents. Taxes and income of all U.S. corporations are as reported to the Internal Revenue Service while taxes and income of the U.S. parents are based on the firms' books of account. All tax rates are weighted averages of the individual firms' effective tax rates.

Source: U.S. Department of Commerce, Bureau of Economic Analysis.

This largely explains why MOFA's are much more highly levered than U.S. parents. The disparity is most pronounced for petroleum affiliates whose 1966 and 1970 leverage ratios were 49 and 73 percent greater than those of U.S. petroleum parents.

Parent firms often prefer debt to equity financing for foreign affiliates. First, debt financing may be more convenient than equity financing in providing affiliates with working capital. Second, in general, interest paid on debt is deductible in determining an affiliate's taxable income whereas dividend payments on equity are not. Third, foreign governments may place more stringent limits on remittances of dividends than of interest by foreign affiliates to their U.S. parents. Finally, political or exchange market uncertainties may encourage U.S. parents to use debt to finance affiliates.

Effective Income Tax Rates

In this section, effective income tax rates of MNC's are examined. The income tax burden borne by firms is a major factor affecting after-tax rates of return. It also may affect the extent to which financial leverage is used by MNC's. For example, to keep its worldwide tax burden low, an MNC may finance its affiliates through debt rather than equity since, as noted above, interest payments by affiliates on debt are generally tax deductible whereas dividend payments on equity are not.

Unless otherwise specified, effective income tax rates are defined as

Federal, State and local income taxes 9 net income before income taxes

In calculating these rates, firms with losses were excluded from both IRS and MNC data as were firms whose incomes were positive but whose provisions for income taxes were negative. ${ }^{10}$

Effective tax rates are superior to statutory rates as a measure of real tax burden for several reasons. Since some forms of business income are not subject to income taxes, statutory rates would overstate a firm's real tax burden. Furthermore, in some countries, different forms and amounts of net income before taxes are subject to different statutory rates so that no single statutory rate would measure the real income tax burden. Also, some countries may negotiate tax liabilities with individual companies rather than apply statutory tax rates to the companies' reported income.

U.S. income tax rates

Table 5 compares by major industry the effective income tax rates of all U.S. corporations and of U.S. parents. The two sets of data are not strictly comparable. First, the effective income tax rates of all U.S. corporations are based on data as reported for tax purposes to the Internal Revenue Service, while the rates of U.S. parent companies are based on data carried on the parents' books of account. This

[^11]difference in accounting methods generally biases downward the effective income tax rates of all U.S. corporations relative to those of U.S. parents, as explained in the technical appendix. Second, income taxes of all U.S. corporations exclude, while those of U.S. parents include, State and local income taxes; similarly, net income of all U.S. corporations is computed before Federal income taxes but after State and local income taxes, whereas for U.S. parents it is computed before all income taxes. Thus, both the numerator and denominator of the all-U.S. corporation effective income tax rates are reduced by the amount of State and local income taxes; however, since the numerator (taxes) is always smaller than the denominator (net income) the numerator is reduced proportionately more. This, too, causes a downward bias in the effective tax rates of all U.S. corporations relative to those of U.S. parents. This bias can be corrected on an all-industry basis but unavailability of data preclude correction of effective tax rates for individual industries.
For all industries, State and local income taxes of U.S. corporations were approximately 7 and 12 percent of their Federal income taxes after credits in 1966 and 1970, respectively. When State and local income taxes are included, the all-industry effective income tax rates of all U.S. corporations were significantly higher than those of the 298 U.S. parents in 1970 and slightly higher in 1966. These adjustments are not reflected in the effective income tax rates of all U.S. corporations in table 5 since the rates for individual industries shown in that table could not be adjusted. The lower effective tax rates of the U.S. parents, particularly in the petroleum industry, primarily reflect the greater impact of foreign tax credits on their income tax liability. ${ }^{11}$

The impact of the foreign tax credit on U.S. corporate income tax liability

To ensure that foreign-source income is not subject to the full impact of
11. The difference between tax and book accounting for oil and gas depletion charges also may have depressed the effective tax rates of U.S. petroleum parents vis-a-vis those
of all U.S. petroleum corporations. (See technical appendix) of all U.S. petroleum corporations. (See technical appendix.)
two countries' income taxes, the U.S. Internal Revenue Code provides a credit against U.S. income taxes for foreign income taxes paid or deemed paid by the U.S. taxpayer. ${ }^{12}$

Table 6 shows the impact of the foreign tax credit on the U.S. precredit corporate income tax liability for all U.S. corporations in 1966 and 1970 and for those U.S. corporations actually claiming the credit in 1966. In 1966, the foreign tax credit offset $\$ 2.9$ billion or 8.3 percent of the income tax liability of all U.S. corporations. In 1970, it had an even greater impact, offsetting 14 percent of the tax liability of all U.S. corporations. For those U.S. corporations claiming the credit, 14.3 percent of their tax liability was offset in 1966. (Data for those U.S. corporations claiming the credit were not available for 1970, but the all-U.S. corporation data suggest that the offset was probably much larger than in 1966.) One reason for the greater impact of the foreign tax credit in 1970 was that, because of the U.S. recession and relatively stronger business conditions abroad, taxable foreign-source income constituted a larger share of total U.S. taxable income than it did in 1966.

The data on foreign tax credits in table 6 are affected by the following considerations. First, the total credit allowed a U.S. taxpayer in any given year ($\mathrm{T}_{\mathbf{c}}$), as computed for purposes of table 6, is limited in that the proportion the credit is of the U.S. tax on all income (T_{us}) cannot exceed the proportion that foreign taxable income (I_{t}) is of taxable income from all sources $\left(I_{t}\right)$, i.e.,

$$
\frac{T_{\mathrm{e}}}{\mathrm{~T}_{\mathrm{us}}} \leqq \frac{\mathrm{I}_{\mathrm{t}}}{\mathrm{I}_{\mathrm{t}}}, \text { where }
$$

I_{t} and T_{c} can be defined on either a worldwide or per-country basis. This limitation means that a U.S. firm cannot use foreign income taxes to reduce its U.S. tax liability on income generated by domestic operations. Any foreign tax credits not allowed because of the limitation may be carried back for 2 years and then forward for 5 years to offset prior or future years' tax

[^12]liabilities. Second, the impact of the foreign tax credit on U.S. corporate income tax liability in 1966 and 1970 was actually somewhat greater than implied by table 6 since the foreign tax credit data do not include carrybacks.

In industry comparisons, it should be noted that, for a given industry, the foreign tax credit will have a greater impact on U.S. corporate income tax liability: (1) the greater the share of taxable foreign-source income in the industry's total taxable income (for given foreign tax rates); and (2) the higher the foreign tax rates applied to the industry's foreign-source income. In percentage terms, the foreign tax credit had its greatest impact on U.S. petroleum companies, reducing their income tax liability by 57.0 percent in 1966 and 68.3 percent in 1970 , compared with 6.9 and 13.6 percent, respectively, for U.S. manufacturing corporations. It also offset a large portion of the tax liability of U.S. mining corporations- 40 percent and 29.5 percent, respectively. The large offsets of U.S. petroleum and mining corporations reflect the fact that these companies generate a large portion of their income abroad, are often situated in high tax areas, and operate through branches to a greater degree than companies in other industries. All foreign branch income is considered by U.S. tax authorities as taxable foreign-source income whether that income is remitted or not, whereas income of incorporated foreign affiliates is usually not considered taxable unless remitted in the form of dividends. ${ }^{13}$

In both 1966 and 1970, U.S. corporations in manufacturing claimed the largest dollar amount of foreign tax credits with petroleum firms a close second. This primarily reflects the fact that U.S. manufacturing corporations account for more direct investment abroad than any other industry group.

Income tax rates of MOFA's

MOFA's had effective income tax rates of 45.1 percent in 1966 and 42.5 percent in 1970, while U.S. parents had rates of only 39.2 and 38.5 percent in

[^13]those years (tables 5 and 7). Of the three major industries-petroleum, manufacturing, and "other"-only in petroleum did U.S. parents have lower effective income tax rates than MOFA's.

The effective tax rates of MOFA's varied considerably by area, with MOFA's paying higher rates in developing than in developed countries (table 7). Most of the difference was attributable to high income tax rates of petroleum producing affiliates in the developing countries, and resulted from the fact that royalty payments to foreign governments were usually reported by these affiliates as income taxes. MOFA's in "other industries," particularly in mining, also had higher income tax rates in developing countries. In both 1966 and 1970, however, manufacturing affiliates had higher rates in developed than in developing countries.

While petroleum affiliates in developed countries were subject to relatively low income tax rates, they were subject to relatively high rates of indirect taxes. For example, in 1966 petroleum MOFA's in developed countries paid only $\$ 146$ million in income taxes but approximately $\$ 4.0$ billion in indirect taxes (primarily excise taxes). The very low income tax rates of petroleum affiliates in Canada and the United Kingdom primarily resulted from the carryover of losses on prior years' exploration and development operations to offset tax liabilities in 1966 and 1970. Loss carryovers and credits for overpayment of previous years' taxes caused large swings in tax rates in a number of country-industry cells, particularly in petroleum.

Technical Appendix

Data on profitability

IRS data on profitability of all U.S. manufacturing corporations which are on a tax accounting basis are not completely comparable with the BEA sample data on profitability of U.S. manufacturing parents which are on a book accounting basis. Some of the more important differences in tax and book accounting involve the treatment of depreciation, depletion, the investment tax credit, installment sales, prepaid income, gains and losses on property

Table 6.-The Foreign Tax Credit and Its Impact on U.S. Corporate Income Tax Liability 1, 2

Industry	Foreign tax credits		All corporations				Corporations with foreign tax credits		
			U.S. corpora liability b	come tax credits	Foreign tax credit as percent of U.S. corporate income tax liability before credits		U.S. corporate income tax liability before credits	Foreign tax percent of credit as U.S. corporate income tax liability before credits	
	Millions of dollars		Millions of dollars				Millions of dollars		
	1966	1970	1966	1970	1966	1970	1966	1966	
All industries.-	2,861	4,640	34, 443 33, 201		8.3	14.0	20,055	14.3	
Manufacturing.	$1,297$	2,039	18,711 14,972		6.9	13.6	13, 106	9.9	
Food products ---.-.-.-....-	$\begin{array}{r} 121 \\ 240 \end{array}$	$\begin{aligned} & 181 \\ & 379 \end{aligned}$	1,665 1,828 2,469 2,398		7.3 9.7	9.9 15.8	, 889	13.6	
Chemicals and allied products..-	171	178	2,621 1,398		6.5	12.7	1,570	10.9	
Machinery..-.-.-.-.-..--.-....	303 268		$\mathbf{3 , 9 2 8}$ $\mathbf{3 , 3 4 9}$ 3,256 $\mathbf{1 , 5 2 8}$		7. 8	21.4	2,949	10.3	
Transportation equipment.		291			19.0	2,975	9.0		
Other------------------	194	292	4,773 4,472			4.1	6.5	2,533	7.7
Petroleum.	1,132	1,995	1,987 2,921		57.0	68.3	${ }^{3} 1,794$	363.1	
Other industries.	432	607	13,746 15,308		3.1	4.0	5,155	8.4	
Mining	$\begin{array}{r} 130 \\ 57 \\ 241 \end{array}$	109	337 370 3,296 4,290 10,113 10,649		40.0	29.5	238	56.7	
Trade..-		$\begin{aligned} & 167 \\ & 331 \end{aligned}$			$\begin{aligned} & 1.7 \\ & 2.4 \end{aligned}$	3. 1	4,324	5.6	
Other...									

1. The data are from four publications of the Internal Revenue Service: (1) 1966 Statistics of Income; (2) Supplemental Statistics of Income, 1964, 1965, and 1966: Foreign Income and Taxes;
(3) 1970 Preliminary Corporation Income Tax Returns; and (4) the 1970 IRS Source Book
(3) 1970 Preliminary Corporation Income Tax Returns; and (4) the 1970 IRS Source Book
"Before credits" means before the U.S. foreign tax and investment tax credits.
2. The petroleum industry is deflned on an integrated basis, the usual practice for direc 3. Includes crude petroleum and natural gas production and petroleum reflning and related industries. Excludes gasoline service stations and pipeline transportation.
Source: U.S. Department of Commerce, Bureau of Economic Analysis.
transactions, tax-exempt interest income, undistributed profits of incorporated foreign affiliates with the exception of Subpart F income, and income tax liabilities. (The last item will be discussed later in this appendix.)
U.S. corporations were asked by the IRS to reconcile their after-tax book income with their after-tax income reported for tax purposes. The data from this reconciliation were used by BEA to adjust the IRS data on profitability of all U.S. manufacturing corporations from a tax to a book accounting basis. ${ }^{14}$ Even after the adjustments were made, the all U.S. manufacturing corporation data were still not strictly comparable to the data for U.S. manufacturing parents for two principal reasons:
3. Incorporated foreign affiliates were not consolidated by U.S. parents in the BEA sample, whereas in reconciling book and tax income for the IRS, they may have been consolidated. To the extent they were, it is reflected in the adjustment ratios of after-tax net income per books of account to aftertax net income per IRS Code.
4. Adjustment ratios for 1970 were unavailable; therefore, 1969 ratios were used as proxies. With the exception of the metals industry, the ratios of aftertax income per books of account to

[^14]after-tax income per IRS Code have been relatively stable for U.S. manufacturing industries.

The adjustment ratios, shown in table 8, were applied to the IRS data on net income after income taxes of all U.S. manufacturing corporations. The resulting book income was always greater than tax income.
The data for all U.S. manufacturing corporations on profit margins, rates of return on assets, and rates of return on net worth shown in table 1 reflect the adjustments, since each of these items was computed using adjusted net income.

Data on effective income tax rates

Comparisons of the effective tax rates of U.S. parents and all U.S. corporations are also biased because U.S. parent data on income taxes and before-tax net income are on a book accounting basis, while the all-U.S. corporation data are on a tax accounting basis. This bias could not be corrected since the 1966 and 1969 Statistics of Income did not reconcile the data on these items per IRS Code and per books of account. This note attempts to show the direction though not degree of bias.

When material timing differences arise between before-tax net income per books of account and before-tax net income per IRS Code, firms often re-
flect such differences in their income taxes reported to their shareholders, either through supplementary notes in the report to shareholders or through entries in the accounts. In the latter case, by accounting convention, income taxes per books of account are often split into a provision for current income taxes (the equivalent of income taxes reported to the IRS) and a provision for deferred income taxes (the remainder). ${ }^{15}$

Deferred income taxes are generally computed by multiplying the statutory tax rate (or if more than one rate is involved, a weighted average of the rates) by the difference between beforetax net income per books of account and before-tax net income per IRS Code. Thus, deferred income taxes can be positive or negative depending on whether before-tax net income reported to shareholders is greater or less than before-tax net income reported to the IRS. Generally, however, before-tax net income per books of account is greater than that per IRS Code so that deferred income taxes are positive. If the statutory rates used in calculating deferred income taxes exceed the effective income tax rates per IRS-as they normally do-income taxes per

[^15]books of account, which include the deferred income taxes so calculated, would exceed effective income taxes per IRS Code by a greater proportion
than before-tax net income per books of account exceeds before-tax net income per IRS Code. The result is a downward bias in effective income tax

Table 7.-Effective Income Tax Rates of Majority-Owned Foreign Affiliates in Sample by Country and Industry 1,2

Area or country	$\stackrel{\text { All }}{\text { industries }}$		Petroleum		Manufacturing		$\begin{aligned} & \text { Other } \\ & \text { industries } \end{aligned}$	
	1966	1970	1966	1970	1966	1970	1966	1970
All areas	45.1	42.5	49.1	45.6	42.0	40.1	39.2	36.6
Developed countries.	40.1	38.6	31.1	30.1	43.4	41.0	36.2	37.7
Canada	42.2	39.4	25.6	30.5	49.3	43.7	40.9	41.3
Europe.	39.0	37.2	38.9	21.9	40.9	39.6	33.1	35.6
United Kingdom.	37.4	41.8	13.0	11.6	36.7	41.6	40.4	44.9
European Economic Community (6) .--..........-	44.0	38.0	41.5	25.2	45.8	39.9	33.7	35.6
Belgium and Luxembourg.	31.4	29.0	32.4	23.3	34.3	32.2	25.9	21.3
France-...	48.2	46. 3	(D)	(D)	49.6	46.3	49.0	43.6
Germany --	45.3 45.9	35.4 44.3	(D)	(D)	46.9 45.1	37.5 43.1	28.0 55.4	33.9 55.4
Netherlands	37.5	44.3 36	(D)	(D)	37.8	42.1 42.4	34.9 30.4	35. 9
Other Western Europe.	28.4	27.1	18.5	16.1	29.0	30.8	26.4	26.7
Denmark	28.0	28.1	(D)	(D)	(D)	(D)	(D)	(D)
Norway	43.8	39.3	(D)	(D)	45.1	41. 1	40.1	39.1
Spain--	33.1 37 1.5	31.5 4.9	(D)	(D)	33.2 51.7	29.4 44.8	33.3 35.6 17	34.6 49.8
Switzerland	17.6	18.7	(D)	(D)	18.6	29.7	17.3	16.2
Other.	37.5	26.5	42.5	24.3	26.8	26.7	(D)	
Japan.-	47.6	44.4	(D)	(D)	48.3	45.5	46.0	40.4
Australia, New Zealand, and South Africa.	36.9	41.1	39.4	42.3	36.5	42.7	36.3	38.6
Australia	38.5	41.3	(D)	(D)	37.4	43.3	38.3	38.1
New Zealand	52.8 59	48.4	(D)	(D)	${ }^{49.6}$	50.7 38	50.9 30.7	${ }_{36.6}^{51.1}$
South Africa	29.5	38.7	(D)	(D)	26.6	38.3	30.7	36.6
Developing countries	49.5	49.0	52.1	51.3	35.2	34.5	44.9	39.8
Latin American Republics and other Western Hemisphere	45.1	46.3	48.4	56.3	34.1	33.5	47.2	39.7
Latin American Republics.	47.8	48.7	49.6	58.8	34.4	33.6	54.3	45.1
Mexico	43.5	45.8	(D)	(D)	43.0	46.4	45.9	43.8
Panama	13.1	19.6	(D)	(D)	37.3	20.3	12.1	19.6
Other Central Am	21.5	29.1	23.6	27.8	27.4	32.3	13.8	26.6
Argentina.	35.3	27.9	31.1	${ }^{33 .} 6$	36.7	23.2	37.5	28.4
Brazil	29.5	24.8	(D)	(0)	28.4	24.6	36.3	24.0
Chile--	${ }^{65.3}$	35.3	(D)	(D)	29.9	42.5	(D)	33.3
Colombia	${ }^{35 .} 6$	34.1	31.5	25.6	36.9	38.8	47.0	44. 5
Peru.-.	(${ }^{\text {D }}$)	(${ }^{5}$	(D)	(D)	${ }^{(D)}$	${ }^{32.5}$	${ }^{(D)}$	
Venezuela	52.8 24.4	62.0 37.4	${ }_{\text {(D) }}^{51.9}$	(D) ${ }^{65}$	36.7 17.0	(D) ${ }^{33.6}$	66.8 25.0	36.4
Other Western Hemisphere.	15.8	23.6	31.6	28.5	10.5	19.9	8.2	19.9
Other Africa	51.0	59.6	51.9	60.2	32.5	22.8	37.3	44.4
Liberia.	(D)							
Libya	53.3	62.2	53.3	62.2	(D)	(D)	(D)	(D)
Other	33.1	44.0	26.5	45.3	(D)	22.8	(D)	(D)
Middle East.	53.3	46.4	53.6	46.5	23.1	37.2	12.8	39.7
Other Asia and Pacific.	45.3	45.4	50.5	47.4	43.7	41.8	31.2	38.2
India.	59.8	59.3	(D)	(D)	58.7	57.4		
Philippines	29. ${ }^{2}$	50.8 4.8	(D)	(D)	32.6 329	45.3 29.4	22.0	
Other.	28.3	43.4	(D)	(D)	32.9	29.4	32.5	27.7
International and unallocated.	11.1	6.6	5.9	4.0			15.6	14.7

D Suppressed to avoid disclosure of data for individual reporters.

1. The effective income tax rate of a majority-owned foreign affiliate is computed by dividing Federal, State, and local income taxes by net income before income taxes. Both items are based on the affiliates' books of account and are from BEA's Special Survey of U.S. Multinational Companies, 1970 . Affiliates with losses and negative provisions for income taxes are excluded as are holding company affiliates. The effective tax rates are weighted averages of the individual firms' effective tax rates.
2. The petroleum industry is defined on an integrated basis, the usual practice for direct investment statistics.

Source: U.S. Department of Commerce, Bureau of Economic Analysis.

Table 8.-Ratios Used in Adjusting AfterTax Net Income of All U.S. Manufacturing Corporations to a Book Accounting Basis

Industry	Ratio of after-tax net income per books of account to after-tax net income per IRs Code	
	1966	$1969{ }^{1}$
All U.S. manufacturing corporations 3	1.047	1. 213
Food products.-.--.-...-----.--	1. 047	1. 195
Chemicals and allied products.-	1. 058	1. 190
Primary and fabricated metals.-	1.069	1. 615
	1.002	1.203
Transportation equipment...-. -	1.020	1. 200
	1.083	1. 141

1. The 1969 ratios were used as proxies for the 1970 ratios which were unavailable.
2. Petroleum refining and related industries were excluded from the manufacturing industry, the usual practice for direct investment statistics.
Source: U.S. Department of Commerce, Bureau of Economic Analysis.
rates of all U.S. corporations (which exclude deferred taxes) compared with those of U.S. parents (which include deferred taxes) in table 5.

There is, however, one important case where the opposite bias may occur-in the petroleum industry. Oil and gas depletion charges are smaller on a book than on a tax accounting basis, so that U.S. petroleum companies' before-tax net income per books of account are inflated (since smaller depletion charges are deducted as an expense) relative to before-tax net income per IRS Code. Generally, the companies never actually pay taxes on the difference in income; therefore, they usually view the resulting difference in net income as permanent rather than temporary. Hence, depletion charges usually are not reflected in the firms' provisions for income taxes, whether calculated on a book or tax accounting basis. Since provisions for income taxes are the same but net income is larger on a book than on a tax accounting basis, other things being equal, the effective tax rates of all U.S. petroleum corporations are biased upward relative to those of petroleum parents.

CURRENT BUSINESS STATISTICS

THE STATISTICS here update series published in the 1973 edition of Business Statistics, biennial statistical supplement to the Survey of Current Business. That volume (available from the Superintendent of Documents for $\$ 5.15$) provides a description of each series, references to sources of earlier figures, and historical data as follows: For all series, monthly or quarterly, 1969 through 1972 (1962-72 for major quarterly series), annually, 1947-72; for selected series, monthly or quarterly, 1947-72 (where available). Series added or significantly revised after the 1973 Business Statistics went to press are indicated by an asterisk (*) and a dagger (\dagger), respectively; certain revisions for 1972 issued too late for inclusion in the 1973 volume appear in the monthly Survey beginning with the August 1973 issue. Also, unless otherwise noted, revised monthly data for periods not shown herein corresponding to revised annual data are available upon request.

The sources of the data are given in the 1973 edition of Business Statistics; they appear in the main descriptive note for each series, and are also listed alphabetically on pages 189-90. Statistics originating in Government agencies are not copyrighted and may be reprinted freely. Data from private sources are provided through the courtesy of the compilers, and are subject to their copyrights.

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shownin the 1973 edition of BUSINESS STATISTICS	1971	1972	1973	1971				1972				1973				1974
	Annual total			I	II	III	IV	I	II	III	IV	I	II	III	IV	1
				Seasonally adjusted quarterly totals at annual rates												

GENERAL BUSINESS INDICATORS-Quarterly Series

539-173 O-74-S-1

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1971	1972	1973	1971			1972				1973				1974	
	Annual total			II	III	IV	1	II	III	IV	I	II	III	IV	I	II

GENERAL BUSINESS INDICATORS—Quarterly Series-Continued

${ }^{r}$ Revised. \quad Preliminary. ${ }^{1}$ Estimates (corrected for systematic biases) for Jan.expenditures for the year 1974 appear on p. 22 of the March 1974 SURVEY. ${ }^{2}$ Includes communication. \quad Includes inventory valuation adjustment. \oplus Personal outlays comprise personal consumption expenditures, interest paid by consumers, and personal transfer payments to foreigners.

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes areas shown in the 1973 edition of BUSINESS STATISTICS	1971	1972	1973 ग	1971			1972				1973				1974	
	Annual total			II	III	IV	I	II	III	IV	I	II ,	III ${ }^{\text {r }}$	IV p	Ip	II

GENERAL BUSINESS INDICATORS-Quarterly Series-Continued

U.S. BALANCE OF INTERNATIONAL PAYMENTS ${ }^{\circ}$ Quarterly Data Are Seasonally Adrusted (Credits +; debits -)																
Exports of goods and services (excl. transfers under 	66,287	73,462	102,744	16,781	17,282	15,739	17,587	17,463	18,491	19, 921	22,540	24, 291	26, 242	29,672		
Merchandise, adjusted, excl. military-do...-	42,768	48,769	70,255	10,791	11, 522	9,583	11,655	11,539	12, 362	13, 213	15, 229	16, 672	18, 143	20, 211	22,380	
Transfers under U.S. military agency sales con-tracts.....-....................................mil. $\$$.	1,912	1,166	2,365	507	489	419	328	288	262	287	343	455	532	1, 035		
Receipts of income on U.S. investments abroad ..il. \$.	12,899	13,925	18,550	3,315	3,038	3,557	3,314	3,270	3, 476	3,866	4,183	4,336	4,661			
	8,710	9,601	11,575	2,168	2,231	2,180	2,290	2,366	2,391	2,555	2,785	2,828	2,906	3,056		
Imports of goods and servicesf.-.-...........do	-65,480	-78,071	-95,844	-16,650	-17,002	-16,299	$-18,961$	-18,889	-19,430	-20,791	-22,356	-23,690	-24003	-25,707		
Merchandise, adjusted, excl. military	-45, 466	-55,681	-69,567	-11,708	-11,907	-11,108	$-13,475$	-13,313	-13,935	-14,958	-16,174	-17,009	-17,531	-18,853	-22,090	
Direct defense expenditurest.-.......-.-.-d	-4,829	$-4,724$	$-4,536$	-1,214	-1,204	-1,237	$-1,222$	-1,242	-1,108	-1,151	-1,168	-1,185	-1,073	$-1,110$	-2,09	
Payments of income of foreign investmentsin the TU.S	-4, 927	-6,063	$-8,827$	-1,135	$-1,293$	$-1,340$	-1, 423	-1,479	-1,526	-1,634	-1,853	-2, 203	-2,328			
	-10, 258	-11,604	-12,915	-2,593	-2,598	-2, 614	$-2,841$	-2,855	61	-3,048	-3, 161	-3,293	-3,161	-3,301		
Balance on goods and services, total. Merchandise, adjusted, excl. military \qquad	807 $-2,698$	- $\begin{aligned} & -4,610 \\ & -6,912\end{aligned}$	6,900 688	${ }_{-917}^{131}$	${ }_{-385}^{280}$	($\begin{array}{r}-560 \\ -1,525\end{array}$	- $\begin{aligned} & -1,374 \\ & -1,820\end{aligned}$	$\xrightarrow{-1,426}$	(-939	- $\begin{array}{r}-870 \\ -1,745\end{array}$	184 -945	601 -337	2,149 612	$\begin{aligned} & 3,965 \\ & 1,358 \end{aligned}$	290	
Unilateral transactions (excl. military grants), net Balance on current account mil. \$.- Balane on curent acount .do...	$\begin{aligned} & -3,598 \\ & -2,790 \end{aligned}$	$-3,744$ $-8,353$	$-3,859$ 3,041	-859 -728	-958	${ }_{-1,538}^{-978}$	- ${ }_{-2,343}$	$-{ }_{-2,364}^{038}$	- $\begin{array}{r}\text {-954 } \\ -1,893\end{array}$	${ }_{-1,751}^{-881}$	-742 -558	$-1,041$ -440	$\begin{gathered} -903 \\ 1,246 \end{gathered}$	$\begin{array}{r} -1,174 \\ 2,791 \end{array}$		
Long-term capital, net: U.S. Government	-2,359	-1,339	$-1,470$			-544		-95	-366							
Private	-4,401	-152	-357	-1,691	-2,018	201	$-1,143$	604	393	781		-303	1,666	-1,731		
Balance on current account and long-term capital mil. \$-	-9,550	-9,843	1,214	-2,994	-3,294	-1,881	-3,775	-1,855	-2,652	-1,556	-886	-668	2,549	214		
Nonliquid short-term private capital flows, net	-2,347	-1,637	$-4,210$								-1,765	$-1,426$				
Allocation of special drawing rights (, 347	$-1,710$	-4,210	-492 179	-822	-516 179		178			-1,765	$-1,426$		-1,065		
Errors and omissions, net...........	-10,784	-3,112	-4,793	-2,391	$-5,511$	-1,933	944	940	-1,626	-1,490	-3,898	77	$-1,097$	-275		
Net liquidity balance .-...................... do	-21,965	$-13,882$	-7,789	-5,698	-9,448	-4,151	-3,188	$-2,307$	-4, 531	$-3,851$	$-6,549$ $-3,927$ $-3,48$	- $-1,617$	1,498	$-1,126$	-544	
Liquid private capital flows. net.	-7,788	3,542	- 2,503	${ }_{-647}$	- $-1,434$	$-1,749$	${ }_{-3.288}$				[$\begin{array}{r}-3,927 \\ -10,476\end{array}$	1,972		3,826 2 2700	, 409	
Official reserve transactions balance. \qquad do Changes in liabilities to foreign official agencies:	-29,753	-10,340	-5, 286	-6,345	-11,882	$-5,900$	-3,476		-4, 524	-1,484	-10,476	355	2,130	2,700	65	
	27,615	9,720	4,434	5,854	10, 870	5,738	2,546	1,057	4,467	1,645	9,097	-798	-1,676	-2,184	-376	
Other readily marketable.-....................do	-551	399	1,118	-160	-173	-17			34	117	1,202	259	11	${ }^{-354}$	77	
Nonliquid. Changes in U.S. official reserve assets, net	341 2,348	189 32		$\xrightarrow[659]{88}$	[194	- $\begin{array}{r}366 \\ -187\end{array}$	280 429					167		$c-147$ -15		
Gross liquidity balance, eqcluding SD R....	-23,779	-15,826	-722	-5,801	$\left\lvert\, \begin{array}{r}10,194 \\ \hline 10\end{array}\right.$	${ }_{-4,720}^{-187}$	-4,168	-2,376	-5,118	-4,159	-8,599	-748	1,175	-1,555	-3,408	
Unless otherwise stated in footnotes below, data	1972	73						973							74	
the lut edmon of BUSIUSS STATSICS		nual	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr. ${ }^{\text {d }}$

GENERAL BUSINESS INDICATORS-Monthly Series

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
PERSONAL INCOME, BY SOURCE \\
Seasonally adjusted, at annual rates: Total personal income..........-...............-. bil. \$.
\end{tabular} \& 939.2 \& 1,035.4 \& 1,003.3 \& 1,011.6 \& 1,018.7 \& 1,026.6 \& 1,035.6 \& 1,047.3 \& 1,058.5 \& 1,068.5 \& 1,079.4 \& 1,089.0 \& 1,087.0 \& 1,094.8 \& \(11,101.4\) \& 1,108.4 \\
\hline Wage and salary disbursements, total ...do. \& 627.8 \& 691.5 \& 671.1 \& 677.6 \& 682.0 \& 688.2 \& 693.2 \& 698.9 \& 706.0 \& 711.2 \& 717.8 \& 722.6 \& 721.8 \& 726.5 \& r 730.2 \& 734.5 \\
\hline Commodity-producing industries, totaldo. \& 226.0 \& 251.9 \& 243.5 \& 245.9 \& 248.3 \& 251.7 \& 253.4 \& 254.8 \& 257.8 \& 259.5 \& 262.5 \& 264.1 \& 261.0 \& 263.0 \& \({ }^{+} 263.7\) \& 264.8 \\
\hline - Manufacturing--.-..---...-.-.------ do \& 175.9 \& 196.8 \& 190.6 \& 192.9 \& 194.7 \& 197.0 \& 197.9 \& 198.7 \& 200.8 \& 202.5 \& 204.6 \& 205.1 \& 203.0 \& 203.5 \& +203.9
+173.7 \& 205.2 \\
\hline \& 151.5 \& 165.1 \& 160.6 \& 162.2 \& 163.2 \& 164.5 \& 165.3 \& 167.1 \& 168.7 \& 169.6 \& 170.8 \& 171.3 \& 171.8 \& 172.2 \& - 173.7 \& 174.9 \\
\hline \& 116.1 \& 129.0 \& 124.9 \& 126.4 \& 126.8 \& 127.7 \& 129.4 \& 130.8 \& 132.5 \& 132.9 \& 134.1 \& 135.9 \& 136.8 \& 138.3 \& 139.2 \& 140.4 \\
\hline \& 134.2 \& 145.4 \& 142.2 \& 143.1 \& 143.7 \& 144.4 \& 145.1 \& 146.2 \& 147.0 \& 149.2 \& 150.4 \& 151.3 \& 152.2 \& 152.9 \& 153.7
48.3 \& 154.4
48.8 \\
\hline \& 40.7 \& 14.9 \& 43.6 \& 43.9 \& 44.2 \& 44.5 \& 44.8 \& 45.3 \& 45.8 \& 46.2 \& 46.7 \& 47.1 \& 47.5 \& 47.9 \& 48.3 \& 48.8 \\
\hline \begin{tabular}{l}
Proprietors' income: \\
Business and professional. \(\qquad\)
\end{tabular} \& 54.0 \& 57.5 \& 56.4 \& 56.8 \& 57.1 \& 57.3 \& 57.8 \& 58.0 \& 58.1 \& 58.5 \& 58.7 \& 58.6 \& 58.6 \& 59.3 \& r 59.9 \& 59.9 \\
\hline \& 20.2 \& 26.8 \& 24.6 \& 24.2 \& 24.4 \& 24.6 \& 25.9 \& 27.1 \& 28.3 \& 29.9 \& 31.6 \& 32.4 \& 29.6 \& 29.1 \& 28.6 \& 25.2 \\
\hline Rental income of persons.................... do \& 24.1 \& 25.1 \& 24.6 \& 24.3 \& 24.6 \& 24.9 \& 25.0 \& 25.3 \& 25.5 \& 25.6 \& 25.7 \& 25.7 \& 25.8 \& 25.8 \& 25.8 \& 25.0 \\
\hline \& 26.0 \& 27.8 \& 27.0 \& 27.3 \& 27.3 \& 27.4 \& 27.6 \& 28.2 \& 28.3 \& 28.5 \& 28.7 \& 29.8 \& 29.5 \& 29.4 \& 29.6 \& 29.9 \\
\hline \& 78.0 \& 87.5 \& 83.4 \& 84.5 \& 85.7 \& 86.5 \& 87.8 \& 89.0 \& 90.3 \& 91.5 \& 92.6 \& 94. 0 \& 95. 3 \& 96.3 \& 597.5
+128.9 \& 98. 7 \\
\hline \& 103.0 \& 117.5 \& 114.5 \& 115.3 \& 115.9 \& 116.0 \& 116.9 \& 119.0 \& 120.2 \& 121.1 \& 121.9 \& 123.0 \& 125.9 \& 127.6 \& + 128.9 \& 133.9 \\
\hline Less personal contributions for social insurance bil. \$.- \& 34.7 \& 43.1 \& 42.0 \& 42.4 \& 42.5 \& 42.8 \& 43.4 \& 183.6 \& 43.9 \& 44.0
\(1,030.0\) \& 44.3
\(1,039.0\) \& - 44.3 \& 47.0
\(1,048.1\) \& 47.2
\(1,056.4\) \& r
\(r 1,063.3\) \& 47.5
\(1,073.5\) \\
\hline Total nonagricultural income..............-do.-..-- \& 911.5 \& 1,000.5 \& 970.9 \& 979.5 \& 986.4 \& 994.2 \& 1,001.8 \& 1,012.1 \& 1,021.8 \& 1,030.0 \& 1,039.0 \& 1,047.5 \& 1,048.1 \& 1,056.4 \& 1,063.3 \& 1,073. 5 \\
\hline FARM INCOME AND MARKETING \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Cash receipts from farming, including Government payments, total....................................... \& 64,632 \& 86,049 \& 5,251 \& 4,648 \& 5,252 \& 5,683 \& 8,493 \& 7,614 \& 7,790 \& 11,409 \& 10,324 \& 8,388 \& - 9,318 \& r 6,450 \& 5,912 \& \\
\hline Farm marketings and CCC loans, total...-do \& 60,671 \& 83,449 \& 5,241 \& 4,571 \& 5,244 \& 5,667 \& 6,225 \& 7,533 \& 7,778 \& 11,367 \& 10,307 \& 8,386 \& r 9, 276
r 5
r \& \(+6,437\)
+2772 \& \(\begin{array}{r}+5,902 \\ +298 \\ \hline\end{array}\) \& 5,300
1,700 \\
\hline Crops...--.-.---.-.-..................-- do \& 25, 075 \& 38, 172 \& 1,505 \& 1,269 \& 1,454 \& 1,958 \& 2,821 \& 3,123 \& 3,694 \& 6,757 \& 6,320 \& 4,815 \& \(+5,249\)
\(+4,226\) \& \(+2,772\)
\(+3,665\) \& r 2,193
r 3,710 \& 1,700 \\
\hline Livestock and products, total 9 .-............do \& 35,596 \& 45,277 \& 3,736 \& 3,302 \& 3,790 \& 3,709 \& 3,404 \& 4,410 \& 4,084 \& 4, 610 \& 3,987 \& 3,571 \& - 4,226 \& +

3,665
r \& $\begin{array}{r} \\ \\ r \\ \\ \hline\end{array}$ \& 3,600
900

\hline \& 7,157 \& 8,125 \& 653 \& 651 \& 693 \& 667 \& 650 \& 679 \& 696 \& 739 \& 730 \& 786 \& 766
2840 \& $\begin{array}{r}\text { r } \\ \times 2 \\ +268 \\ \hline\end{array}$ \& r
$\times 2,292$ \& 2, 200

\hline Meat animals \& 23,955 \& 29,934 \& 2, 588 \& 2,130 \& 2,542 \& 2,438 \& 2, 139 \& 2,842 \& 2,674 \& 3,161 \& 2,613 \& 2, 176 \& 2,840
τ \& r 2,368
r
r \& r
+
r
5 \& 2,200
500

\hline \& 4,165 \& 6,832 \& - 469 \& -487 \& - 519 \& -563 \& $\checkmark 577$ \& 856 \& 686 \& 683 \& 619 \& 565 \& ${ }^{\tau} 593$ \& r 534 \& r 534 \& 500

\hline Indexes of cash receipts from marketings and CCC loans, unadjusted: \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline All commodities.-..-.-......................... $1967=100$. Crops. \& 142
136 \& 195 \& 147
98 \& 128 \& $\begin{array}{r}147 \\ 95 \\ \hline\end{array}$ \& 159

127 \& | 175 |
| :--- |
| 184 | \& ${ }_{212} 203$ \& 219

240 \& 320
440 \& 290
411 \& 236
313 \& r 261

329 \& | r 181 |
| :--- |
| r |
| r |
| 180 | \& r

+166
+143 \& 111

\hline Crops_-------.-.-.-...................- do...- \& 136 \& 1807 \& 98
185 \& 83
163 \& -95 \& 127 \& 184
168 \& 218 \& 240
202 \& 440
228 \& 197 \& 313
177 \& r 209 \& +181 \& +184 \& 179

\hline Indexes of volume of farm marketings, unadjusted:
All commodities...... \& \& \& \& \& \& \& \& \& \& 165 \& \& 130 \& 「 135 \& +89 \& 87 \& 83

\hline \& 112 \& 110 \& 85
61 \& 48 \& 83
51 \& 74 \& 112 \& 105 \& 124 \& 220 \& 220 \& 167 \& -170 \& + 82 \& ${ }^{7} 66$ \& 52

\hline \& 109 \& 104 \& 104 \& 96 \& 109 \& 106 \& 95 \& 100 \& 101 \& 121 \& 110 \& 100 \& r 109 \& r 9 \& r 102 \& 105

\hline
\end{tabular}

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973 ग	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

GENERAL BUSINESS INDICATORS—Continued

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973 D	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr. ${ }^{\text {P }}$

GENERAL BUSINESS INDICATORS-Continued

Mig. and trade inventories, hook value, end of year
or month (unadj.), total \dagger.......................
Mig. and trade inventories, book value, end of year
 Manufacturing, total..--
Durable goods industrie Durable goods industries
Nondurable goods industries.

Manufacturing and trade, total \dagger................ ratio

Manufacturing, total..-.-.............-.-.-- do.	
Durable goods industrie	
Work in process	
Nondurable goods industries...............do...-	
Retall trade, total †do....	
Durable goods stores Nondurable goods stores	
Merchant wholesalers, total..................do...-	
Durable goods establishments.. do \qquad Nondurable goods establishments \qquad \qquad o. \qquad	
MANUFACTURERS' SALES, INVENTORIES,	
Menufacturers' export sales:	
Durable goods industries:	
Unadjusted, total............................mll. \$..	
Shipments (not seas. adj.), total..............-do....-	
Durable goods industries, total $\%$.-.......... do...-	
Stone, clay, and glass products..................	
Blast furnaces, steel mills \qquad do Nonferrous metals. \qquad do	

137.8	149.3	146.3	147.9	150.2	149.8	151.8	151.0	150.9	151.1	151.6	151.6	${ }^{+} 151.5$	¢ 151.1	- 151.0	
139.6	150.2	146.8	147.8	150.2	150.4	152.0	151.4	153.0	152.7	153.0	154.5	+154.9	-155. 2	r 155.0	151.0 154.5
120.6	127.4	123.5	126.9	128.5	129.7	129.3	128.2	126.0	130.4	129.5	125.5	-120.5	+116.9	- 117.7	118.0
145,5	163.8	163.4	165.1	166.8	163.9	168.8	167.9	163.6	161.9	164.5	162.3	- 164.3	${ }^{1} 163.5$	164.0	
117.6	121.9	121.5	120.7	121.5	119.5	121.3	122.0	122.2	121.7	124.7	123.0	r 125.4	- 126.0	- 125.6	126.0
118.6	122.7	121.8	121.3	122.4 111.2	120.3 108.1	122.4 105.3	122.9 110.1	123.2	122.4	125.4	124.5	+126.3	, 127.2	-126.7	127.1
103.7	110.7	118.1	112.9	111.2	108.1	105.3	110.1	109.1	113.7	115.8	104.2	113.3	112.1		
124.1	129.0	127.3	126.6	127.0	128.2	130.4	130.7	131.3	131.5	130.6	126.9	- 125.4	+126.3	+ 125.8	125.9
108.8	110.3	109.5	109.0	109.1	109.5	111.0	111.5	111.8	111.9	111.3	110.4	-109.9	- 110.5	r 111.2	110.8
120.9	130.8	127.8	128.5	127.0	121.6	128.4	131.4	136.6	138.3	113.2	135.2	${ }^{+135.2}$	- 132.6	132.2	
98.1	109.5	109.4	108.8	108.8	105. 2	109.1	113.1	109.5	109.2	111.7	113.1	111.9	111.6	110.7	
109.2	108.3	107.6	107.1	107.3	108.9	109.5	109.2	109.6	109.7	108.8	107.5	+107.0	- 108.1	- 109.2	108.9
104.2	104.4	105.7	99.9	100.9	108.0	109.0	104.0	109.8	103.0	104.1	110.4	108.7	+ 112.7	r 114.1	110.6
110.0	108.9	107.9	108.3	108.4	109.1	109.5	110.0	109.7	110.8	109.6	107.0	$\stackrel{\text { r }}{ } 106.8$	${ }_{\sim}^{+} 107.4$	r 108.5	108.6
107.3	104.4	103.7	103.6	104.6	104.6	105.4	104.8	103.9	104.2	103.7	102.9	${ }^{\text {r }} 102.4$	- 101.6	99.8	
143.4	152.6	149.6	148.7	149.5	151.6	154.8	154.8	155.8	156.2	154.6	147.6	144.9	+146. 1	${ }^{+} 144.3$	144.9
149.4 123.4	161.1 124.2	157.4	156.2	156.8	159.7	163.9	163.8	165.1	165.3	163.4	155.6	153.0	154.6		
1,496,165	1,734, 496	144,004	141,559	147,001	149,963	138,911	146,353	146,046	154,869	154,834	154,229	143,542	r148,397	161, 812	
1,496,165	${ }^{11,734,496}$	141,010	141,274	142,682	142,311	146,458	146,068	146,235	150,157	153,096	151,381	155,015	r157,104	159, 511	
1749,587	1866, 321	69,719	70,468	71,284	71,616	73,248	73, 021	73,060	75, 269	77,019	75,355	77, 187	+ 77,879	78,309	
406,707	474,229	38, 064	38,651	39, 284	39,257	40,779	39,633	40,162	41,567	41,896	40,203	40, 792	r 40,974	40,871	
342,880	392, 092	31,655	31,817	32. 000	32,359	32,469	33, 388	32,898	33, 702	35,123	35,152	36,395	+ 36,905	37, 438	
1448,379	1503,317	41,979	41,185	41, 723	41,167	42,767	42,355	42,529	42,970	42,976	42,116	42,932	- 43,134	43,792	
149, 659	170,275	14, ${ }_{2}$	14,339	14, 299	13,731	14,409	14,481	14,267	14,331	14,090	13,270	13, 525	r 13,327	13,603	
298, 720	c333, 042	27,367	26,846	27,424	27,436	28,358	27, 874	28,262	28,639	28,886	28,846	29,407	+ 29,807	30, 189	
1298,199	1 364, 858	29,312	29,621	29,675	29,528	30,443	30,692	30,646	31,918	33,101	33,910	34,896	r 36,091	37, 410	
138, 446	167,713	13,720	13, 806	13,964	13,781	14,039	13,950	13,968	14, 391	14,995	15,232	15,898	- 15,860	16, 597	
159,753	197, 145	15, 692	15, 815	15,711	15,747	16,404	16,742	16,678	17,527	18,106	18,678	18, 998	r 20,231	20,813	
194,228	219,247	202,959	204, 799	206, 563	207,491	207,670	207,691	209,921	214,722	219,589	219,247	223,036	227,616	232, 040	
196,002	221,357	201,317	202, 529	204, 623	206,961	208,776	210,548	212,227	214,284	217,637	221,357	224,657	227,726	230, 210	
107,719	120,870	110,174	110,577	111,625	113,025	113,910	114,907	116,114	117,224	118,435	120,870	122,570	124,831	126, 068	
70, 218	79, 441	71,873	72, 213	72,867	73,801	74,278	75,213	76,249	76,951	77,645	79,441	80,541	r 81,425	82,726	
37,501	41,429	38, 301	38,364	38, 758	39,224	39,632	39, 694	39,865	40,273	40,790	41,429	42,029	+42,906	43, 342	
56,551	63, 561	57,898	58,378	59,012	59,788	60,213	60,677	60,847	61,681	62,937	63,561	64, 261	64, 394	64,743	
26,034	28,778	26,146	26,356	26,661	27,051	27,494	27,563	27,507	27,926	28,662	28,778	28, 852	28,780	28,578	
30,517	34,783	31,752	32,022	32, 351	32,737	32,719	33, 114	33, 340	33,755	34, 275	34,783	35,409	35, 605	36, 165	
31,732	36, 926	33, 245	33, 574	33,986			34,964		35, 379	36, 265		37, 826	r 38,501	39,399	
18, 884	21, 1812	19,457	19, 496	19,929	20,141	20,159	20,089	20,257	20, 331	20,787	21,112	21,487	+ 21,786	22, 397	
12,818	15,814	13,788	14,078	14,057	14,007	14,494	14,875	15,009	15,048	15,478	15,814	16,339	r 16,715	17, 002	
1.51	1. 43	1.43	1.43	1.43	1.45	1.43	1.44	1.45	1.43	1.42	1.46	1.45	1.45	1.44	
1. 67	1.57	1.58	1.57	1.57	1.58	1.56	1. 57	1.59	1.56	1.54	1.60	1. 59	1.60	1.61	
2. 00	1.87	1. 89	1.87	1.85	1.88	1.82	1. 90	1. 90	1.85	1.85	1.98	1.97	+2.00	2.02	
.57 .90	. 55	. 87	. 54	. 54	. 85	. 53	. 56	. 56	. 55	. 86	. 61	. 61	. 62	$\stackrel{64}{91}$	
. 90	.86	. 87	.86 .47	.85 .47	. 86	. 83	. 87	. 87	. 84	. 85	.90 .47	.89 .47	40 +.48	. 91	
1. 29	1. 20	1.21	1.21	1.21	1.21	1.22	1.19	1.21	1.19	1.16	1.18	1.15	${ }^{\text {r }} 1.16$	1.16	
. 48	. 46	. 46	1.46	${ }^{.46}$. 46	. 47	${ }^{1} .46$. 47	. 47	. 45	. 45	. 45	. 46	. 45	
. 20	. 19	. 19	. 19	. 19	. 19	. 19	. 19	. 19	. 19	. 18	. 19	. 18	-. 18	. 18	
. 61	. 55	. 56	. 56	. 56	. 56	. 56	. 54	. 55	. 54	. 53	. 54	. 52	. 52	. 53	
1.45	1.42	1.38	1.42	1.41	1.45	1.41	1.43	1.43	1. 44	1.46	1.51	1.50	-1.49	1. 48	
1.96	1.91	1.79	1.84	1.86	1.97	1.91	1.90	1.93	1.95	$\stackrel{2.03}{19}$	2.17	2.13	+2.16	2.10	
1.19	1. 18	1.16	1.19	1.18	1.19	1.15	1.19	1.18	1.18	1.19	1.21	1.20	+1.19	1.20	
1. 21	1.13	1. 13	1.13	1.15	1.16	1.14	1.14	1.15	1.11	1.10	1.09	1.08	${ }^{\text {r }} 1.07$	1.05	
1.55 .91	1.43 .87	1.42 .88	1.41	1.43	1.46	1.44	1.44	1.45	1.41	1.39	1.39	1.35	1.37	1.35	
. 91	. 87	. 88	. 89	. 89	. 89	88	. 89	. 90	. 86	. 85	. 85	. 86	. 83	. 82	
25,108	31,623	2,699	2, 630	2,759	2,627	2,351	2,399	2,684	2,841	2,979	3,174	2,938	3,243	3,526	
		2, 518	2,487	2,660	2,560	2,651	2,646	2,722	2,815	2,920	2,884	3,119	3,344	3,302	
749,587	866, 321	72,843	72,014	72, 691	76,273	67,354	70,827	75,281	77,081	76,387	71,571	71,925	r 78,999	81,709	
406,707	474,229	40,328	39,942	40, 707	42,641	36,640	37,291	40,945	42,285	41,356	38,047	37,765	-41,755	43,269	
22,344	24,936	2,061	2,064	2,182	2,270	2,045	2,229	2,189	2,314	2,136	1, 809	1,839	${ }^{+1,003}$, , 149	
57, 941	72,027	6,030	6,028	6,195	6,402	5,536	5,846	6,155	6,345	6,383	6,072	6,504	7,061	7,469	
28,109 21,392	35,260 26,539	3,012 2,153	2,946 2,222	3,034 2,253	3,119 2,357	2,760 1,991	2,882 2,177	2,986 2,320	3,054 2,355	3,057 2,428	2,840 2,384	3,133 2,453	$+3,246$ $+2,848$	3,671 2,795	

tSee note marked " \ddagger " on p. S-12; revisions for total mfg. and trade (unadj. and seas. adj.) and inventory-sales ratios for mfg. and trade total and retail trade, total, durable, and nowseparately. \ddagger See note marked " σ "" on p. S-4. "Corrected.
f Revised.
estimate; total mfrs. shipments for Mar. 1974 do not reflect revisions for selected ${ }^{2}$ Advance §The term "business" here includes only manufacturing and trade; business inventories as shown on p. S-1 cover data for all types of producers, both farm and nonfarm. Unadjusted data for manufacturing are shown below on pp. S-6 and S-7; these for wholesale and retail trade on pp. S-11 and S-12.

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

GENERAL BUSINESS INDICATORS—Continued

MANUFACTURERS' SALES, INVENTORIES, AND ORDERS-Continued																
Bhipments (not seas. adj.)																
Durable goods Industries-Continued	47,098	53,707	4, 403	4,426	4, 503	4,732	4,295	4,455	4,655	4,811	4,668	4,527	4,325	-4,739	4,887	
Machinery, except electrical............................	61,024	73, 380	6,294	6,216	6,199	6,750	5,705	5,734	6,468	6,237	6,174	6,384	6,223	- 7,020	7,579	
	55, 950	63,497	5,345	5,192	6,111	5,583	4, 909	5,230	5,654	5,642	5,571	5,438	5,060	- 5,662	5,697	
	105,340	122,860	10, 854	10,663	11,151	11,249	${ }^{9}, 151$	8,281	10, 134	11,158	10, 911	8,755	8,926	9, 782	9, 666	
Motor vehicles and par	66,762	77, 278	7,097	6,741	7.006	7,169	5,419	4,667	6,227	7,314	6,928	4,866	5,611	-5,762	5,532	
Instruments and related products .-.-.-.-. - do	13,393	14,334	1,182	1,170	1,170	1,263	1,119	1,168	1,299	1,302	1,258	1,218	1,134	-1,240	1,288	
Nondurable goods industries, total 9. do	342, 88	392, 092	32, 515	32,072	31,884	33,632	30,714	33,536	34,336	34,796	35,031	33,524	34,160	- 37,244	38,440	
Food and kindred products. .-.-...-.-.-.- do	114,496	134,947	11,032	10,683	10,740	11,383	10,806	11,750	11,982	12,187	12,337	11,980	12,010	- 12,653	12,885	
Tobacco products.	5, 863 26,726	6,201 30,531	486 2,687	483 2,501	826 2,849	. 555 2,725	2,200	2,602	- ${ }_{2,631}^{516}$	534 2,758	- 5372	-539	549 2,556	r 509 $ז$	536	
Tertile mill prod	26,726	30,531	2,687	2,501	2, 849	2,725	2,200	2,602	2,631	2,758	2,675	2,537	2,556	¢ 2,785	2,944	
Paper and allied product	28, 278	32,417	2, 652	2,628	2, 699	2,833	2,562	2,798	2,815	2.863	2,850	2,719	2,901	+3,125	3, 206	
Chemicals and allied produ	57, 437	67, 034	5,741	5,910	5,784	5,962	5,152	5,536	5,769	5,643	5,610	5,463	5,685	r 6,452	6, 816	
Petroleum and coal products	29,932	35,815 20,488	2,675 1,766	2,723 1,796	2,781 1,716	2,953 1,794	2,919 1,580	3,017 1,702	3,121 1,743	3,135 1,809	3,425 1,729	3,694 1,584	3,742 1,696	r 4,173 r 1,842	4,229	
Rubber and plastics products	19,185	20,488	1,760	1,796	1,76		1,580	1,702	1,743	1,809	1,729	1,584	1,696		1,922	
Shipments (seas. adj.),			69,719	70,468	71, 284	71,616	73,248	73,021	73,060	75,269	77,019	75,355	77,187	-77,879	78,309	
By industry group: Durable goods industries,			38, 064	38, 651	39,284	39,257	40,779	39,633	40,162	41,567	41,896	40, 203	40,792	40,974	40,871	
Stone, clay, and glass produ			2,068	2,029	2,096	2,072	2,075	2,084	2,046	2,178	2,162	2,048	2,125	+2,159	2,150	
Primary metals..-...			5, 634	5,471	5,710	5,789	6,023	6, 165	6,266	6,730	6,792	6,687	6,766	6,884	6,977	
${ }^{\text {Blast furnaces, }}$			2,784	2, 595	2,704	2,753	2,924	3, 030	3,149	3,459	3,367	3,181	3, 220	+ 3,163	3, 393	
Nonferrous meta			2, 033	2,061	2,115	2,178	2,245	2, 301	2,284	2,369	2,495	2,586	2,580	「2,776	2,637	
Fabricated metal			4,330	4,362	4,487	4,411	4,606	4,385	4,345	4,648	4.714	4,730	4,780	+ 4,823	4,805	
Machinery, except			5, 818	5,975	6,047	6,159	6,240	6,117	6,243	6,353	6,614	6,630	6,649	r 6,712	6, 994	
Electrical machinery.			6, 215	5, 393	[5,296	5,265	5,405	5,350	5,288	5,372	5,382	5,387	5,529	+ 5,621	5,552	
Transportation equipm			9,765	10,105	10,317	10,229	11, 173	10,281	10,697	10, 809	10,624	9, 156	9,452	9, 163	8,693	
Motor vehicles and p Instruments and relate			6,342 1,181	6,254 1,194	6,395 1,171	6,250 1,186	7,055	6,524 1,163	6,692 1,192	6,932 1,245	6,668 1,232	5,490 1,226	5,555 1,265	- 5,167	4,949 1,289	
Nondurable go			31, 65	31, 817	32,000	32,359	32, 469	33,3	32,8	33,702	35, 123	35,152	36,395	36,905	37, 438	
Food and kindred prod			10, 866	10,926	10, 872	11, 071	11, 222	11,827	11,348	11,739	12, 180	12,089	12,762	12,693	12,678	
Tobacco products.			498	499	520	515	506	540	498	536	528	552	582	${ }^{+} 535$	550	
Textlle mill product			2, 532	2,541	2, 611	2,566	2, 550	2,550	2,499	2, 532	2, 637	2,642	2,793	+ 2,816	2, 769	
Paper and allied produ			2,548	2, 609	2,715	2, 708	2,722	2,767	2,739	2,807	2,898	2, 891	3,009	r 3,067	3, 079	
Chemicals and allied prod			5,488	5,409	5,387	5,593	5,641	5, 694	5,575	5,687	5,895	6, 140	${ }^{6}, 127$	r 6,315	6, 518	
Petroleum and coal products-.-.--...--			2,702 1,679	2,745 1,698	2,819 1,663	2,883 1,677	2,936 1,712	3,017 1,700	3,100 1,706	3,170 1,748	3,456 1,794	3,663 1,754	3,746 1,830	' 4,077	4,257	
Rubber and plastics products..------.- ${ }^{\text {d }}$			1,679	1,698	1,663	1,677	1,712	1,700	1,706	1,748	1,794	1,754	30	${ }^{\text {r }} 1,819$	1,829	
By market category: Home goods and appare	171,555	${ }^{1} 80,572$	6, 639	6,761	6,682	6,681	6,541	6,616	6,683	6,878	7,178	6,961	7,083	r 7, 152	7,381	
Consumer staples......	1146,257	${ }^{1} 166,933$	13, 532	13,559	13,570	13,734	13, 837	14,472	13,929	14,479	14,915	14,746	15,267	- 15,167	15,290	
Equipment and defense prod., excl. auto.do	1103.198	${ }^{1} 121,165$	9,467	10, 025	10, 192	10,279	10,480	9,954	10,433	10,222	10,690	10,636	10,807	- 11,017	10,929	
Automotive equipment....-.-.-.-.-.-. do	179,835	1 91, 945	7,518	7, 482	7,560	7,436	8,344	7, 807	7,898	8,306	7,980	6, 724	6,792	r 6, 424	6,240	
Construction materials and supplies.....-do	163,500 1285	1 1 1 1323,3615	5,943 26,620	5,939 26,702	6,079 27,201	6,021 27,465	6,098 27,948	5,928 28,244	5,928 28,189	6,112 29,272	6,301 29,955	6,314 29,974	6,192 31,046	r $+6,376$ $\times 31,743$	6,254 32,215	
Other matertals and supplies...--........-d	1285,242	${ }^{1}$ 333,345	26, 620	26,702	27, 201	27,465	27,948	28,244	28,189	29,272	29,953	29,974	31,046	r 31,743	32,215	
	131,354	${ }^{1} 36,451$	2,968	3,011	2,993	2,975	3,095	3, 084	3, 042	3,152	3, 260	3,143	3,132	3,236	3,303	
	1121,611	$1{ }^{1} 141,268$	11,155	11,695	11,844	11,954	12,138	11,687	12,032	12,096	12,320	12,208	12,516	12,770	12,638	
Nondefense.	1103,294	${ }^{1} 121,646$	9,490	10,055	10, 098	10,381	10,465	10, 135	10,425	10,386	10,713	10,661	10,900	11, 106	10,958	
Defense.	118,317	${ }^{1} 19,622$	1,665	1,640	1,746	1,583	1,673	1, 552	1,607	1,710	1,607	1,547	1,616	1,664	1,680	
Inventories, end of year or month: Book value (unadjusted), total.	107, 415	120,312	110,837	111,469	112,604	113,175	113,367	114,465	115,045	116,496	117,842	120,312	122,837	-125,398		
Durable goods industries, total	69, 803	78, 835	72,390	72,884	73,562	73,911	74, 051	75,117	75,707	76,399	77, 154	78,835	80,460	r 82,181	83, 220	
Nondurable goods industries, total.......d.d..	37, 612	41,477	38,447	38,585	39,042	39, 264	39,316	39,348	39,338	40,097	40,688	41,477	42,377	- 43,217	43, 470	
Book value (seasonally adjusted)	107, 719	120,870	110,174	110,577	111,625	113,025	113,910	114,907	116,114	117,224	118,435	120,870	122,570	r 124,831	126,068	
By industry group: ${ }^{\text {Durable goods industries, }}$ total	70,218	79, 441	71,873	72, 213	72,867	73, 801	74, 278	75,213	76, 249	76,951	77,645	79,441	80,541	- 81,925	82,726	
Duratogo, clay, and glass produ	2,463	2,813	2,495	2,477	2, 524	2,593	2,669	2,679	2,702	2,720	2,737	2,813	2,863	+ 2 2,861	2,960	
Primary metals......	9,658	9,356	9, 365	9,425	9,425	9,391	9,452	9, 346	9,323	9, 222	9,226	9,356	9,467	r 9,523	9,481	
Blast furnaces, steel mills	5, 268	4, 672	4,915	4,925	4,940 3,403	4.830	4,869	4, 820	4,791	4,677	4,617 3,402	4,672	4,691 3,500	$+4,632$ $-3,595$	4,528 3,606	
Nonferrous metals...	3, 354	3,449	3,391	3, 421	3,403	3,472	3,475	3,388	3,358	3,375	3,402	3,449	3,500	- 3,595	3,606	
Fabricated metal products........-do	7,832	8,997	8, 203	8,113	8,189	8,230	8,238	8,378	8,519	8,513	8,792	8,997	9,023	r 9,264	9,360	
Machinery, except electrical........-d. do	14,386	16,703	14, 843	14,975	15,172	15,386	15,504	15,681	15,952	16,164	16,365	16,703	17,021	- 17,405	17,753	
Electrical machinerydo	10, 381	12,559	10, 954	11,030	11, 211	11,369	11,514	11,742	11, 834	12,102	12,302	12,559	12,749	r 13,016	13, 060	
Transportation equipment........-. do	16,150 4 4 2	18, $\begin{array}{r}183 \\ 5\end{array}$	16, 492	16, 604	16,634	16,977	17, ${ }^{5}, 102$	17,328	17,690	17,766	17,763	18,233	18,339	$\begin{array}{r}\text { r } \\ \hline \\ \mathbf{1} 5,616 \\ 5 \\ \hline\end{array}$	18,481 5,525	
Motor vehicles and parts-.....-do	4, 4 2,717	5,646	4,644 2,698	4,713	4,799 2,744	5,074 2,823	5,102	5, 107	5,436	5,391 3,083	5,391 $\mathbf{3 , 1 7 0}$	5,646 3,268	5,713 3,413	r \cdot $\mathbf{3}, 581$	5, 525 3,622	
By stage of fabrication:																
Materials and supplies 9...........-do....	20,010	24,423 3,586	20,659	20,887	21, 198	21,424	21,721	22,080	22,621	23,064 3,376	23,444 3,494	24,423 3 8886	24,923 3	$\begin{array}{r}\text { r } \\ \hline 25,494 \\ \hline 3,772\end{array}$	26,037 3,853	
Primary metals	-3,516	- $\mathbf{8 , 3 5 9}$	3, 3 , 857	3,017	3,148 7,157	3,326 7,245	3, 7,411 3,41	3,377 7	3,355 7,769	3,376 7,932	8,476	3,586 8,359	3, 665 8,523 3,856	r ${ }^{\text {3, }}$	8,967	
Transportation equipment...-..-do...--	3,022	3,888	3,081	3, 139	3,195	3,433	3,413	3, 407	3,667	3, 624	3,594	3,888	3,886	+ 3,842	3,740	
	32,074	36,078	33, 005	33, 114	33, 318	33, 73.5	33, 944	34,461	34, 742	35,082	35,519	36,078	36,285	+36,942	37, 289	
Primary metals.....-..................d	3,485	3,450	3, 466	3,509	3,544	3, 493	3, 514	3,477	3,496	3,455	3,405	3,450	3,478	-3,434	3,425	
Machinery (elec. and nonelec.)...do	11, 250	13,407	11, 741	11,801	11,964	12, 237	12, 358	12,539	12,675	12,983	13, 203	13,407	13,621	r 13,985	14,197	
Transportation equipment...--.-do.-.--	11, 774	12,761	12,036	12,064	11, 999	12, 100	12, 133	12,384	12,439	12,576	12, 589	12,761	12,818	r 13,001	13, 090	
Finished goods\%.....................-do..	18. 134	18,940	18, 209	18, 212	18,351	18,642	18,613	18,672	18, 886	18,805	18,682	18,940	19,333	r 19,489	19,400	
Primary metals......-.-.-.-.-.-.-. do-.--	2,890	2, 320	2, 732	2,588 7	2,533 7 1262	2,572	2,549 7249		2,472	2,391 7 7		2,320	2,324	r r 7, $\mathbf{7}, 694$	2,203 7,649	
Machinery (elec. and nonelec.)...do	7,001 1,354	7,496	7, 199 1,375	7,187 1,401	7,262	7,273 1,444	7, 249 1,483	7,282	7,342	7,351 1,566	7,388 1,580	7,496 1,584	7,626 1,635	$\begin{array}{r}\text { r 7,694 } \\ \hline 1,617\end{array}$	7,649 1,651	
Transportation equipme	1,354	1,584	1,375	1,401	1,440	1,444	1,483	1,537	1,584	1,566	1,580	1,584	1,635	「 1,617	1,651	
Nondurable goods industries, total $\%$. .do	37,501	41,429	38,301	38,364	38,758	39, 224	39,632	39,694	39,865	40,273	40,790	41,429	42,029	- 42,906	43,342	
Food and kindred products.......-do	9, 421	10,584	9,830	9, 760	9, 864	10,042	10, 135	10,011	10,027	10,172	10, 432	10,584	10,638	r 10,791	10,909	
	2,369	2, 460	2,326	2,333	2, 352	2,343	2,331	2,399	2,398	2,425	2,446	2,460	2,569	r 2, \mathbf{r} $\mathbf{4}$ 679	2,580	
Textile mill products....-...-...----- ${ }^{\text {d }}$	4, 044	4,589	4,192	4, 255	4, 295	4,317	4,349	4,379	4,436	4,407	4,521	4,589	4,707	r 4, 675	4,734	
Paper and allied products-..-.-.--do	2,875	3,267	2, 912	2,915	2,948	2,992	3,006	3, 032	3,070	3, 089	3,170	3,267	3,325	+ 3,403	3,472	
Chemicals and allied products.......do	7,018	7, 268	6, 955	6,998	7,036	7,046	7, 136	7, 140	7,175	7, 185	7, 208	7,268	7, 263		7,683	
Petroleum and coal products........do	2,300	2, 626	2, 268	2,345	2, 321	2, 335	2, 412	2,388	2, 391	2, 474	2,548	2,626	2,731	r 2,868	2, 947	
Rubber and plastics products.......do	2,383	2,627	2, 397	2,389	2,457	2,484	2,532	2,539	2, 551	2,578	2,574	2,627	2,702	- 2,742	2,785	
By stage of fabrication: Materials and supplies \qquad do	13,865	15,984	14, 406	14,531	14,660			15,514	15,554	15,772	15,868		16,466	- 16,880		
Work in process	5, 968	6,571	6, 048	6,093	6, 134	6, 151	6, 177	6,250	6, 298	6,323	6,416	6,571	6,558	r6,745	6,667	
Finished good	17, 668	18,874	17,848	17,740	17,964	18,063	18,105	17,930	18,013	18, 178	18,506	18,874	19,005	Fr 19,281	19,659	

${ }^{r}$ Revised. ${ }^{1}$ Based on data not seasonally adjusted. ${ }^{2}$ Advance estimate; total mirs.
shlpments for Mar. 1974 do not reflect revisions for selected components. $\%$ Includes data

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shownin the 1973 edition of BUSINESS STATISTICS nthe 2975 edalion or	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

GENERAL BUSINESS INDICATORS—Continued

M ANUFACTURERS' SALES, INVENTORIES, AND ORDERS-Continued																
Inventories, end of year or month-Continued Book value (seasonally adjusted)-Continued																
By market category: Home goods and apparel................mil. \$.-	11,852	13, 231	12, 404	12, 299	12,426	12, 586	12,707	12,842	12,929	13,146	13,065	13,231	13,405		13,730	
Consumer staples....-..-.....................do	14,373	16,024	14,575	14, 613	14, 849	14,976	15, 254	15,345	15,417	15,638	15, 808	16,024	16, 131	16,456	16, 564	
Equip. and defense prod., excl. auto....	27, 251	31, 140	27, 931	28, 237	28, 338	28, 680	28, 912	29,464	29, 820	30,302	30, 582	31,140	31, 572	- 32,238	32, 731	
Automotive equipment---.-----	6,081	7,305	6,264	6,323	6,432	6,753	6,708	6,749	7, 084	7,021	7,038	7,305	7,399	$\stackrel{7}{ } 7,307$	7,201	
Construction materials and supplis	8,931	10, 220	9,062	9,044	9,235	9, 378	9,446	9,590	9,760	9,764	10,019	10,220	10,287	- 10,441	10,679	
Other materials and supplies.......-....do	39, 231	42,950	39,938	40,061	40,345	40,652	40,883	40,917	41,104	41;353	41,923	42,950	43,776	- 44,886	45, 163	
Supplementary series: Household durables.	5,562	6,263	5,779	5,758	5,870	5,904	5,936	5,998	6,065	6,210	6, 112	6,263	6, 352	- 6,537	6,706	
Capital goods Indust	30, 771	35, 103	31,677	31,931	32, 101	32,490	32,740	33,351	33, 691	34,200	34,541	-35,103	35,553	- 36,205	36, 731	
Nondefense	25, 684	29,488	26,411	26,547	26,717	27, 013	27,306	27,796	28, 163	28,669	29, 033	29,488	29,874	- 30,368	30, 761	
Defense	5, 087	5,615	5,266	5,384	6, 384	5,477	5,434	5,555	5,528	5,531	5,508	5,615	5,679	- 5,837	5,970	
New orders, net (not seas. adj	1762, 170	1 1895,626	76,638	74, 476	74, 318	78,486	70, 068	73,233	76,978	79,349	78,917	73,590	75,674	-82,393	83,641	
Durable goods industries, total	418, 400	502, 768	43, 926	42, 241	42,341	44,914	39,411	39,737	42,703	44,517	43,84b	40,009	41,292	45, 071	45, 111	
Nondurable goods industries, to	343, 770	392, 858	32, 712	32, 235	31, 977	33,572	30,657	33,496	34, 275	34,832	35, 072	33,581-	34,382	- 37,322	38, 530	
New orders, net (seas	762,170	895, 626	72, 806	73, 325	74, 535	75,361	75, 145	76,113	75, 129	77,758	79,441	76,811	79,077	-80,017	79, 587	
By industry group: Durable goods ind	418, 400	502, 768	41, 021	41,341	42,449	43,016	42,697	42,689	42, 259	44,037	44,315	41,546	42,453	43, 157	42,124	
Primary metals..............................d	60,143	78, 642	6,500	6, 656	7,042	7,015	6, 658	7,150	6, 325	6,868	6,730	6,597	5,956	6,624	6,979	
Blast furnaces, steel mills.-.-.................	29,813	39, 913	3,459	3, 604	3,729	3,817	3,493	3,912	3,068	3,309	3,109	3, 014	2,037	${ }^{+} \mathbf{2 , 8 6 3}$	3,123	
Nonferrous metals.	21,670	27, 436	2,146	2,147	2,316	2,232	2,219	2, 296	2,338	2,516	2,582	2,557	2,899	- 2,729	2,746	
Fabricated metal pro	48,	57.	4,556	4,488	4,861	4,672	5,008	4,903	4,982	5,135	4,997	5,237	5,144	- 5,410	5,129	
Machinery, except ele	63,779	80,432 67,473	6,443	6,411	6,544	6,719	6,902 5,676	6,647	6,922 5 5	7,174 5 5	7,313	7,308	7,087	r 7 7,427	8, 005	
Electrical machinery-....	57, 171 109,377	67,473 128,169	5,727 10,281	5,710 10,503	$\begin{array}{r}\text { 6, } \\ \text { ¢ } \\ 10,739 \\ \hline\end{array}$	r $\begin{array}{r}\text { 5, } \\ 11,329\end{array}$	5,676 10,980	5,701 10,948	5, 10 10 $\mathbf{9 7 8} \mathbf{}$	5, $\mathbf{1 1 , 3 6 8}$	5,788 11,573	5,399 9,218	6, 269 10,283	$\begin{array}{r}\text { r } \\ \mathbf{6}, 180 \\ \mathbf{9} \\ \hline 12\end{array}$	5, 6378	
Transportation equipment......................... Aircraft, missiles, and parts.........................	109, 615	78,811	10,281 2,674	10,503 2,678	b, 10,789 3,068	11,329 3,269	10,980 2,698	10,948 2,867	10,978 3,063	- 3,156	1,893	2,307	10,283 3,180	-3,207	8,478 2,519	
Nondurable goods industries, total...-....do	343,770	392, 858	31,785	31,984	32,086	32,345	32,448	33,424	32,870	33,721	35,126	35,265	36,624	- 36,860	37, 463	
Industries with unfilled orders \oplus..........do	89, 291	99,484	8,081	8,301	8,417	\&, 186	8, 242	8,370	8, 260	8,465	8,687	8,601	9,033	- 8,902	8, 942	
Industries without unfilled ordersi......d	254, 479	293, 374	23,704	23,683	23,669	24, 159	24, 206	25, 054	24,610	25,256	26,439	26,664	27,591	- 27,958	28, 521	
By market category: Home goods and ap	271,896		6,707	6,858		6,778	6,642	6,491	6,732	6,948	7,274	6,858	35			
Consumer staples.	${ }^{2} 146,254$	${ }^{2} 166,960$	13,533	13,565	13,561	13,738	13,846	14,480	13,926	14, 488	14,911	14,749	15,283	-15,159	15,283	
Equip. and defense prod., excl. auto.-.-.- do	2108,318	${ }^{2}$ 131, 581	10, 724	10,903	11,097	11, 520	10,753	10,939	11, 107	11,203	12,253	11,221	12,224	-11,968	11, 557	
Automotive equipment..-...............-. ${ }^{\text {do }}$	280,395	${ }^{2} 93,479$	7,577	7,523	7,746	7, 708	8,322	8, 060	8,105	8,307	8,018	6,887	6,882	-6,429	6,237	
Construction materials and supplies......do	264,323	${ }^{2} 76,200$	6,190	6,017	6,423	6, 240	6,406	6,417	6,458	6,630	6,558	6,897	6,539	- 6,779	6, 421	
Other materials and suppliesd. ${ }^{\text {do }}$	2290,984	2346, 423	28,075	28,459	29,013	29,377	29,176	29, 726	28,801	30, 182	30,427	30,199	31,014	r 32,620	32,654	
Household durables.	231,645	${ }^{2} 36,761$	3,033	3.	3,007	3,078	3,	6	3,	3,220	3,358	3,015	3,168	3,153	3,335	
Capital goods industr	2128,461	${ }^{2} 153,669$	12,461	12,571	12,768	13,590	12,603	12,887	12,832	13,488	14, 124	12,912	14,124	-14,369	13,378	
Nondefense	2107,790	2 132,444	10,572	10,619	10,919	11, 415	11, 404	11, 032	11, 267	11,595	11,970	11,569	11,746	12,210	11,891	
Defense.	220,671	${ }^{2} 21,225$	1,889	1, 952	1,849	2,175	1, 199	1,855	1,565	1,893	2,154	1,343	2,378	- 2,159	1,487	
Unfilled orders, end of year or month (unadjusted). total mil. \$.	85, 314	114, 623	94, 583	97, 044	98,772	100,983	103,699	106,104	107,800	110,076	112,600	114,623	118,369	121,764		
Durable goods industries, total	81,345	109, 886	90, 020	92,316	93, 980	96, 222	98,995	101, 441	103,198	105,436	107,921	109, 886	113,411	116,727	118, 565	
Nondur. goods ind. with unfilled	3, 969	4,737	4,563	4,728	4,822	4,761	4, 704	4,663	4, 602	4,640	4, 679	4,737	4,958	+5,037	5,128	
Unfilled orders, end of year or month (seasonally adjusted), total. By industry group:	86, 020	115, 785	92, 499	95, 354	98,602	102,355	104,246	107,344	109,410	111,897	114,324	115,785	117,677	-119,819	121,100	
Durable goods industries, total 9. do...-	81, 986	110,853	88, 031	90,719	93, 882	97, 647	99, 560	102, 621	104,716	107,185	109,606	110,953	112, 616	114, 804	116, 061	
Primary metals.	7,964	$\begin{array}{r}14,844 \\ \mathbf{9 , 8 8 4} \\ \hline\end{array}$	9,438 $\mathbf{5 , 9 9 2}$	10,623 7,000	11,954 8,025	13,181 9,089	13,815 9,658	14,798 10,540	14,857 10,459	14,996 10,309	14,934 10,051	14,844 9,884	14,033 8,701	13,773 $+8,401$	13,775 8,132 8,187	
Nonferrous met	1,861	2,787	2,219	2,305	2,506	2,560	2,534	2,528	2,582	2,730	2,816	2,787	3,106	3,058	3,167	
Fabricated metal products .-..--....... do	10,926	15, 122	11,523	11,650	12,024	12,285	12,686	13, 206	13, 842	14,329	14,614	15, 122	15,486	-16,073	16, 397	
Machinery, except electrical......-......d	14, 917	22,002	16,432	16,866	17, 365	17,926	18,587	19, 118	19,798	20,621	21,321	22, 002	22,438	- 23,156	24, 170	
Electrical machinery	15,748	19,718	16,850	17,166	17,566	17, 984	18,256	18,610 29	18,857	19,300 30,437	19,706 31	19,718	20,459	21,018	21, 102	
Transportation equipment	26,107 18,010	31, 19,488	27, 206 18,617	27,604	28, 18,663	29,126 19,009	18,932	29,598 19,003	29, 878	30,437 19,648	31,385 19,765	31,446 19,488	32,279 19,858	$\begin{array}{r}32,827 \\ \hline 20,161\end{array}$	30,614	
Nondur. goods ind. with unfilled orders \oplus. .do	4,034	4,832	4,468	4,635	4,720	4,708	4,680	4,723	4, 694	4,712	4,718	4,832	5,061	-5,015	5,039	
By market category:																
Home goods, apparel, consumer staples...do	2, 432	2,881	2,562	2, 663	2,668	2,770	2,877	2,761	2,806	2,885	2,978	2,881	2,949	-2,852	2,900	
Equip. and defense prod., incl. auto.	44,365	56, 386	47, 159	48, 076	49, 165	50,683	50,932	52, 173	53,052	54, 035	55,636	56,386	57,895	+ 588,851	59,479	
Construction materials and supplies	-10,270	14, 165 42,353	10,836	10, 915	11, 258	11,477	11,785 38,652	12,274 40,136	12,805 40,747	13,323 41,654	13,581 42,129	14,165	14,512 42,321		15,083 43,638	
Supplementary series:								40,								
Household durables	1,933	2,254	2,046	2, 112	2,127	2,230	2,288	2,201	2, 213	2,281	2,379	2,254	2,289	2, 208	2, 241	
Capital goods industr	50, 165	62, 671	52, 882	53,755	54, 679	56, 308	56,773	57,974	58,771	60, 165	61,968	62,671	64, 280	65,881	66,622	
Nondefens	30,612	41,419	32,948	33, 509	34, 329	35, 364	36,303	37, 202	38, 042	39, 253	40,511	41,419	42, 264	43, 370	44, 304	
Defense.	19, 553	21, 252	19,934	20,246	20,350	20,944	20, 470	20,772	20,729	20,912	21, 457	21,252	22,016	22, 511	22, 318	
BUSINESS INCORPORATIONS¢																
New incorporations (50 States and Dist. Col.): Unadjusted. number.-	316, 601	${ }^{\text {r 329,546 }}$	31,967	29,304	30,476	29,003	27,797	r 26, 542	r23, 158	26, 931	+24,268	23, 145	728,616	p25, 098		
			28,964	28,522	28,286	r27,999	27,664	r 26,689	-26,241	r26,809	r26,718	24,627	-26,208	226,885		
INDUSTRIAL AND COMMERCIAL FAILURESC																
	9,566	9,345	874	796	838	840	714	837	717	772	739	693	795	797	971	
	1,252 1,375	1,182 1,419	117	94	$\begin{array}{r}97 \\ 149 \\ \hline\end{array}$	94	89	114	105	109	102	86	99	99	143	
Manufacturing and	1,576	1,463	137	112	149 106	125	120	130	130	1179	116	119	135	153 131	149	
Retail trade	4,398	4,341	411	396	390	411	316	396	301	334	331	301	361	333	412	
Wholesale trad	965	940	94	75	96	86	69	85	60	73	83	73	74	81	106	
Liablities (current), total.................-thou	2,000,244	2, 298, 606	252,349	119,343	167,949	180, 209	206, 186	190, 147	189, 473	185, 660	218, 673	245, 618	337, 284	213, 133	204,587	
	231,813	244,958	37,065	8,071	9,290	9,822	37, 197	17,188	21,054	30, 201	22,378	29,759	69,548	20,508	19,652	
Construction.	193,530	309, 075	21, 120	19, 202	37,962	16, 928	33,800	21, 225	44,024	34, 791	16, 444	24,807	47, 237	-47,085	36, 391	
Manufacturing and mining	766, 991	797, 490	84, 669	38, 588	57, 965	89, 959	65, 995	55, 207	54, 935	60,400	44,707	65, 696	88, 618	96,031	60,849	
Retail trade	558, 270	672, 831	73,237	33, 528	33,665	36, 923	42,572	68,438	46, 552	41,487	115,026	113, 393	106,240	27,687	65, 383	
	249, 640	274, 252	36, 258	19, 954	29,067	26, 577	36,622	28,089	22,908	18,781	20,118	11,963	25, 641	21, 822	22, 312	
Fallure annual rate (seasonally adjusted) No. per 10,000 concerns..	238.3	${ }^{2} 36.4$	35.9	35.2	36.3	38.2	35.7	39.1	38.6	37.0	34.7	35.7	35.5	37.5	40.8	

[^16]| Unless otherwise atated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS | 1972 | 1973 | 1973 | | | | | | | | | | 1974 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Annual | | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |

COMMODITY PRICES

PRICES RECEIVED AND PAID BY FARMERS																
Prices received, all farm products.....1910-14 $=100 .$.	320	${ }^{8} 437$	405	400	413	437	438	527	486	468	459	468	507	516	493	466
	261	${ }^{8} 371$	316	324	348	385	371	440	414	411	408	437	476	503	492	463
Commercial vegetables------------1.--- do	${ }_{233}$	${ }^{\text {p }} 3887$	411	463 298	${ }_{255}^{434}$	${ }_{4}^{444}$	${ }_{257}^{430}$	360 310	325 377	318	337 350	328	354	408	358	370
Cotton-1...-.-	243 183	${ }^{\text {p }} 2884$	218	220	243	281	288	363	325	331	330 330	${ }_{351}^{406}$	484	477	469	494
Food grains	192	p 376	251	262	262	291	294	506	528	501	518	570	620	649	596	351 486
	280	p 320	331	316	316	345	335	322	325	351	314	298	316	331	339	334
	685	${ }^{\square} 716$	r 706	707	707	706	703	709	729	724	735	757	761	764	763	764
	371	${ }^{p} 494$	${ }^{-} 482$	466	469	480	495	602	548	518	503	494	533	527	495	469
	366	${ }^{p} 422$	' 390	381	378	378	386	411	456	482	505	517	522	525	525	521
	494 137	$p 664$ p 231	${ }_{204}^{669}$	${ }_{211}^{638}$	650 204	${ }_{221}^{664}$	${ }_{228}^{687}$	849 310	731 282	$\begin{array}{r}670 \\ { }_{254} \\ \hline\end{array}$	635	605 250	680 25	${ }_{6}^{668}$	${ }_{9}^{615}$	577
	137	${ }^{p} 231$	204	211	204	221	228	310	282	254	240	250	255	252	228	205
Prices paid:																
	371 401	444	409 +427	${ }_{433}^{413}$	4	${ }_{443}^{434}$	433 443	453	${ }_{456}^{447}$	447 458	452 470	458	469 480	475 492	480 500	489 504
	350	420	${ }^{\text {r }} 397$	399	409	428	426	451	441	439	439	448	461	463	466	479
All commodities and services, interest, taxes, and wage rates (parity index) $\ldots-1910-14=100$	432	496	473	80	488	501	500	517	513	514	519	525	538	545	549	562
	74	88	86	83	85	87	88	102	95	91	89	89	94	95	90	83
CONSUMER PRICES (U.S. Department of Labor Indexes)																
Not Seasonally Adjusted $1967=100$.	125.3	133.1	129.8	130.7	131.5	132.4	132.7	135.1	135.5	136.6	137.6	138.5	139.7	141.5	143.1	144.0
Special group indexes:																
All items less shelter...............-.......- do	122.9	131.7	127.8	129.1	122.7	130.3	130.4	${ }_{130.9}$	131. 8	${ }_{133.1}^{134.5}$	135.6 134.0	136.5 1348 138.8	$\begin{array}{r}137.8 \\ 135.6 \\ \\ \hline\end{array}$	139.8	141.5	142.4
All items less medical care......................do.	124.9	132.9	129.5	130.5	131.3	132.2	132.5	135.0	135.4	136.4	137.5	138.4	139.7	141.5	113.1	139,7 144.0
Commoditles . .-.............................do.	120.9	129.9	126.1	127.4	128.3	129.4	129.7	132.8	132.8	133.5	134.7	135.7	137.0	139.3	141.0	
Nondurables...............................do	121.7	132.8	128.3	129.7	130.7	132.0	132.4	136.6	136. 5	137.4	138.9	140.3	142.1	145.2	147.2	147.8
Nondurables less food	119.8	124.8	122.4	123.3	124.0	124.7	124.4	124.7	125. 5	127.0	128.5	130.0	131.3	133.5	136.1	137.7
	118.9	121.9	120.2	121.0	121.8	122.3	122.4	12.6	122. 6	123.2	123.3	123.2	123.3	123.4	124.3	126.1
Commoditles less food....................do	119.4	123.5	121.5	12.3	123.0	123.7	123.5	123.8	124.3	125.4	126.3	127.1	127.9	129.2	131.1	132.8
Services.	133.3	139.1	136.6	137.1	137.6	138.1	138.4	139.3	140.6	142. 2	143.0	143.8	144.8	145.8	147.0	147.9
Services less rent........................ do	135.9	141.8	139.2	139.6	140.1	140.7	141.0	141.9	143.4	145.2	146.1	146.9	148.0	149.1	150.4	151.4
	123.5	141.4	134.5	136.5	137.9	139.8	140.9	149.4	148.3	148.4	150.0	151.3	153.7	157.6	159.1	158.6
Meats, poultry	128.0	160.4	152.7	155.4	155.6	156.5	157.8	184.0	180.2	170.7	167.4	165.8	169.2	174.2	171.6	164.4
Dairy products.-.-.....................-. ${ }^{\text {do }}$	117.1	127.9	121.5	121.8	123.2	124.1	124.1	126. 6	${ }^{130.3}$	137.3	141.2	144.9	146.3	149.3	151.5	153.7
Fruits and vegetables.................................	125.0	142.5	136.8	141.8	144.6	151.7	153.7	152.6	137.3	138.8	143.7	145.3	149.7	155.9	162.5	163.0
	129.2	135.0	132.4	132.8	133.3	133.9	134.2	135.2	136. 6	138.1	139.4	140.6	142.2	143.4	144.9	146.0
Shelter 9	134.5	140.7	137.7	138.1	138.7	139.4	139.7	141.1	142.9	144.7	145. 6	146.4	147.4	148.3	149.4	150.2
	119.2	124.2	122.8	123.2	123.7	124.0	124.4	125.0	125. 4	${ }^{125.9}$	${ }^{126.3}$	126.9	127.3	128.0	128.4	128.8
Homeownership.........................do.	140.1	146.7	143.2	143.6	144.2	145.0	145.2	147.0	149.2	151.5	152.6	153.6	154.8	155.8	157.2	158.2
Fuel and utilities 8 .-............-.-......-do	120.1	126.9	124.6	125.1	125.4	125.6	125.7	126.3	126.8	128. 6	132.1	135.9	140.8	143.5	144.9	147.0
Fuel oil and coal	118.5	136.0	127.8	128. 3	129.3	131. 6	131.7	132.8	133. 6	${ }^{141.1}$	155.6	172.8	194.6	202.0	201.5	206.5
Gas and electricity-.........................do	120.5	126.4	125.0	125.5	125.7	125. 4	125.5	125.8	126.5	127.4	129.8	131.0	134.3	137.3	140.0	142.0
Household furnishings and operation......do....	121.0	124.9	123.0	123.6	123.9	124.7	125.0	125.3	126.1	126.7	127.5	128.0	129.0	130.1	132.6	134.0
Apparel and upkeep..........................do	122.3	126.8	124.8	125.8	126.7	126.8	125.8	126.5	128.3	129.6	130.5	130.5	128.8	130.4	132.2	133.6
	119.9	123.8	121.5	122.6	123.5	124.6	124.8	124.5	123.9	125.0	125. 8	126.7	128.1	129.3	132.0	134.4
Private	117.5	121.5	119.1	120.3	121.3	12.4	122.6	122.3	121. 6	12.9	123.8	124.6	126.2	127.5	130.4	133.1
New cars	111.0	111.1	110.8	111.1	111.1	111.0	110.9	110.6	109. 1	111.9	112.2	112.0	112.9	112.7	112.8	113.3
Used cars................................do	110.5	117.6	113.7	117.3	120.6	122.3	122.7	121.3	120. 3	118. 5	116.1	112.6	107.0	103.0	102.2	110.7
	143.4	144.8	144.5	143.9	143.9	144.9	144.9	144.9	145. 5	145. 2	144. 6	146.5	146.0	146.2	146.6	146.3
Health and recreation \%-do	126.1	130.2	128.6	129.2	129.6	130.0	130.3	130.5	131.1	132.1	132.6	133.0	133.7	134.5	135.4	136.3
Medical care.--..-................-......-.do.	132.5	137.7	135. 8	136. 2	136.6	137.0	137.3	137.6	138. 3	140.6	140.9	141.4	142.2	143.4	144.8	145.6
	119.8	125.2	123.1	123.8	124.4	124.9	125. 3	125.7	126. 3	127.3	128.1	129.2	129.8	130.8	131.8	133.1
Reading and recreation.....................do...-	122.8	125.9	124.5	125.2	125.6	125.9	126.2	126.1	126.8	127.2	127.5	127.6	128.3	128.9	129.5	130.4
Seasonally Adjusted																
			134.5 134.3	${ }_{136.1}^{136.4}$	137.9 137.6	1399.2 139.2	139.9 139.5	1180.5	148.3 149.1	149.1 149.6	${ }_{151.6}^{151.2}$	151.6 152.0	2154.5 2155.2 2	${ }_{2}^{2157.9}$	2158.8 2160.0	${ }_{2}^{2} 158.1$
Fuels and utilities.............................do			124.2	124.7	125.3	125.9	125.8	126.6	127.3	129.2	132.0	135.9	${ }^{2} 140.7$	2142.9	${ }^{2} 144.2$	${ }^{2} 146.4$
Fuel oil and coal..............................-do			127.2	127.9	129.3	132.0	132.1	133.3	134. 1	141.7	155.8	173.0	${ }^{2} 193.6$	2200.4	2199.3	2205.3
A pparel and upkeep .-........................do.			125.1	125.9	126.2	126.7	126.7	127.9	128.0	128.6	129.1	129.5	${ }^{2} 129.8$	${ }^{2} 131.2$	${ }^{2} 132.5$	${ }^{2} 133.6$
			122.0	122.8	123.3	124.1	124.6	124.5	124.9	124.6	125.7	126.6	${ }^{2} 127.8$	${ }^{2} 129.7$	2132.5	${ }^{2} 134.5$
Private			119.6	120.7	121.1	121.9	122.2	122.3	122.6	122.5	123.6	124.4	${ }^{2} 126.2$	${ }^{2} 128.0$	${ }^{2} 131.1$	${ }^{2} 133.2$
New cars - ----............................do			110.0	110.9	111.1	111.4	112.0	112.5	113.2	111.0	111.0	110.6	${ }^{2} 111.2$	2111.4	${ }^{2} 112.0$	${ }^{2} 112.8$
Commodities................................. do.			126.2	127.4	128.3	129.1	129.4	132.7	132.8	133.5	134.7	135.6	${ }^{2} 137.6$	${ }^{2} 139.7$	${ }^{2} 141$.	${ }^{2} 141.9$
Commodities less food. .-.........-....------ ${ }^{\text {do. }}$			121.9	122.4	122.9	123.5	123.6	124.2	124.3	124.9	125.8	126.7	${ }^{2} 128.3$	${ }^{2} 129.7$	${ }^{2} 131.5$	2132.9
WHOLESALE PRICES ${ }^{\text {a }}$ (U.S. Department of Labor Indexes)																
Not Seasonally Adjusted Spot market prices, basic commodities:																
22 Commoditles_......-.-.-............-1967=100..	${ }^{1} 120.0$	${ }^{1} 173.8$	149.9	152.9	161.1	171.2	181.9	207.8	194.9	192.0	192.1	204.3	213.3	232.0	233.0	230.8
9 Foodstuffs .-.--.........................d. ${ }^{\text {do. }}$	1115.0	1175.2	142.3	145.4	158.6	172.8	187.2	236.6	208.0	197.7	191.5	197.7	209.4	231.9	226.8	220.1
13 Raw industrials..--....................do..	${ }^{1} 123.0$	${ }^{1} 173.1$	155.3	168.2	162.9	170.1	178.1	189.8	186.3	188.1	192.4	208.9	215.9	232.0	237.2	238.4
	119.1	135.5	129.7	130.7	133.5	136.7	134.9	142.7	140.2	139.5	141.8	145.3	150.4	152.7	154.5	155.3
By stage of processing:																
Crude materials for further processing .-- do..	127.6	174.0	159.0	158.8	167.7	177.5	170.9	207.5	197.1	185.7	182.7	186. 4	201.3	205.6	200.6	192.9
Intermediate materials, supplies, etc...- do..--	118.7 1172	131.9	${ }_{124.6}^{124.4}$	${ }_{125.6}^{128.5}$	131.5 126.8	134.3 128.7	131.8 128.8	132.1 13.9	133.9 132.2	134.6 132.8	136.4 136.8	139.6 140.7	144.5	145.8	150.2	153.6
Consumer finished goods	116.6	131.2	125.5	122.6	127.9	130.2	130.4	135.4	134.5	135.0	139.9	144.7	149.1	151.1	151.7	147.3 151.6
Producer finished goods .-.................do......	119.5	123.5	121.7	122.3	123.1	123.4	123.5	123.9	124.2	125.1	125.7	126.7	128.3	129.3	130.9	132.4
By durability of product:																
	121.1	127.9	125.6	127.0	128.0	128.2	128.0	128.5	128.9	129.7	131.1	132.7	134.8	136.5	139.8	143.4
	117.6	141.3	132.9	133.5	137.7	143.1	140.1	153.3	148.7	146.9 133	149.8	154.9	162.1	164.9	1165.6	164.3
Durable manufactu	117.9	130.1 127 1	${ }_{125.7}^{125.7}$	126.7	128.7	130.9 127.8	129.8 127.6	134.0 128.0	132.5 128.3	139.0 129.0	135.8 130.1	139.4 131.6	143.1 13.8	144.7 135.0	147.3 137.9	149.2
Nondurable manufactures.................do-.---	114.7	132.9	125.9	126.6	129.7	134.0	132.0	140.1	136.6	136.9	141.6	147.3	152.6	154.5	156.9	${ }_{157.3}^{141.1}$

${ }^{1}$ Computed by BEA. 9 Includes data for items not shown separately. \& Ratio of commodities see respective commodities. \odot ooods to users, incl. raw foods and fuels.
${ }^{2}$ Beginning Jan. 1974, data reflect new seasonal factors and are not strictly comparable with those for earlier periods.

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

COMMODITY PRICES—Continued

WHOLESALE PRICES ${ }^{7}$-Continued (U.S. Department of Labor Indexes)-Continued																
All commodities-Continued \quad Farm prod., processed foods and feeds_1967 $=100$ _	122.4	159.1	149.0	147.9	154.9	163.6	156.9	184.5	173.5	166.8	164.4	168.0	177.8	180.6	176.2	169.6
	125.0	176.3	160.9	160.6	170.4	182.3	173.3	213.3	200.4	188.4	184.0	187.2	202.6	205.6	197.0	186.2
Fruts and vegetabies, tresh and dried. do	127.6	168.1	158.5	176.0	186.0	197.5	187.8	162.2	149.0	162.1	168.2	171.6	184.5	214.5	${ }_{210.6} \mathbf{2 1 0}$	226.9
	102.9	183.6	126.1	130.9	149.9	178.6	157.2	266.4	231.5	229.0	220.8	248.7	270.8	278.1	263.0	213.0
	104.0 142.5	179.5 190.4	164.8 194.4	185.8 184.1	180.3 188.7	184.5 193.8	189.5 199.3	269.7 243.3	226.5 207.4	189.2 185.5	154.4 180.0	144.5 171.0	143.2 197.3	179.8 195.1	166.1 181.1	146.0 169.0
Foods and feeds, processed 9. do	120.8	148.1	141.4	139.8	145.0	151.8	146.5	166.2	156.3	153.1	151.9	155.7	162.1	164.7	163.0	159.1
Beverages and beverage materials.......do	118.0	121.7	120.8	121.4	121.9	121.4	121.1	121.2	121.6	123.0	123.8	124.4	125.6	126.0	129.3	132.3
Cereal and bakery products.	114.7	134.4	121.3	123.7	124.3	125.9	125.5	136.2	147.7	150.5	156.2	160.1	166.3	169.5	172.3	167.1
Dairy products	118.6	131.1	126.8	127.2	126.5	127.5	127.1	131.3	137.2	139.6	139.9	142.3	145. 1	147.6	151.2	154.1
Fruits and vegetables, processed	119.7	129.6	126.2	126.6	127.2	127.9	127.7	129.3	130.0	135.0	136.3	137.8	139.3	140.7	141.2	142.8
Meats, poultry, and fish	130.0	167.5	165.1	163.2	162.5	164.9	169.7	198.3	187.3	170.2	165.0	164.9	177.8	179.7	165.5	157.6
Industrial commoditles......-------------.- ${ }^{\text {do }}$	117.9	127.0	122.7	124.4	125.8	126.9	126.9	127.4	128.1	129.6	133.5	137.1	140.5	142.5	146.6	150.1
Chemicals and allied produc	104.2	110.0	106.7	107.7	109.3	${ }_{95}^{110.4}$	${ }_{96}^{110.8}$	111.0	111.5	112.7	113.5	115.6	118.2	120.2	127.3	132.3
Agric. chemicals and chem.	91.7	96.6	93. 6	94. 5	94.7 1027	95.0	${ }^{96.7}$	95.9	95.9	95.9	104.9	106.1	112.3	113.1	118.1	118.2
	101.2	103.4	101.9	102.6	102.7	103.0	103.4	103.5	104.3	105.3	105.4	105.9	108.1	110.2	122.0	130.9
Drugs and pharmaceut	115.8	124.3 228	173.9	184.0	232.0	263.6	1263.2	104.3 273.2	104.7 279.5	104.7 273.0	104.9 241.8	105.1 286.0	298. ${ }^{108}$	${ }_{335}^{105.7}$	106. ${ }^{1}$	107.6 385.4
Prepared paint.	118.0	122.2	119.9	120.3	120.8	121.0	121.0	121.0	121.2	126.0	128.1	128.6	130.1	130.1	132.5	135.4
Fuels and relat	118.6	145.5	126.7	131.8	135.5	142.8	142.8	142.9	144.8	150.5	179.2	201.3	214.6	221.7	232.2	234. 0
Coal	193.8	218.1	207.4	213.8	214.2	215.1	214.0	214.4	222.6	224.1	239.0	240.7	249.3	252.9	259.3	303.7
Electric pow	121.5	129.3	126.8	127.6	128.2	128.4	129.0	129.1	130.9	132.1	133.5	135.9	137.5	142.2	148.9	153.4
Gas fuels	114.1 108.9	126.7 151.4	118.9 119.4	120.1 127.9	${ }_{133.9}^{121.4}$	128.0 146.6	128.7 146.1	130.4 145.9	132.2 146.1	133.4 156.6	${ }_{210.9}^{133.1}$	137.6 25.0	137.1 271.4	146.4 277.1	293.4	149.0 288.6
miture	111.4	115.2	113.5	114	115.1	115.2	115.2	115.9	116.0	116	117.2		119.0	120.2	121.3	
Appltances, househ	107.6	108.5	108.4	108.3	108.0	107.4	107.7	109.0	109.0	109.1	109.5	109.8	111.3	111.6	112.5	113.2
Furniture, household	117.3	123.0	120.0	121.8	122.3	123.3	123.2	123.6	124.4	125.2	126.6	127.1	128.9	129.8	130.3	132.8
Home electronic equipment	92.7	91.9	92.2	92.2	92.2	91.6	91.6	92.0	91.5	91.5	91.5	91.1	91.3	91.4	92.2	92.2
Hides, skins, and leather products $\& . .$. .do	131.3	143.	143.5	145.0	142.2	140.9	141.4	143.0	143.8	143.8	143.0	141.9	142.6	143.4	143.4	145.4
	124.5	130.5	131.1	131.5	129.3	129.3	129.5	129.7	130.3	131.0	131.9	132.5	134.0	134.9	135.9	138.1
Hides and	213.7	253.9	246.4	270.2	253.5	${ }^{241.6}$	246.3	261.6	257.3	256.3	239.8	227.3	220.9	222.0	201.7	211.2
Leather	140.3	160.1	164.5	161.1	159.7	156.4	156.8	157.5	162.8	160.7	160.4	156.1	155.7	155.1	156.7	158.4
Lumber and	144.3	177.2	173.2	182.0	181.9	183.1	177.8	178.8	181.9	180.3	181.7	186.1	183.7	184.1	191.3	200.2
Lumber	159.4	205.2	195.8	207.2	215.4	214.8	209.6	210.8	216.9	214.5	211.1	214.8	213.3	212.6	221.4	230.9
Machinery and equipment \% .-...........do	117.9	121.7	120.0	120.8	121.5	121.9	122.0	122.3	122.6	123.1	123.8	124.6	126.0	127.0	129.0	130.8
Agricultural machinery and equip.....d	122.3	125.9	124.7	124.7	125.0	125.4	125.5	125.5	125.6	127.5	128.9	129.4	130.9	131.2	132.6	133.4
Construction machinery and equip	125.7	130.7	128.6	130.4	130.9	131.3	130.9	131.4	131.4	132.5	132.7	134.1	135.6	137.0	138.6	140.1
Electrical machlnery and equip.-	110.4	112.4	111.3	111.7	112.3	112.7	112.7	112.7	112.8	113.0	113.3	114.0	115.1	315.7	116.9	118.5
Metalworking machinery and equip....do	120.2	125.5	123.4	124.5	125.2	125.6	125.8	125.8	126.6	127.5	128.0	128.9	131.2	132.1	134.3	136.6
Metals and metal products $9 . .$. .-........do	123.5	132.8	129.2	130.5	131.7	132.5	132.8	133.7	134.4	135.9	138.5	141.8	145.0	148.0	154.7	161.2
Heating equipment---..--..............- -	118.2	120.4	119. 5	120.5	12.2	120.7	120.9	120.7	120.7	120.8	121.1	121.6	122.9	123.7	124.4	127.5
Iron and steel.	128.4	136.2	133.3	134.0	135.3	135.9	135.9	136.0	136.5	138.6	141.6	142.4	144.7	148.9	157.7	164.9
Nonferrous metals	116.9	135.0	128.3	131.4	133.2	135.0	135.9	137.9	138.5	140.7	144.9	155.6	161.1	165.0	176.3	186.5
Nonmetallic mineral products $\%$...........do.... Clay prod., structural, excl. refractories	126.1	130.2	129.0	130.0	130.5	131. 1	130.0	130.0	129.9	130.	131.5	132.6	138.7	142.1	144.2	46.7
, ex.	117.3	123.3	122.2	123.0	123.6	123.8	123.8	123.9	123.9	124.6	124.6	124.8	127.2	128.3	130.8	131.5
Concrete products	125.6	131.7	129.6	130.8	131.5	132.3	132.3	132.3	132.5	133.6	134.1	134.5	139.8	142.3	144.7	145. 3
Gypsum products-	114.7	120.9	118.1	119.6	120.4	124.1	122.9	122.5	122.0	122.4	122.0	123.3	127.9	130.0	129.6	132.7
Pulp, paper, and alled p	113.4	122.1	118.3	119.8	120.7	122.0	122.3	123.3	124.4	125.8	127.6	128.7	131.8	132.9	137.2	144.4
Paper-and plastics pro	116.3			12.2	112.8	122.5	121.8	121.5	121.7	122.3	124.7	115.2	1126	127.7	132.6	140.1
Textile products and apparel 9 .-.-.-.....-do	113.6	123.8	119.0	120.8	122.3	123.7	124.2	125.2	126.8	128.5	130.0	131.4	133.8	135.2	136.1	137.5
Apparel	114.8	119.0	117.0	117.7	118.4	118.8	118.8	119.3	119.5	121.5	121.9	122.2	123.7	124.6	125.2	127.0
Cotton products.	121.8	143.6	130.0	133. 3	137.4	141.3	144.6	147.3	153.1	155.5	161.2	165.2	171.5	173.0	173.7	175.1
Manmade fiber textile pr	108.0	1121.8	115.2	118.7	121.5	122.9	123.1	123.7	126.7	127.7	128.6	129.7	130.7	132.8	133.6	135.2
Textile housefurnishings	109.2	113.3	111.5	110.5	110.5	111.5	111.5	112.2	${ }^{1123} 3$	115.2	119.1	126.4	133.0	133.5	135.2	136.7
Wool product	99.4	128.2	127.7	129.8	127.5	131.3	132.1	134.9	133.7	130.2	128.9	128.7	128.6	129.7	127.9	121.1
Transportation equipment $9 . .$. Dec. $1968=100$	113.7	115.1	114.5	114.9	115.1	115.0	115.0	115.1	114.5	115.9	116.1	117.3	118.6	118.9	119.1	119.4
Motor vehicles and equip.......--1967=100	118.0	119.2	118.6	119.0	119.1	118.9	119.0	119.0	118.3	120.0	120.1	121.4	122.9	123.1	123.2	123.3
Seasonally Adjusted																
By stage of process																
Crude materials for further processing.-.--- do			${ }^{141.5}$	144.9	148.4	152.8	154. 6	156.5	161.6	165.7	175.8	180.9	202.5	203.2	198.4	191.6
Intermediate materials, supplies, etc			124.6	126. 2	127.7	128.8	128.7	129.6	130.3	131.3	133.9	136.4	143.5	145.5	149.9	153.1
Finished goods: Consumer finished goods.................. ${ }^{\text {do }}$ d					127.9	129.9		135.4								
Food			139.6	141.5	141.9	144.3	143.1	158.6	155.9	156.3	155.3	156.0	162.1	166.3	163.9	164.1
Finished go			116.5	118.1	119.4	121.3	121.1	121.3	121.5	123.7	131.7	138.1	140.7	141.5	144.0	144.8
Durable.			114.4	115.3	115.9	116.2	116.4	116.9	117.1	116.0	116.4	117.5	119.1	119.7	120.8	122.0
Nondurable.			117.9	119.9	121.6	124.6	124.3	124.4	124.7	128.3	141.0	151.1	154.6	155.4	158.9	159.4
Producer finished good			121.5	122.3	123.1	123.5	123.6	124.3	124.7	125.2	125.7	126.4	127.9	128.9	130.6	132.4
By durability of product:																
Total manufactures.........................- do			125.4	126. 6	128.6	130.8	129.4	134.0	132.6	133.4	136.3	139.7	143.1	144.4	147.0	149.1
Durable manufactures...---...-........- do			125.0	126.3	127.4	127.8	127.7	128.4	128.6	129.1	130.4	131.9	133.7	134.7	137.5	140.7
Farm products.			158.8	160.8	168.5	179.1	169.9	214.2	203.7	193.0	189.1	187.6	202.8	202.4	194.7	186.4
Processed foods and feeds			141.7	140.2	144.9	151.2	144.6	165.5	156.5	154.3	153.6	157.0	161.9	163.7	162.7	159.6
PURCHASING POWER OF THE DOLLAR																
As measured by- Wholesale prices.............................. $1967=\$ 1.00$ Consumer prices. \qquad \qquad	$\$ 0.840$.799	\$0.739 .752	\$0.771	\$0.765	\$0.749	$\$ 0.732$.755	$\begin{array}{r}\text { \$0. } \\ \text {. } \\ \hline 754\end{array}$	\$0. 701 .740	$\$ 0.713$.738	\$0.717	\$0.705	\$0.688 .722	\$0.665	\$0.655 .707	$\begin{array}{r} \$ 0.647 \\ .699 \end{array}$	$\begin{array}{\|} \$ 0.644 \\ \hline 694 \end{array}$

- Revised. orsee corresponding note on p. S-8. \& Includes data for items not shown separately.

Unless otherwise stated in footnotes below, data throagh 1972 and descriptive notes are as shown In the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

CONSTRUCTION AND REAL ESTATE

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown In the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

CONSTRUCTION AND REAL ESTATE-Continued

CONSTRUCTION COST INDEXES-Con.																
Englneering News-Record:																
	163.0	178.5	${ }_{173.7}^{167.3}$	174.4	175	${ }_{176.5}^{168.5}$	177.0	178.8	179.2 179.6	171.2 180.0	1818.1	171.4 180.5	171.0 180.6	170.8 180.6	171.0 182.9	(1874.2
Federal Highway Adm.-Highway construction: Composite (avg. for year or qtr.) 1967=100.	138.2	152.4	137.8			145.9			155.1			167.8			187.4	
CONSTRUCTION MATERIALS																
Output Index: Composite, unadjusted $8-.1947-49=100$.	189.7	194.1	206.5	198.7	214.3	209.3	197.1		191.1	206.3	179.1	- 160.4				
Seasonally adjusted...-....................do.			212.6	195.0	197.5	195.1	206.7	198.0	186.9	186.0	187.0	r 183.5	175.8			
Iron and steel products, unadjusted.-...-do	175.0	193.1	206.2	192.4	208.2	209.4	200.3	204.1	192.2	213.7	185.2	168.8	168.4			
Lumber and wood products, unadj.-.....do....	193.9	194.6	213.0	202.8	220.1	197.0	180.8	209.7	187.0	206.4	${ }^{185.7}$	-166. 1	172.1			
Portland cement, unadjusted............. do....	219.4	235.4	201.0	217.1	277.9	282.7	285.0	319.3	259.4	301.0	230.6	158.5	132.6			
REAL ESTATE 9																
Mortgage applications for new home construction: FHA net applications..................thous. units.	225.2	83.2	9.2		8.4											
Seasonally adjusted annual rates.........do do			94	71	91	99	92	69	94	51		30	46		45	
Requests for VA appraisals. ----.---.-.-- do	209.2	161.9	18.4	15.9	15.1	14.9 188	12.4	13.5	10.5	12.3	10.7	7.3	8.9	\cdots	12.6	
Seasonally adjusted annual rates..........do...-			200	168	166	166	136	141	137	142	134	124	124	${ }^{-163}$	144	150
Home mortgages insured or guaranteed by-																
Fed. Hous. Adm.: Face amount-.mil.	8,067.06	4, 473.30	462.88 599.05	(374. 25	655.67	381.62 650	393.06	${ }_{5650}^{295} 11$	266.34	358.37	${ }_{7} 357.15$	224.72	315.12	259.94	252.99	
	8,419.86	7,467.53						560.30							533.48	
Federal Home Loan Banks, outstanding advances to member institutions, end of period.....-mil. $\$$.	7,979	15, 147	8, 420	9,429	10, 156	11,142	12,385	13, 611	14, 298	14,799	14,866	15, 147	15, 188	14,904	14,995	16, 021
New mortgage loans of all savings and loan associations, estimated total mil. δ.	51, 408	49,511	4,990	4,989	5,477	5,738	5,059	4,791	3,177	2,788	2,381	2,529	2,346	2,697	3,628	
By purpose of loan: Home construction do.																
	26,615	28,274	2,685	2,762	3, 141	3,469	3,079	3, 059	1,838	1,548	1,366	1,338	1,299 1,298	1,459	618 1,954	
All other purposes..............-...........do	16,240	12,796	1,418	1,341	1,405	1,366	1,129	1,111	, 767	708	${ }^{1}$, 566	-766	+659	1,782	1,056	
Foreclosures............................... number.-	132,335	135, 820	2,222	11, 718	12,719	11,509	11, 070	11, 239	10,014	11,431	11,017	10,668				
Fire losses (on bldgs., contents, etc.)mil. \& .-	2,304	2,639	218	229	224	223	218	221	222	200	211	242	263	236	278	

DOMESTIC TRADE

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

DOMESTIC TRADE—Continued

RETAIL TRADE																
All retall stores: Estimated sales (unadj.), total......................	448,379	503, 317	41,309	40,688	43, 178	43,586	41,665	43, 135	40,916	43,721	44, 552	49,824	37,923	-36,668	-42,618	144,335
Durable goods stores \% .------..........-- ${ }^{\text {do }}$	149,659	170,275	14,863	14,635	15,465	15,410	14,518	14, 654	13,718	15, 171	14, 104	13,409	11, 477	11,293	13,538	14,547
Automotive group --......---.-.-.-.-.-. do....	88,612	100, 661	9,374	8,989	9,428	9,242	8,707	8,619 7809	7,843	8, 982	8,083	6,378	6,470	-6,391	+ 7,739	18,430
Passenger car, other auto. dealersdi....	81, 521	92,768	8,761	8,347	8.744 684	8,522 720	8,016 691	7,809 710	7, 185	8, 258	7,342	5,619	5,917	${ }^{-5,867}$	7,085	
Tire, battery, accessory dealers	7,091		614	642	684	20	691	710	656	724	741	759	553	「524	654	
Furniture and appliance group 9 --..-..-do...-	21,315	24, 030	1,927	1,856	1,953	2, 032	1,940	2,047	1,972	2,049	2,159	2,552	1,928	+1,803	2, 101	12,048
Furniture, homefurnishings stores...-do...-	12,550	14, 290	1,158	1,137	1,214	1,228	1,179	1,229	1,142	1,238	1,293	1,370	1,123	+1,076	1,291	2,
Household appliance, TV, radio.....dio..--	7,029	7,904	610	578	602	670	634	680	678	660	699	935	654	$\stackrel{+}{\text { r }} 588$	647	
Lumber, building, hardware	20,064	22,766	1,746	1,861	2,098	2,185	2,080	2,180	1,937	2,068	1,912	1,771	1,453	- 1,496	1,787	
Lumber, bldg. materials dealerso'....d	15,973	18, 049	1, 417	1,487	1, 656	1,704	1,668	1,770	1,536	1,645	1,497	1, 283	1,150	- 1,178	1,408	
	4,091	4,717	329	374	442	481	412	410	401	423	415	488	303	${ }_{\sim}{ }^{\text {r }} 318$	379	
Nondurable goods stores	298,720	333,042	26,456	26, 151	27, 713	28, 176	27, 147	28,481	27, 198	28,550	30,448	36,415	26,446	25,375	29,080	29,788
	21,993	24,062	1,829	2,007	1,908	1,975	1,740	1,931	1,974	2,030	2, 214	3,386	1,700	-1,518	-1,860	12,177
Men's and boys' wear stores-....-d	5,198	5,609	399	440	448	472	397	411	412	448	523	896	409	r 344	403	
Women's apparel, accessory stores...d	8,386	4,119	712 342	743 408	738 324	756 345	677 299	698 378	747	783	842	1,243	636	+ 589	710	
Shoe stores	3,774	4,229	342	408	324	345	299	378	401	365	361	476	292	r 253	326	
Drug and proprietary stores . .-.-.---. - do	14, 523	15,474	1,222	1,219	1,281	1,300	1,240	1,303	1,226	1,300	1,286	1,741	1,267	-1,255	-1,339	${ }^{1} 1,349$
Eating and drinking places....-...-.-. - do	33, 891	37,925	2, 975	2,950	3,238	3, 353	3,359	3, 550	3,339	3,341	3, 204	3,272	2,995	- 2, 854	- 3, 257	13,257
	95,020 88,340	105,731 98,392	8,792 8,202	8,171 7,579	8,745 8,139	8, 135	8,976	9,344	8,859 8,242	8,929	9,207 8,596	9,932 9,214	9,145	r 8,750 -814	+ 9,770	${ }^{1} 9,305$
Grocery stores	88,340 31,044	98,392 34,432	8,202 2,773	7, 8 808	8,139 2,947	8, 8 , 008	8,345 3,088	3,023	-8,242	8,302 2,981	8,596 2,996	9,214	8,528	r 8,142 $\mathbf{r} 2,692$	r 9,107 $+3,028$	18,651 13,239
General merchandise group with non- General merchandise group without non-	74,903	83, 301	6,307	6,467	6,713	6,771	6,269	6,915	6,594	7,172	8,543	11,618	5,511	「5,315	- 6, 729	17,313
stores \$ \$---mil. \$--	68,936	77,036	5,776	5,975	6,194	6,284	5,799	6,391	6,072	6,555	7,886	11, 063	5,037	+ 4,817	+6,172	${ }^{1} 6,746$
Department stores................-do	46,560	52, 292	3,868	4,055	4,229 +409	4,308 +363	3,910	4,286	4, 142	4, 396	5,297	7,734	3,369	+ 3,167	+ 4,130	${ }^{1} 4,546$
Mall order houses (dept. store mdse).do	4,722	-5,384	+ 455	+412	- 409	${ }^{+} 363$	401	453	414	556	714	574	341	- 381	${ }^{480}$	- ${ }^{1}$
Variety stores	7,498	8,212	601	645	648	669	${ }_{803}$	677	630	665	790	1,326	519	- 517	633	
Liquor stores	9,215	9,602	740	718	789	825	826	819	759	784	823	1,160	740	-697	781	
Estimated sales (seas			41,979	41,185	41,723	41, 167	42,767	42,355	42,529	42,970	42,976	42,116	42,932	r 43, 134	r43, 792	144,409
Durable goods stores			14,612 8,769 8	$\begin{array}{r}14,339 \\ 8,555 \\ \hline\end{array}$	14,299 8,503	13,731	$\begin{array}{r}14,409 \\ 8,654 \\ \hline\end{array}$	14,481 8,645	14,267	$\begin{array}{r}14,331 \\ 8 \\ \hline\end{array}$	14,090 8,183	13,270 7,400	13,525 7,474	- 13, 327	${ }^{+13} \mathbf{7}, 603$	114, 019
Automotive group-.....-			8,769 8,127	8,555 7,927	8,503 $\mathbf{7 , 8 7 0}$	7,943 7,328	8,654 7,992	8,645 7,968	8,457 7,771	8,482 7,769	8,183 7,492	7,400 6,681	7,474 $\mathbf{6 , 7 8 6}$	r 7, 236 r 6,548 r	7,349 6,653	
Passenger car, other aut TIre, battery, accessory			8,127 642	7,927 628	7,870 633	7,328 615	7,692 662	$\begin{array}{r}7,968 \\ \hline 677\end{array}$	7,771 686	7,769 713	7,492 691	6,681 719	6,786 688	r 6,548 r r	6,653 696	
Furniture and applianc			2,014	2,024	1,995	2,006	2,000	2,025	2, 063	2,005	2, 046	1,975	2,058	- 2,032	2,217	
Furniture, homefurnishings stor			1, 184	1,208	1,203	1,181	1,217	1,189	1, 214	1,195	1,204	1,165	1,211	-1,231	1,341	
Household appliance, TV, radio			659	658	635	675	637	685	686	661	672	668	672	$\begin{array}{r}+ \\ + \\ + \\ \hline\end{array}$	-709	
Lumber, bullding, hardware			1,936	1,896	1,939	1.946	1,894	1,894	1,836	1,867	1,890	1,835	1,858	r 1,961	2,036	
Lumber, bldg. materials dealersơ'...d			1,547	1,508	1,546	1,520	1,515	1, 503	1,428	1,460	1,484	1,450	1,447	+1,518	1,570	
			389	388	393	426	379	391	408	407	406	385	411	${ }^{-} 443$	466	
Nondurable goods			27,367	26,846	27,424	27,436	28,358	27,874	28,262	28,639	28,886	28,846	29,407	r 29, 807	-30,189	130,390
Apparel group			2, 175	1,878	1,962	1,997	2, 028	1,967	2,042	2,019	2,006	2,051	2,053	-2,074	2,164	
Men's and boys' wear stores			806	444	456	463	469	450	462	462	463	480	456	$\stackrel{+76}{+}$	506	
Women's apparel, accessory stores . . . do			825	700	753	780	788	730	764	751	761	776	785	-781	808	
Shoe stores.			397	339	335	338	349	352	371	371	339	346	357	${ }^{+} 354$	365	
Drug and proprietary store			1,241	1,280	1,291	1,314	1,305	1,298	1,278	1,332	1,322	1,297	1,323	+ 1,370	1,386	
			3, 089	3,060	3, 096	3, 085	3,122	3,158	3,261	3,308	3,331	3,387	3,331	+ 3, 326	3,337	
Food group			8, 431	8,616	8 8,665	8,598	${ }^{\mathbf{9}, 128}$	8,964	8,992	9, 194	9, 135	9, 264	9, 551	r 9,634	9,629	
Grocery stores			7,834	8,012	8,074 2,884	8,000 2,843	8,507 2,908	8,345 2,836	8,376 2,880	8,568 2,951	8,511 2,966	8,603 2,902	8,874 2,952	r 8,957 $\mathbf{r} 3,059$	8,946 $\mathbf{3 , 0 9 3}$	
General merchandise group with nonstores 8... General merchandise group without nonstores 9 8--			7,137 6,621	6,696 6,166	6,917 6,386	6,939 6,430	7,051 6,538	6,923	6,989 6,486	6,995 6,461	7,213 6,661	7,002	7,234 6,666	r 7,237 r 6, 677	7,537 6,990	
Department stores...-.............-.-. do			4,461	4,189	4,346	4,352	4.423	4,351	4,406	4,357	4,485	4,445	4,456	r 4,486	4,694	
Mall order houses (dept. store mdse.).do			r 470	- 438	- 443	r 442	486	442	468	482	473	403	470	-485	499	
Variety stores.........................-			715	635	667	686	684 817	882	689	696	726	690	738	- 707	748	
			779	783	799	807	817	810	807	811	793	839	820	r 824	835	
Estimated Inventories, end of year or month: \ddagger Book value (unsdjusted), total $\ddagger . \ldots$. mil. $\$$	54, 918	61,643	58,629		60,139	60,395	60,008	58,909	60,14	62,559	64,951	61,643	61, 820	63,364	65,538	
	25, 268	27, 899	27,103	27,647	28,042	28,291	27,916	25,843	60,348	26,991	64,951	27,899	28, 217	28,994	65,638 29,631	
Automotive group	11,826	13,847	13,358	13,649	13,882	14,190	13,989	11,854	12,198	12,657	13,490	13,847	14, 150	14,640	14,738	
Furniture and appliance group.......-do.	4,336	4,690	4,416	4,551	18,639	-4,625	4,582	4,615	12,662	4,800	4,900	4,690	4, 658	4,687	4,810	
Lumber, bullding, hardware group...do	3,647	4,024	3,922	4,017	4,073	4,044	4,050	3,981	3,963	3,990	3,969	4,024	4, 142	4,290	4,434	
Nondurable goods stores $\%$	29,650	33,744	31,526	32,069	32,097	32,104	32,092	33,066	33, 840	35,568	36,852	33, 744	33,603	34,370	35,907	
Apparel group.-.-.-.-.............-.-. ${ }^{\text {do }}$	4,614	5,012	4,894	4,947	4,879	4, 863	4,883	5,125	5, 271	5,512	5,678	5,012	4,771	4, 892	5,172	
Food group	5,858	6,697	5,890	6,010	6,019	6,139	6,049	6,156	6,308	6,526	6,749	6,697	6,588	6,674	6,998	
General merchandise group with nonstores. \qquad mil. \$.	12, 115	14,548	13,589	13,877	13,937	13,936	14,097	14,569	14,932	16,073	16,447	14,548	14,869	15, 278	16, 123	
	7,265	8,379	8,079	8,219	8,217	8,124	8,247	8,590	8,708	9,368	9,476	8,379	8,577	8,812	9,395	
Book value (seas. adj.), total \ddagger.-..........do..	56,551	63,561	57,898	58,378	59,012	59,788	60,213	60,677	60,847	61,681	62,937	63,561	64, 261	64,394	64,743	
Durable goods stores 8 . .-.....-........-do.	26,034	28,778	26, 146	26,356	26,661	27,051	27,494	27,563	27,507	27,926	28,662	28,778	28, 852	28,789	28,578	
Automotive group -..........	12,306	14,433	12,511	12,601	12,731	13,041	13,476	13, 470	13, 336	13,627	14,302	14, 433	14, 470	14, 297	13,805	
Furniture and appliance group.....-. do	4,407	4,765	4,428	4,489	4,585	4,613	4,612	4,641	4,643	4,723	4,727	4,765	4,831	4,787	4,823	
Lumber, building, hardware group...do.	3,756	4,144	3,840	3,889	3,936	3,974	4,030	4,047	4,036	4,047	4,041	4,144	4,218	4,288	4,341	
Nondurable goods stores 9.	30,517	34,783	31,752	32,022	32,351	32,737	32,719	33,114	33,340	33,755	34, 275	34,783	35,409	35,605	36, 165	
Apparel group.-.....................-- ${ }^{\text {do }}$----	4,826	5,244	4,919	4,938	4,970	5, 035	5,021	5,033	5,008	5,099	5,170	5,244	5,187	5, 118	5,199	
	5,789	6,618	5,904	6,002	6,029	6,167	6,092	6,250	6,379	6,389	6,478	6,618	6,705	6,805	7,016	
stores.............................mil. \$.-	12,930	15,532	13,756	13,899	14,043	14,258	14,369	14,528	14,590	14,937	14,925	15,532	16, 103	16, 121	16,313	
Department stores......-...........-do.	7,754	8,943	8,156	8,233	8,262	8,368	8,482	8,623	8,614	8,708	8,567	8,943	9,288	9,370	9,480	

[^17]§ Except department stores mall order. \ddagger Series revised beginging Jan. 1972 to reflect
benchmark data from the 1972 Annual Retail Trade Report and new seas. factors; revislons
for Jan.-Dec. 1972 appear on p. 7 of the Mar. 1974 SURVEY.

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as ghown in the 1973 edition of BUSINESS STATISTICS	1972	1973 ग	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr. ${ }^{\text {p }}$

DOMESTIC TRADE-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RETAIL TRADE-Continued \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
Firms with 11 or more stores: \\
Estimated sales (unadj.), totalq...............mil. \$.
\end{tabular} \& 137, 650 \& 154, 546 \& 12,377 \& 12,119 \& 12,653 \& 12,945 \& 12,214 \& 13,008 \& 12,447 \& 13,181 \& 14,653 \& 18,305 \& 11,656 \& -11, 245 \& 13,459 \& \\
\hline \& 6,053 \& 6, 5499 \& \(\begin{array}{r}520 \\ 58 \\ \hline\end{array}\) \& 610
64 \& \(\begin{array}{r}524 \\ 63 \\ \hline\end{array}\) \& 544 \& 451
45 \& \(\begin{array}{r}529 \\ 49 \\ \hline\end{array}\) \& \(\begin{array}{r}555 \\ 54 \\ \hline\end{array}\) \& \(\begin{array}{r}545 \\ 63 \\ \hline\end{array}\) \& 591
77 \& 912
119 \& 413
47
4 \& \(\begin{array}{r}+366 \\ + \\ +40 \\ \hline 18\end{array}\) \& 494
56
5 \& \\
\hline Men's and boys' wear stores ...-......-do- \& 2,194 \& \(\begin{array}{r}6,799 \\ \hline 2,393\end{array}\) \& \({ }^{568}\) \& 215 \& 200 \& 200 \& 172 \& 186 \& 192 \& 193 \& 213 \& 336 \& 146 \& 133 \& 184 \& \\
\hline Shoe stores............................-. do \& 1,694 \& 1,908 \& 147 \& 191 \& 144 \& 162 \& 139 \& 168 \& 185 \& 157 \& 156 \& 224 \& 123 \& \({ }^{\text {r } 106}\) \& 138 \& \\
\hline Drug and proprietary stores....-.-......- do \& \& 5, \({ }^{5} 857\) \& \({ }_{263}^{440}\) \& 445 \& \(\stackrel{479}{ }\) \& \({ }_{296}^{498}\) \& \({ }_{286}^{471}\) \& \(\begin{array}{r}494 \\ 305 \\ \hline\end{array}\) \& \({ }_{265}^{469}\) \& \({ }^{493}\) \& \(\stackrel{494}{ }\) \& 751 \& 469 \& r 461 \& \({ }_{5}^{518}\) \& \\
\hline \begin{tabular}{l}
Eating and drinking places \\
Furniture and appliance group
\end{tabular} \& \(\xrightarrow{\mathbf{1}, 802}\) \& 3,193
2,085 \& 178 \& 167 \& 159 \& 178 \& 166 \& 305
169 \& 279
174 \& \({ }_{169}^{265}\) \& 176 \& 235 \& 190 \& \(\begin{array}{r}\text { r } \\ +162 \\ \\ \hline 182 \\ \hline\end{array}\) \& \({ }_{192}^{254}\) \& \\
\hline General merchandise group with nonstores \(\%\)....................................mil. \(\$\). \& 58, 113 \& 65, 569 \& 4,964 \& B,075 \& 5,268 \& 5,322 \& 4,930 \& 5,426 \& 5,158 \& 5,634 \& 6,749 \& 9,335 \& 4, 254 \& - 4, 135 \& 5,302 \& \\
\hline General merchandise group without nonstores 8 mil. \$. \& 55, 100 \& 62,471 \& 4,686 \& 4,836 \& 5,005 \& 5,077 \& 4,696 \& 5,172 \& 4,907 \& 5,313 \& 6,422 \& 9,068 \& 4,035 \& -3,878 \& 5,019 \& \\
\hline Dept. stores, excl. mail order sales.....do.... \& 41,053 \& 46, 380 \& 3,451 \& 3,601 \& 3,745 \& 3,831 \& 3,482 \& 3,819 \& 3,670 \& 3,900 \& 4,678 \& 6,823 \& 2,993 \& + 2,813 \& 3,677 \& \\
\hline \& 5,933 \& 6,627 \& 476 \& \({ }^{518}\) \& 518 \& 543 \& 487 \& 542 \& 509 \& 542 \& 652 \& 1,086 \& 409 \& \({ }_{411}\) \& \({ }^{513}\) \& \\
\hline Grocery stores \(\qquad\) do. Tire, battery, accessory dealers................do. 0...-- \& 49,206
2,094 \& 55,165
2,210 \& 4.719
180 \& \(\begin{array}{r}4,235 \\ \hline 192\end{array}\) \& \(\begin{array}{r}4,524 \\ \hline 189\end{array}\) \& \(\begin{array}{r}4,723 \\ \hline 202\end{array}\) \& +4,586 \& 4,762 \& 4,547 \& \(\begin{array}{r}4,665 \\ \hline 204 \\ \hline 18\end{array}\) \& \(\begin{array}{r}4,933 \\ \hline 193\end{array}\) \& \& 4,835
142 \& \[
\begin{array}{r}
4,652 \\
\cdot 137
\end{array}
\] \& \[
\begin{array}{r}
5,256 \\
170
\end{array}
\] \& \\
\hline Estimated sales (seas. adj.), total \&do \& \& \& 12,814 \& 12,524 \& 12,730 \& 12,634 \& 13,161 \& 12,812 \& 13,024 \& 13,332 \& 13,332 \& 13,222 \& 13,716 \& r 13,762 \& 14,084 \& \\
\hline \& \& \& 616
72 \& \& 538
64 \& 544
62 \& \(\begin{array}{r}554 \\ 59 \\ \hline\end{array}\) \& 522 \& 556
60 \& \({ }_{63}^{538}\) \& 530
65 \& \(\begin{array}{r}535 \\ 61 \\ \hline\end{array}\) \& 555
56 \& \[
\begin{array}{r}
>552 \\
=64
\end{array}
\] \& 558
69 \& \\
\hline Men's and boys wear stores --.-.......do \& \& \& 224 \& 202 \& 203 \& 204 \& 210 \& 185 \& 198 \& 182 \& 190 \& 187 \& 211 \& + 198 \& 208 \& \\
\hline Shoe stores .-...........................-d. \& \& \& 173 \& 157 \& 148 \& -157 \& 173 \& 154 \& 165 \& 162 \& 145 \& 154 \& 164 \& -156 \& 151 \& \\
\hline Drug and proprietary stores. \& \& \& 454 \& 483 \& 480 \& 507 \& 495 \& 487 \& 499 \& 511 \& 503 \& 500 \& 519 \& - 534 \& 548 \& \\
\hline Eating and drinking places................-d. \({ }^{\text {d.... }}\) \& \& \& 270 \& 258 \& 262 \& 263 \& 255 \& 274 \& 282 \& 280 \& 289 \& 257 \& 256 \& '259 \& 251 \& \\
\hline General merchandise group with nonstores \(\%\).................................-mil. \(\$\).. General merchandise group without non- \& \& \& 5,565 \& 5,252 \& 5,426 \& 5,450 \& 5,490 \& 5,454 \& 5,471 \& 5,573 \& 5,674 \& 5,511 \& 5,678 \& -5,726 \& 5,924 \& \\
\hline entores \(5 . m i l . ~\)
s..- \& \& \& 5,303 \& 4,991 \& 5,158 \& 5,198 \& 5,236 \& 5,196 \& 5,234 \& 5,309 \& 5,405 \& 5, 265 \& 5,391 \& - 5, 425 \& 5,656 \& \\
\hline Dept. stores, excl. mail order sales..--do....
Variety stores.............................. \& \& \& 3, \({ }_{557}\) \& 3,720
518 \& 3,841 \& 3,850
560 \& 5,865

558 \& 3,846 \& 3,875 \& 3, ${ }_{566}$ \& 3, 998
600 \& 3,942

545 \& $\begin{array}{r}\text { 3,969 } \\ \hline\end{array}$ \& \[
$$
\begin{array}{r}
\cdot 3,996 \\
570
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
4,160 \\
601
\end{array}
$$
\] \&

\hline \& \& \& 4. ${ }^{369}$ \& $\begin{array}{r}4,525 \\ \hline 184\end{array}$ \& 4,533 \& 4,406 \& $\begin{array}{r}4,848 \\ \hline 191\end{array}$ \& $\begin{array}{r}4,692 \\ \hline 189\end{array}$ \& $\begin{array}{r}4,712 \\ \hline 190\end{array}$ \& 4, ${ }_{204}$ \& $\begin{array}{r}4,743 \\ \hline 181\end{array}$ \& 4,829
172 \& 5,073
183 \& - $\begin{array}{r}\text { r } \\ \mathrm{r} \\ \mathrm{r} \\ \hline 188\end{array}$ \& 5,078
180 \&

\hline All retail stores, accts. receivable, end of yr. or mo.: \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Total (unadjusted)
Durable goods stores.. \& 25,068 \& 27,038
8,520 \& 23, ${ }_{7,950}$ \& $\xrightarrow{23,957}$ \& 24,547 \& 84,712 \& 24,353 \& 24,582 \& - $\begin{array}{r}24,762 \\ 8,601\end{array}$ \& 25, 278 \& 25,752
8,446 \& 27,038

8,520 \& $$
\left|\begin{array}{r}
25,994 \\
\mathbf{2 5}, 138
\end{array}\right|
$$ \& 25,709 \& 25,602

8,227 \&

\hline Nondurable goods stores......-.-.......-- - ${ }^{\text {do }}$ \& 16,953 \& 18, 518 \& 15,745 \& 15,892 \& 16, 180 \& 16,171 \& 15,901 \& 15,990 \& 16, 161 \& 16,598 \& 17,306 \& 18,518 \& r 17,856 \& 17, 636 \& 17, 375 \&

\hline \& 10,090 \& 10,445 \& 9,441 \& 9,705 \& 10, 195 \& 10,205 \& 9,823 \& 9,948 \& 10, 047 \& 10, 260 \& 10,337 \& 10,445 \& $\stackrel{\square}{\square} 10,012$ \& 9,958 \& 10, 171 \&

\hline Instalment accounts........-.......-.---. ${ }^{\text {do. }}$ \& 14,978 \& 16,593 \& 14,214 \& 14,252 \& 14, 352 \& 14,507 \& 14,530 \& 14,634 \& 14,715 \& 15, 012 \& 15,415 \& 16,593 \& r 15,982 \& 15, 751 \& 15, 431 \&

\hline Total (seasonally adjusted) .----...-------- do \& 23, 518 \& 25,375 \& 24,106 \& 24,232 \& 24, 665 \& ${ }^{24,790}$ \& 24,869 \& 25,064 \& \& 25, 341 \& 25,449 \& 25, 375 \& ¢ 25.534 \& 26, 015 \& 26, 036 \&

\hline Durable goods stores.................-- do \& $\begin{array}{r}7,940 \\ 15 \\ 15 \\ \hline\end{array}$ \& $\underset{17,024}{8,351}$ \& 8, ${ }^{8,205}$ \& 8,276 \& 8,467
16.198 \& 8,383
16,407 \& 8,394 \& -8,482 \& \& -8, ${ }^{8,947}$ \& 8,345
17 \& 8,351 \& \& 8,417 \& 8, 8551 \&

\hline \& 15, ${ }^{\mathbf{9}, 671}$ \& ${ }^{17,994}$ \& ${ }_{9} 15,800$ \& $\xrightarrow{9,785}$ \& 16,198
10,040 \& $\xrightarrow{16,407} 9$ \& 16,475 \& $\xrightarrow{16,582} 1$ \& ($\begin{gathered}\text { c } 16,591 \\ c 9,988\end{gathered}$ \& 10, 1090 \& 17,104
10,183 \& 17,024 \& \& 10,405 \& 17,485 \&

\hline \& 13,847 \& 15, 384 \& 14,306 \& 14,447 \& 14, 625 \& 14,795 \& 14,972 \& 15,027 \& c14,955 \& 15, 251 \& 15,266 \& 15,384 \& - 15, 311 \& 15,610 \& 15, 543 \&

\hline
\end{tabular}

LABOR FORCE, EMPLOYMENT, AND EARNINGS

POPULATION OF THE UNITED STATES Total, Incl. armed forces overseas. \qquad mil. LABOR FORCE σ^{7}	1208.84	${ }^{1} 210.40$	-209.89	* 210.01	- 210.14	- 210.27	210.40	210.54	r 210.68	- 210.83	- 210.97	- 211.09	r 211.21	* 211.33	211.43	211.55
Labor force, persons 16 years of age and over...thous..	88, 991	91, 040	289,685	89, 823	89,891	92,729	93, 227	92, 436	91, 298	92,046	92, 168	91,983	91,354	91,692	91,884	91, 736
Civilian labor force................-.........do.	86, 542	88, 714	287, 325	87, 473	87, 557	90,414	90, 917	90, 129	89, 006	89,757	89,884	89,701	89,096	89,434	89,633	89,493
	81, ${ }_{3}{ }_{4} \mathbf{4} 2$	84,409 3	292, 814	83, 299	83, 738	85, 465	86, 367	85,921		$\xrightarrow{85,994}$	85, 8 , 819	85,643	84, 088	84, 293	84, 878	85, ${ }_{3} \mathbf{4} \mathbf{4 2}$
Nonarricultural industries .-................. ${ }^{\text {do }}$	78,230	80,957	79,683	80, 004	80, 291	81, 114	82, 201	82,095	81, 406	82, 469	82, 409	82,441	80, 891	81,011	81, 344	81, 756
Unemployed.-..............-.............d. ${ }^{\text {do... }}$	4, 840	4,304	4,512	4,174	3,799	4,847	4,550	4, 208	4,165	3,763	4,056	4,058	5,008	5,140	4,755	4,301
Seasonally Adjusted																
Civilian labor f			288,162	88,272	88,263	88,818	88,828	88,704	89,373	89,749	89,903	90,033	90,543	90, 556	90,496	90,313
Employed, tota				${ }_{\text {83, }}^{3} 8.354$	83,950			84,513			85,649 3,561	$\underset{35,643}{85}$			- 85,863	
			3,469 80,313	3,356 80,498	3,320 80,630	3,430 81,088	8,812 81,109	-3,425	3,376 81,757	$\begin{array}{r}\text { 3,455 } \\ 82 \\ \mathbf{8 2} \\ \hline\end{array}$	3,561 82,088	3,643 82,026	3,794 82,017	3,852 81,951	3,699 82,164	3,511 82,264
Unemployed..-.........................-do			4,380	4,418	4,313	4,300	4,207	4,191	4,240	4,100	4,254	4,364	4,732	4,753	4,633	4,538
Long-term, 15 weeks and over........do...-	1,158	812	869	787	, 818	789	755	777	768	756	820	740	768	830	815	857
Rates (unemployed in each group as percent of total in the group):																
All civilian workers	5.6	4.9	5.0	5.0	4.9	4.8	4.7	4.7	4.7	4.6	4.7	4.8	5.2	5.2	5.1	5.0
Men, 20 years and over	4.0	3.2	3.4	3. 4	3.4	3.2	3.1	3.1	3.0	3.0	3.0	3.0	3.4	3.5	3.4	3. 6
Women, 20 years and ${ }^{\text {Both sexes, }} 16-19$ years.	5.4 16.2	4.8 14.5	4.9 14.2	4.8 15.2	4.6 15.1	4.9 14.0	4.8 14.4	4.8 14.3	4. 14.3	4.4 14.0	4. 14.5	14.4	15.6	15.3	15.0	13.8
White.	5.0	4.3	4.4	4.5	4.4	4.3	4.1	4.2	4.2	4.1	4.2	4.4	4.7	4.7	4.6	
Negro and other races	10.0	8.9	9.0	9.2	9.2	8.8	9.2	8.8	9.2	8.4	8.9	8.6	9.4	9.2	9.4	8.7
Married men, wife present	2.8	2.3	2.5	2.4	2.3	2.3	2.1	2.1	2.1	2.1	2.1	2.2	2.3	2.4	2.4	2.5
Occupation: White-collar workers.	3.4	2.9	2.9	3.1	2.9	2.9	2.9	2.9	2.9	2.6	2.8	3.1	3.2	3.2	2.8	2.8
Industry of lestio-collar workers...-7:	6.5	5.3	5.5	5.4	5.3	5.3	5.2	5.2	5.1	5.1	5.4	5.2	6.0	6.1	6.1	6.4
Industry of last job (nonagricultural): Private wage and salary workers...	5.7	4.8	4.9	4.9	4.8		4.7	4.7		4.5	4.8	5.0	5.3	5.4	5.1	5.3
Construction.	10.3	8.8	8.7	9.3	8.9	8.2	9.4	8.5	9.6	9.0	9.1	8.2	9.1	7.9	8.4	10.3
Manufacturing	5. 6	4.3	4.6	4.4	4.4	4.4	3. 8	4.0	4.2	3.9	4.3	4.3	5.1	5.3	5.2	5.0
Durable goods.	5.4	3.9	4.4	3.8	4.0	3.7	3.3	3.6	4.0	3.7	3.6	3.9	5.0	5.1	5.0	5.0

rRevised. \quad Preliminary. ${ }^{1}$ As of July 1. ${ }^{2}$ See note " σ " below.
of Includes data not shown separately. \& Except department stores mail order of For month-to-month comparison, note that effective Mar. 1973, additional adjustments
ment. Beginning in the Feb 1974 Supver dita reflect new seasonal factors. comparable
ment. Beginning in the Feb. 1974 Surver, data reflect new seasonal (Factors; 1967 appar in Employment AND EARNiNgs (Feb. 1974), USDL, BLS. Seasonally adjusted data through 1966 as shown in the 1973 Business Statistics, are comparable. © Corrected.

LABOR FORCE, EMPLOYMENT, AND EARNINGS—Continued

EMPLOYMENT																
Employees on payrolls of nonagricultural estab.:																
Total, not adjusted for seasonal variation..-thous.-	72, 764	75,567	74, 255	74,861	75, 404 61, 589	76,308 $6 ? 565$	75,368 62,317	75,686	$76,238$	$76,914$	77,322	$\begin{aligned} & 77,391 \\ & 6820 \end{aligned}$	75,613	r 75,792	P 76,100	$76,678$
Private sector (excl. government).........do...-	59,475	61, 910	60, 459	61,068	61, 589	$6 ?, 565$	$62,317$	62,715	$62,819$	$63,059$	$63,281$	$63,290$	61,633	-61,594	-61,830	$62,398$
Seasonally Adjusted \ddagger																
Total employees, nonagricultural payrolls \ddagger - do.	72,764	75,567	74, 914	76,105	75, 321	75, 526	75,478	75,747	75,961	76,363	76,679	76,626	76,526	r 76,813	- 76,785	76,911
Private sector (excl. government)......-. do.	59,475	61,910	61, 340	61,491	61,679	61, 867	61, 883	62,110	62,305	62,617	62,841	62,739	62,642	r 62,819	r 62,746	62, 817
Nonmanufacturing industries............do	40, 541	42,090	41,697	41,764	41, 897	42, 011	42, 079	42,249	42,423	42,601	42,746	42,649	42,636	+ 42,915	r 42,892	42,888
	23, 061	24,093	23, 857	23,906	24,010	24, 139	24, 115	24,171	24,215	24,349	24,450	24,468	24,296	r 24,317	+ 24,227	24, 231
M1ning ------	, 607	625	${ }^{610}$	608	${ }^{608}$	629	${ }_{3} 631$	634	633	639	644	${ }^{6} 646$. 654	+656	${ }_{+}+656$, 658
Contract construction...--.......---.-.-.- ${ }^{\text {do }}$	3,521	3,648	3,604	3, 671	3,620	3,654	3,680	3,676	3,700	3,694	3,711	3,732	3,636	+3,757	r 3,717	3,644
Manufacturing...........-.................. do	18,933	19,820	19,643	19,727	19,782	19,856	19,804	19,861	19,882	20,016	20,095	20,090	20,006	- 19,904	г 19,854	19,929
	10, 884	11, 633	11, 463	11,634	11, 602	11, 654	11,646	11,692	11,708	11,802	11,859	11,859	11,774	- 11,683	- 11,644	11, 722
Ordnance and	. 188	193	197	195	193	192	193	192	190	191	186	190	192	-191	- 192	190
Lumber and wood products.-.-.-...-d	612	632	630	631	629	628	628	631	631	634	637	645	645	- 647	647	652
Furniture and fixtures.---.-....... do	493	522	517	520	523	527	522	527	525	528	528	527	527	- 523	523	527
Stone, clay, and glass products.....d	660	693	687	687	692	693	697	694	696	701	701	707	704	r 702	r 703	694
Primary metal industries............	1,235	1,315	1,280	1,288	1,299	1,308	1,308	1,323	1,339	1,353	1,357	1,354	1,343	- 1,331	- 1,317	1,322
Fabricated metal product	1,371	1,453	1,436	1,448	1,456	1,457	1,459	1,459	1,456	1,466	1,473	1,470	1, 466	- 1,454	- 1,448	1,455
Machinery, except electrical	1,864	2,042	1,990	2,006	2,021	2,040	2,040	2,065	2,073	2,086	2,121	2,128	2,133	r 2,123	r 2,134	2,136
Electrical equipment and supplies. - d	1,833	1,996	1,957	1,970	1,984	2, 008	2,009	2,006	2,010	2,039	2,048	2,057	2, 051	2,043	r 2, 033	2, 044
Transportation equipment....-.-. do	1,747	1,856	1,846	1,869	1,877	1,871	1, 858	1,859	1, 850	1,858	1,857	1,827	1,753	${ }^{r} 1,706$	- 1,681	1,738
Instruments and related products.. d	456	495	484	481	490	494	494	500	503	507	512	514	516	+521	- 521	522
Miscellaneous manufacturing......- ${ }^{\text {d }}$	425	437	439	439	438	436	438	436	435	439	439	440	444	\% 442	r 445	442
Nondurable goods...-................- ${ }^{\text {d }}$	8,049	8,186	8,180	8,193	8,180	8,202	8, 158	8,169	8,174	8,214	8,236	8,231	8,232	-8,221	-8,210	8,207
Food and kindred products.........do	1,751	1,736	1,748	1,746	1,736	1,729	1,720	1,706	1,719	1,735	1,749	1,753	1,754	' 1,755	- 1,764	1,762
Tobacco manufactures............-. - do	1,72	1,74	1,76	1,76	176	76	. 76	, 72	70	, 72	75	, 75	1,76	+ 76	- 77	, 77
Textile mill products.-....-.......-.	991	1,024	1,023	1,023	1,022	1,024	1,021	1,026	1,025	1,027	1,028	1,030	1,029	r 1,025	- 1, 020	1,018
Apparel and other textile products. d	1,335	1,340	1,350	1,357	1,351	1,351	1,319	1,337	1,337	1,340	1,333	1,321	1,315	-1,309	1,293	1,297
Paper and allied products...........do	1,697	718	, 715	712	719	719	716	721	719	725	725	724	729	729	${ }_{-} 730$	728
Printing and publishing.............d	1,080	1,098	1,094	1,096	1,095	1,100	1, 101	1,100	1,097	1, 098	1,102	1,105	1,106	1,109	1,105	1,105
Chemicals and allied products	1,002	1,030	1,018	1, 021	1,025	1.030	1,034	1,031	1,038	1,043	1,043	1,042	1,046	+1,045	1,046	1,046
Petroleum and coal products..	190	187	186	183	182	186	186	189	190	190	190	192	193	- 192	-190	190
Rubber and plastics products, nec-do	627	683	674	680	676	687	690	691	683	687	694	693	693	-690	690	688
Leather and leather products.......-d	304	297	296	299	298	300	295	296	296	297	297	296	291	291	- 295	296
Service-producing	49,704	51,475	51, 057	51,199	51,311	51,387	51,363	51,576	51,746	52,014	52,229	52,158	52,230	r 52,496	- 52,558	52,680
Trans., comm., eleetric, gas	4,495	4,611	4,580	4,591	4,593	4,597	4,598	4,617	4,629	4,671	4,654	4,644	4,684	r 4,691	r 4, 675	4,669
Wholesale and retail trade.......-........ do	15,683	16, 288	16, 163	16,217	16,256	16,262	16,294	16,352	16,388	16,465	16,520	16,398	16,417	r 16,472	- 16,480	16,518
Wholesale trade	3,918	4, 079	4,029	4,044	4, 046	4,072	4,071	4,099	4, 111	4,137	4,163	4,152	4,184	r 4, 192	- ${ }^{4}, 183$	4,187
Retail trade.	11,765	12,209	12,134	12,173	12, 210	12, 190	12, 223	12,253	12,277	12,328	12,357	12,246	12,233	r 12,280	r 12,297	12,331
Finance, insurance, an	3,927	4,053	4, 024	4,031	4, 044	4,049	4, 048	4,064	4,078	4,088	4,095	4,101	4,109	- 4.124	- 4,128	4,132
	12,309	12,866	12, 716	12,746	12,776	12,820	12,828	12,906	12,995	13,044	13,122	13,128	13,136	r 13,215	- 13,236	13,267
	13,290	13,657	13,574	13,614	13,642	13,659	13,595	13,637	13,656	13,746	13,838	13,887	13,884	r 13,994	+ 14,039	14,094
Federal.	2,650	2,627	2,631	2,628	2,641	2,613	2,588	2,599	2,613	2, 626	2,638	2,654	2,651	2,670	r 2,675	2,667
State and loca	10,640	11,031	10,943	10,986	11,001	11,046	11,007	11,038	11,043	11,120	11,200	11,233	11,233	r 11,324	r 11,364	11,427
Production or nonsupervisory workers on private nonagric. payrolls, not seas. adjusted....thous.	49,223	51, 276	49,994	50,554	51,025	51, 899	51,616	51,976	52,063	52,286	52,483	52,485	50,823	r 50,772	- 50,976	51,515
	13,838	14,575	14,345	14,394	14,457	14, 739	14,458	14,727	14,841	14,866	14,886	14,799	14,513	-14,422	- 14,418	14,470
Seasonally Adjuste																
Production or nonsupervisory workers on private nonagricultural payrolls \ddagger thous.	49.223	51,276	50,830	50,947	61,090	51,241	51,247	51,442	51, 592	51,856	52,044	51,915	51,781	- 51,948	- 51,845	51,904
	17, 205	18,062	17,890	17,920	17,996	18, 111	18, 093	18,135	18,155	18,257	18,322	18,347	18, 157	-18,156	+ 18,085	18,087
	17, 459	-476	17,462	+461	461	477	479	483	483	488	491	495	501	. 503	r 501	502
	2,908	3, 011	2,977	2,938	2,984	3,020	3,048	3,041	3,063	3, 049	3,057	3, 081	2,974	+3,090	+3,056	2,984
Manufacturing	13,838	14,575	14,451	14,521	14,551	14,614	14,566	14,611	14,609	14,720	14,774	14,771	14,682	r 14,563	-14,528	14, 601
	7,919	8,548	8,425	8,483	8,528	8,573	8,562	8,597	8, 599	8,674	8,712	8,712	8,624	-8,524	\cdots	8,574
Ordnance and accessories....-........ do	-94	-99	- 102	101	99	98	99	97	96	97	93	96	96	+96 +557	r 95	94
Lumber and wood prod	527	544	543	544	542	542	541	544	544	546	548	555	555	+557	556	559
Furniture and fixtures..-............... do	408	431	428	430	428	436	431	434	434	434	434	434	434	430	431	433
Stone, clay, and glass products........do	527	554	550	550	555	555	557	554	554	562	561	568	565	565	+565	557
Primary metal industries....-.....-.-.	984	1,058	1,027	1,033	1,044	1, 052	1,050	1,066	1,082	1, 093	1,096	1, 094	1,079	F 1,067	+ 1, 055	1,059
Fabricated metal produc	1,049	1, 121	1,108	1,118	1,123	1, 126	1,127	1,129	1, 123	1, 131	1,137	$\cdot 1,134$	1,127	${ }^{\text {r }} 1,117$	${ }_{r} \mathrm{r} 1,110$	1,119
Machinery, except electrical.	1,236	1,381	1,343	1,356	1,366	1,380	1,379	1,399 1,384	1,398	1,411	1,441	1,447	1,448	1,435 1,407	r r 1, 1,397 r	1,448
Electrical equipment and supplies .-.do	1,238	1,378	1,349	1,361	1,370	1,389	1,392	1,384	1,386	1,412	1,417	1,423	1,417	1,407	- 1,397	1,414
Transportation equipment .-.-.-.....do	1, 248	1,334	1,334	1,351	1,354	1,348	1,338	1,339	1,332	1,331	1,324	1, 298	1,233	+1,180	- 1, 166	1, 217
Instruments and related products....d	-276	306	-298	296	304	306	306	311	311	314	318	320	321	${ }^{+} 324$	- 326	328
Miscellaneous manufacturing.	331	342	343	343	343	341	342	340	339	343	343	343	349	r 346	+349	346
Nondurable goods..-.-................... do	5,919	6,027	6,026	6,038	6, 023	6, 041	6, 004	6,014	6,010	6, 046	6,062	6,059	6,058	r 6,039	r 6, 033	6, 027
Food and kindred products...........d	1,180	1,172	1,181	1,178	1,170	1,165	1,160	1,144	1,157	1, 171	1,184	1,191	1,196	r 1, 196	+ 1, 205	1,197
Tobacco manufactures.................- do	1, 59	1,61	1, 63	63	63	63	64	60	57	59	62	62	63	63	+64	64
Textile mill products.----.-.-.-.-.-. do	871	900	900	900	-900	. 900	. 899	. 902	899 160	-902	$\begin{array}{r}903 \\ \hline 155\end{array}$	904 1.144	-904	+ 899	+893 +1.118	- 891
Apparel and other textile products...do	1,165	1,163	1, 174	1,182	1,174	1, 175	1,140	1,161	1,160	1, 161	1, 155	1,144	1,137	1,131	r 1, 118	1,122
Paper and allied product	1, 537	557	554	552	557	557	556	561	558	563	562	560	565	+ 565	+ 566	562
Printing and publishing	657	662	661	663	661	664	663	662	661	662	664	666	666	668	663	664
Chemicals and allied products.-..-...-do	581	600	592	593	596	599	605	603	606	610	608	609	611	+ 607	r 610	611
Petroleum and coal products..........do.	117	118	117	115	115	117	118	120	120	120	120	122	123	- 120	$\bigcirc 120$	120
Rubber and plastics products, nec...do.....	489	538	531	536	531	544	546	547	538	543	549	547	545	-542	-542	542
Leather and leather products.........-do....	261	254	253	256	256	257	253	254	254	255	255	254	248	- 248	252	254
	32,018	33, 215	32,940	33,027	33, 094	$\begin{array}{r}33,130 \\ 3,60 \\ \hline\end{array}$	33,154 3,952	33,307 3,969	33,437 3,972 14	33,599 4,019	33,722 4,002	$\begin{array}{r}33,568 \\ 3,988 \\ \hline\end{array}$	33,624 4,098	r 33,792 $\mathbf{r} 4,033$	$\begin{array}{r}+33,760 \\ \hline 4,012 \\ \hline 145\end{array}$	33,817 4,001
Transportation, comm., elec., gas, etc.....do.	3,883	3,967	3,945	3,952	3,957	3,960	3,952	3,969	3,972	4,019	4,002	3,988	4,028	- 4, 033	- 4,012	4,001
Wholesale and retail trade....................do.	13, 923	14,451	14,362	14,404	14, 435	14,421	14,449	14,489	14,527	14,596	14,657	14,517	14,528	- 14,599	- 14,593	14, 630
Wholesale trade.	3,278	3,411	3,372	3,381	3,385	-3,406	3,404	3,423	3, 432	3,456	3,483	3,468	3,494	$\stackrel{\text { r 3, }}{ }$	r 3,499	3,497
Retall trade...	10,645	11,040	10,990	11,023	11,050	11, 015	11,045	11,066	11,095	11,140	11, 174	11, 049	11,034	${ }^{-11,097}$	r 11,094	11,133
Finance, insurance,	3,072	3,147	3,134	3,139	3,143	3,144	3,142	3,153	3, 162	3,165	3,171	3,169	3,162	${ }^{\text {r }} 312,174$	- 3, 179	3,184
Services..-	11, 140	11,650	11, 499	11,532	11, 559	11, 605	11,611	11,696	11,776	11,819	11, 892	11,894	11,906	11,986	- 11,976	12,002
r Revised. \quad Preliminary. \ddagger Revised seasonally adjusted payroll employme 1968) Were not incorporated in the 1973 edition of	$\begin{aligned} & \text { hours } \\ & \text { TSINES } \end{aligned}$	rnings ratistic	etc. (b	to J data		1968-7 data data.	$\begin{aligned} & \text { ppe } \\ & 1947 \end{aligned}$	$\begin{aligned} & \text { Em } \\ & \vdots \mathrm{sh} \end{aligned}$	LEN	73	INGS	$\text { e } 19^{\circ}$	SD	LS	onal	djusted current

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr. ${ }^{\text {P }}$

LABOR FORCE, EMPLOYMENT, AND EARNINGS-Continued

AVERAGE HOURS PER WEEK Seasonally Adjusted	37.2		37.136.9	$\begin{array}{r}37.2 \\ 36.9 \\ \hline 1\end{array}$	37.237.0	37.1	37.2	37.0	37.2	37.0	37.1	37.037.2	36.7 36.4	- 37.0	36.8 36.6	36.636.3														
Avg. weekly hours per worker on private nonagric. payrolls: \ddagger Ti Seagonally adjusted.......................																														
		37.1				37.4	37.6	37.5	37.3	37.0	37.0			- 36.6																
	42.5	42.4	41.9	41.7	42.5	42.5	42.4	42.6	42.9	42.5	42.8	43.3	42.6	- 43.4	43.0	43.4														
Contract construction.......................-do	37.0	37.2	37.0	37.0	37.5	37.4	37.5	37.1	36.7	36.9	38.5	37.2	36.2	- 37.7	37.2	36.1														
Manufacturing: Not seasonally adjusted.--do	40.6	40.7	40.8	40.7	40.7	40.9	40.5	40.5	41.0	40.7	40.8	41.2	40.0	40.1	- 40.3	39.3														
Overtime hours Sonally adjusted.....- do...-			40.9	40.9	40.7	40.6	40.7	40.5	40.8	40.6	40.6	40.7	40.3	40.5	- 40.4	39.5														
Overtime hours.-...-...-..............-.dio...-	3.5	3.8	3.9	4.1	3.9	3.8	3.8	3.7	3.8	3.7	3.8	3.7	3.4	3.5	- 3.6	2.8														
Durable goods-di.....	41.3 3.6	41.5	41.6	41.8	41.6	41.4	41.4	41.1	41.4	41.3	41.4 4 4	41.3 3.9	40.8 3 3	41.1 3.6	$\begin{array}{r}40.9 \\ +3.7 \\ \hline\end{array}$	39.9														
Overtime hours.......................-do....-	3.6 42.2	4.1	4.1	4.4	4.2	4.0	4.1	3.9	4.0	3.9	4.0	3.9	3.5 41.9	3.6	+3.7	2.8														
Ordnance and accessories--...............do	4	42.3 40.6	42.4	42.0	41.9	41.9 40.9	42.7	41.5	42.5	42.4 40.3	4	40.9	41.9 40.4	- 40.6	+ 42.8 40.4	42.0														
Furniture and fixtures .-....-..............do	40.5	39.9	41.8 40.6	41.1 40	40.1	40.1	40.8 39.8	39.7	39.7	39.4	39.4	39.6	39.8	- 39.7	+39.5 +41.7	38.9														
Stone, clay, and glass products..........do	41.9	42.1	42.3	42.3	42.3	42.2	42.1	42.0	42.2	41.9	42.1	42.2	41.6	41.9	+41.7 r	41.2														
Primary metal industries.-.............do	41.6	42.4	42.1	42.2	41.9	41.9	42.2	41.8	42.7	42.7	43.4	42.4	41.8	41.4	${ }^{5} 41.5$	40.5														
Fabricated metal products	41.2	41.6	41.7	41.8	41.6	41.5	41.6	41.3	41.5	41.5	41.6	41.5	41.0	41.2	+41.3 r	39.8														
Machinery, except electrical..--..-.--do	42.0	42.6	42.6	42.5	42.6	42.5	42.2	42.4	43.0	42.6	42.3	42.9	42.3	42.5	r 42.4	41.2														
Electrical equipment and supplies.....do	40.5	40.4	40.6	40.6	40.6	40.1	40.2	40.1	40.4	40.0	40.2	40.1	39.6	-40.2	+ 39.9	39.1														
Transportation equipment.-..-.-......- do	41.8	41.9	42.0	43.5	42.1	41.9	42.3	41.0	41.1	41.5	41.1	41.0	40.0	40.6	$\begin{array}{r} \\ -40.3 \\ \hline\end{array}$	39.6														
Instruments and related products......do	40.5 39.3	40.7 39.0	40.7 39.3	40.8	30.7	40.5 38.9	40.6	40.4	40.9 39.1	40.8 38.6	40.9 38.9	41.0 38.8	40.6 38.3	40.8 39.0	+ 40.5 +38.9	39.6 37.8														
Nondurable goods.......................... do.	39.7	39.6	39.8	39.8	39.6	39.6	39.6	39.5	39.8	39.7	39.7	39.8	39.6	39.6	39.5	38.9														
Overtime hours................................do	3.3	3.4	3.6	3.6	3.4	3.3	3.4	3.3	39.8	3.3	3.5	3.4	3.4	3.3	3.3	2.7														
Food and kindred prod	40.4	40.4	40.2	40.1	40.4	40.1	40.2	40.4	40.6	40.6	40.8	40.9	40.8	40.8	r 40.5	39.8														
	37.4	38.3	38.8	39.2	37.9	37.8	36.0	$\begin{array}{r}38.5 \\ \hline 8.4\end{array}$	37.9	39.2	40.7	38.9	39.5	+38.8 +40	$\stackrel{38.1}{ }$	38.5														
Textile mill products.-....-.-.-.-........do	41.3	40.8	41.3	41.6	40.9	40.8	40.8	40.8	40.9	40.5	40.6	40.8	40.6	+ + +35.7	- 40.4	39.2														
Apparel and other textile products....-do	36.0	35.8	36.2	36.1	36.0	36.0	35.9	35.7	35.9	35.8	35.7	35.9	35.2	${ }^{\text {r }} 35.6$	35.5	34.8														
Paper and allied products...----......-do	42.8	42.7	43.1	42.8	42.8	42.7	42.7	42.4	42.8	42.6	42.7	42.8	42.8	+42.5	r 42.5	41.8														
Printing and publishing --..-.-..........-do	37.9	37.9	48.0	38.0	38.0	37.8	37.7	37.7	38.0	37.9	37.9	37.8	37.7	+37.7 +48	- 37.7	37.3														
Chemicals and allied products.........d do	41.8	41.9	42.0	41.9	42.0	42.0	42.1	42.1	42.0	41.9	42.0	41.9	41.8	' 42.0	$\begin{array}{r}41.9 \\ \hline 429\end{array}$	42.0														
Petroleum and coal products..........-do	42.2	42.2	42.0	41.9	42.1	41.7	42.4	42.1	42.5	42.2	43.0	42.7	42.5	42.6	42.9 -40.9	43.0														
Rubber and plastlcs products,	41.2	41.0	41.5	41.5	40.8	40.7	40.8	40.5	41.0	40.8	41.2	${ }^{41.0}$	40.6	40.9 37.8	r 40.9 >38.1	39.3 37.8														
Leather and leather products..-........do	38.3	37.9	37.9	38.2	37.9	38.1	37.8	38.1	38.4	38.0	38.0	37.5	37.2	37.8	r 38.1															
Trans., comm., elec., gas, etc............... do	40.4	40.6	40.4	40.7	41.0	40.7	40.7	40.9	40.6	40.8		40.4	40.8	r 40.4	40.5 +34	40.2														
Wholesale and retall trade...................do	35.1	34.7	34.8	34.8	34.8	34.9	34.7	34.5	34.6	34.5	34.6	34.5	34.3	34.4	$\begin{array}{r}\text { r } 34.3 \\ \hline 38.9\end{array}$	34.5														
Wholesale trade.......................-..-- ${ }^{\text {do }}$	39.8 33.6	39.5	39.7	39.5	39.7	39.5	39.5	39.4	39.5	39.3	39.4	39.1	39.1	38.9 +33	+38.9	38.9														
Retall trade..................-...............do	33.6 37.2	33.2	33.4	33.4	33.4	33.5	33.2	33.0	33.2	33.0	33.1	32.9	32.8 36.9	37.0	$\begin{array}{r}38.9 \\ 36.9 \\ \hline\end{array}$	33.1 36.8														
	34.1	34.1	37.0 34.0	37.2 34.1	37.0 34.2	37.1 34.4	37.2 34.2	37.0 34.2	$\begin{aligned} & 37.2 \\ & 34.1 \end{aligned}$	$\begin{aligned} & 36.9 \\ & 34.0 \end{aligned}$	37.0 34.0	37.0	34.9 $\mathbf{3 4 . 0}$	34.1	34.0	33.9														
MAN-HOURS																														
Semsonally Adjusted																														
Man-hours of wage and salary workers, nonagric. establishments, for 1 week in the month, seasonally adjusted at annual rate \ddagger. bil. man-hours.				146.98		147.92	147.69		148.42		149.62	149.11	148.36	* 149.25	\% 149.11	146. 96														
	115.37	${ }^{1} 119.87$	118.88	119.37	119.84	120.22	119.95	120.01	120.58	120.90	121.78	121.09	120.40	- 121.23	- 120.71	119.98														
	1.34	11.38	18.85 1.33	1.32	1.34	1.39	1.39	1.40	1.41	1.41	1.43	1.45	1. 45	1.48	$\begin{array}{r}1 \\ \hline\end{array} 1.47$	1. 48														
Contract construction..................................	6.78	${ }^{1} 7.06$	1.93 6.93	6.87	7.06	7.11	7.18	7.09	7.06	7.09	7.43	7.25	6.84	-7.36	「7.19	6. 84														
	39.68	${ }^{1} 41.62$	41.35	41.62	41.58	41.65	41.54	41. 50	41.77	41.98	42.19	42.14	41. 69	+ 41.61	+41.39	40.91														
Transportation, comm., elec., gas.........do	9.47	19.74	9.62	9. 72	9.79	9.73	9.73	9.82	9.77	9.91	9.85	9.74	9.94	r9.86	9.84	9.76														
Wholesale and retall trade...............- do	28.68	${ }^{1} 29.46$	29.39	29.45	29.56	29. 60	29.46	29.42	29.64	29.61	29.80	$\begin{array}{r}29.36 \\ 794 \\ \hline\end{array}$	29.37	+29.55	29.50 +7.92	29.69														
Finance, insurance, and real estate.......-do	7.59	17.82	7.74	7.80	7.78	7.81	7.83	7.82	7.89	7.84	7.88	7.94	7.88	7.94	77.92 $+\quad 23$	$\begin{array}{r}7.91 \\ \\ 23 \\ \hline\end{array}$														
	21.83	${ }^{1} 22.81$	22.48	22. 60	22.72	22. 93	22. 81	22.95	23.04	23. 06	23.20	23.20 28.02	${ }_{27.95}^{23.22}$	+23.43 +28.02	+23.40 +28.40	23.39 26.97														
Governmen	27.09	${ }^{1} 27.41$	27.53	27.61	27.67	27.70	27.74	27.73	27.84	28.02	27.85	28.02	27.95	+28.02	+28.40	26.97														
Indexes of man-hours (aggregate weekly): tI																														
Private nonagric. payrolls, total* $\ldots \ldots .1967=100 .$. Goods-producing	106.6	110.8	109.9		110.8	111. 1	110.9	110.9	111.4	111.7	112.5	111.8	111.0	P 111.8 r 103.6	r 111.2 r 102.7	110.5 100.5														
	98.1	103.3 100.9	102.4	102.9 96.2	103.1 98.0	103.4 101.4	103.4 101.6	103.1 102.9	103.7 103.7	104.0 103.8	105.3 105.1	104.9	102.5	r 1103.6 r 109.2	r 1102.7 $r 107.8$	100.5 109.0														
	97.5 105.5	100.7	96.9 107.9	106.5	109.7	110.7	112.0	110.6	110.2	110.3	115.3	112.3	105.5	-114.2	+ 111.4	105.6														
	96.8	102.2	101.6	102.5	102.1	102.2	102.0	101.8	102.6	103.0	103.6	103.5	101.8	- 101.5	+ 100.9	99.4														
	94.9	102.9	101.7	103.0	102.8	102.9	102.9	102.6	103.5	104.0	104. 6	104.6	102.1	${ }^{-} 101.6$	r 100.9 ~ 101	99.5														
	99.5	101.1	101.6	101. 7	101.1	101. 2	100.6	100.7	101.2	101.4	102.0	102.0	111.4	${ }^{-101.4}$	$\stackrel{+101.0}{+117}$	-99.1														
	112.5	116.1	115.1	115.7	116.1	116.5	116.0	116.3	116.8	117.0	117.5	116.6	116.8	-117.5	-117.2															
Wransportation, comm., elec., gas . .-...do	104.4	1107.2	106. 0	107.0 113.4	1107.9	107.2	107.0 113.2	107.9 113.0	107.2 113.8	1113.0	108.3 114.6	107.1	109.3	r 108.3 +113.5	108.0 +113.2	106.9 114.0														
Wholesale and retail trade............... - do Wholesale trade................-do	110.4 109.0	113.3 112.4 1	113.2 111.7	113.4	113.7 112.2	113.8 112.3 1	1112. 2	113.0 112.6	113.8 113.1	113.7 113.4	114.6 114.5	112.8	112.6	+113.5 -113.7	+113.2 +113.6	114.0 113.5														
	110.9	113.7	113.7	114.1	114.3	114.3	113. 6	113.1	114.1	113.9	114.6	112.6	112.1	r 113.4	${ }^{-113.1}$	114.2														
Finance, insurance, and real estate....-do	120.1	122.7	122.0	122.8	122.3	122.7	122.9	122.7	123.7	122.8	123.4	124.0	122.7	r 123.5	${ }^{+123.4}$	123.2														
Services...-......................-.-....-- do	116.8	122.1	120.0	120.7	121.4	122.6	121.9	122.8	123.3	123.4	124.1	124.2	124.3	125.5	125.0	124.9														
HOURLY AND WEEKLY EARNINGS																														
A verage hourly earnings per worker:y Not geasonally adjusted:																														
Private nonagric. payrolls...............dollars Mining	3.65 4.38	3.89 4 40	3.80 4.55	3.83 4.60	3.85 4.61	3.87 4.67	3. 90	3.91 4.69	3. 99 4.78	3. 99 4. 76	4. 00 4.86	4.01 4.92	4.02 4.99	4.04 -4.99	+4.06 +4.99	4. 07 5.05														
	4.38	4.70	4.55	4. 61	4.61	4. 67	4. 70	4.69	4.78	4.76	4.86	4.92 6.70	4.99 6.74	+4.99 6.74	+4.99 +6.75	6. 77														
Contract construction.........-.-.-.-.-.-.-. do.	6.06 3.81	6.47 4.07	6.28 3.98	6.31 4.01	6. 34 4.02	6.35 4.04	6.40 4.06	6.46 4.06	6.64 4.13	6. 66 4.14	6.67 4.16	${ }_{4.21}^{6.70}$	6.74 4.21	6. 4.21	4.23	4.24														
	3.65	3.88	3.81	3.83	3.85	3.86	3. 89	3.88	4. 3	3.95	3.97	4.02	4.04	4.05	4.06	4.11														
Durable goods .-.---.....................-do.	4.05	4.32	4.23	4.26	4.28	4.30	4.31	4.31	4.39	4.39	4.42	4.48	4.47	4.47	4. 50	4.49														
Excluding overtime.................do.	3.88	4.12	4.03	4.06	4.08	4.09	4.12	4.11	4.17	4.19	4. 21	4.28	4.29	4.29	4.31	4.35														
Ordnance and accessories.----.-.-.-.-. do.	4.09	4.28	4.17	4. 18	4.23	4.22	4. 28	4.29	4.37	4.38	4. 48	4.49	4.49	4. 51	r 4.51 +3.74	4. 52														
Lumber and wood products..........do..	3.31	3.58	3.47	3.51	3.54	3.61	3. 59	3.62	3. 68	3. 67	3. 65	3.68	3.68	-3.73	+3.74 +3.41 +	3.77 3.41														
Furniture and fixtures....-.........do.	3. 06	3.26	3. 19	3.21	3. 24	3. 25	3. 25	3.28	3.33	3.34	3. 34	3.36	3.36 4 4.27	3.39 4.30		3.41 4.35														
Stone, clay, and glass products.....do.	3.91 4.66	4.18 5	4. 07 488	4.11 4.92	4. 14 4	4.17 4 4	4. 20	4.21 5.10	4.26	4.27 5 5	4.28	4.29	${ }_{5}^{4.27}$	4. 30 5.25	$\begin{array}{r}\text { r } \\ \text { 4. } \\ \text { 5. } 30 \\ \\ \hline\end{array}$	4.35 5.34														
Primary metal industries-.----.-. do...	4.66 3.99	5.03 4.24	4. 88 4.15 15	4.92 4.19	4.95 4.21	4.96 4.24	5.00 4.24	5.10 4.24	5.16 4.30	5.14 4.32	5.23 4.35	5.23 4.39	5.24 4.38	$\begin{array}{r}\text { 5. } \\ \text { - } 4.39 \\ \hline\end{array}$	$\begin{array}{r}\text { r.30 } \\ +4.43 \\ \hline\end{array}$	5. 4.41 4														
Machinery, except electrical..........d. ${ }^{\text {do }}$	4.27	4. 4 4.55	4. 4.46	4.49	4.21 4.50	4. 50	4. 51	4.53	4.61	4.63	4.65	4.75	4.73 4	4.75	r 4.78	4.73														
Electrical equipment and supplies_do.	3.67	3.86	3.79	3.81	3.81	3.83	3.86	3.88	3.91	3.91	3.93	3.98	3. 98	3.97	r 3.98	3.99														
Transportation equipment.-.....-do.	4.73	5.07	4.96	5. 00	5.00	5.05	5.06	5.02	5.10	5.14	5. 16	5.32	5.28	5. 23	r 5.27 4.07	5. 23 4.07														
Instruments and related products..do.	3.72	3.88	3.82	3.81	3.86	3.84	3. 87	3.87	3.93	3.93	3. 95	4.04	4.04		4.07 +3.42															
Miscellaneous manufacturing ind...do.	3.11	3.27	3.23	3.22	3.26	3.27	3. 26	3.26	3.31	3.31	3.33	3.36	3.41	3.42	r 3.42	3.43														
r Revised. ${ }^{p}$ Preliminary. ${ }^{1}$ Annual total; data for the "months" of 1973 are on a consistent and comparable basis, but do not incorporate adjustments to this total. Data for total man-hours (as shown above), revised to reflect minor corrections to adjust to the annual level, are as follows (bil. man-hours at annual rate): 1973-Jan., 144.76; Feb., 145.89; Mar.,						145.99; Apr., 146.59; May, 147.12; June, 147.53; July, 147.30; Aug., 147.35; Sept., 148.03; Oct., 148.53; Nov., 149.24; Dec., 149.11. \ddagger See note " \ddagger ", p. S-14. IProduction and nonsupervisory workers. \$ Revised beginning June 1971 to correct errors of estimation; revisions appear at bottom of p. S-14, Oct. 1973 Survey.																								

Unless otherwise stated in footnotes below, data through 1972 and deacriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr. ${ }^{\text {d }}$

LABOR FORCE, EMPLOYMENT, AND EARNINGS-Continued

Unless other wise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

LABOR FORCE, EMPLOYMENT, AND EARNINGS—Continued

FINANCE

BANKING																
Open market paper outstanding, end of period:																
Bankers' acceptances...---.-.-.-.---.-.-. mil. \$--	6, 898	8,892	6,859	6,713	6,888	7,237	7,693	7,734	8,170	8,237	8,493	8,892	9, 101	9,364	10, 166	
Commercial and finance co. paper, total.... do.	34,721	41,073	34, 052	34, 404	35, 672	35,786	35, 463	37, 149	37,641	41,602	42,945	41,073	45, 491	47, 164	44,690	
Placed through dealers.--.----.-.......- do	12,172	13,062	9,359	9,334	9,436	9,489	9,161	9,026	10,198	13, 046	14, 141	13,062	15,419	17, 346	15,028	
Placed directly (finance paper)-....-d. ${ }^{\text {do. }}$	22, 549	28,011	24,693	25,070	26,236	26,297	26,302	28, 123	27, 443	28,556	28,804	28,011	30,072	29, 818	29, 662	
Agricultural loans and discounts outstanding of agencies supervised by the Farm Credit Adm.:																
Total, end of period.....-----------------mil. \$--	18,293	21,840	19, 733	20,075	20,319	20,641	20,856	21, 206	21,346	21,454	21,505	21, 840	22, 506	22,919	23,171	
Federal land banks.	9,107	11,071	9,591	9,767	9,953	10, 118	10,256	10,441	10,592	10,781	10,926	11,071	11, 245	11,402	11,467	
Loans to cooperatives.	2,298	2,577	2,895	2,859	2,765	2,725	2,811	2,865	2,738	2,711	2, 662	2,577	3, 123	3,211	3,143	
Other loans and discounts.....-.............do	6,889	8,193	7,246	7,449	7,601	7,798	7,789	7,899	8,016	7,961	7,917	8,193	8,138	8,306	8,561	
Bank debits to demand deposit accounts, except interbank and U.S. Government accounts, annual rates, seasonally adjusted:																
			15,959.2	15,971.2	16,452.0	16,638.8	17,224.5	17,888.9	17,918.7	18,394.4	19,049.5	18,641.3	18, 816.9	r19,814.1	20,176.4	
			6,844.8	6,927.5	7,177.0	7,224.F	7,381.4	7,744.6	8,025.3	8, 137.2	8,437.9	8,097.7	8,081.0	8, 896. 2	8,914. 4	
Total 232 SMSA's (excep			9,114.4	9,043.8	9,275.1	9,414.3	9,843.1	10,144.3	9,893.3	10,257.2	10,611.6	10,543.6	10,736. 0	r10,917.9	11,262.0	
6 other leading SMSA'			3,873.4	3,857.5	3,918.3	4,050.2	4,282.4	4,318.2	4,195.7	4,418.0	4,519.8	4,462.8	4,517.1	-4,582.1	4,718.0	
			5,241.0	$5,186.2$	5,356.7	5,364.1	5,560.8	$5,826.0$	5,697.6	5,839.1	6,091.7	6,080.8	6,218.8	r6,335.8	6,544.1	
Federal Reserve banks, condition, end of period: Assets, total $\%$ \qquad mil. \$.-	97,675	106, 464	99,325	100,010	100,010	100,509	104,439	101,577	101,944	107, 422	103,656	106,464	140,665	104,409	- 105,463	109, 220
Reserve bank credit out	77, 291	84, 680	79,717	79,832	79,392	80, 355	83, 349	82,489	81,123	85, 454	83, 217	84,680	83,422	83,439	85,194	86, 298
Discounts and advances	1,981	1,258	2,048	1,716	1,224	1,770	2,245	2,842	1,558	2,198	1,915	1,258	961	720	「 1,820	1,747
U.S. Government securit	69,906	78,516	74,276	75,495	74,128	75,022	77,098	76,093	76,165	78,491	77, 129	78,516	78,240	78, 237	79,483	80,007
Gold certificate	10,303	11,460	10,303	10,303	10,303	10,303	10,303	10,303	10,303	11,460	11, 460	11,460	11,460	11,460	11,460	11, 460
Liabill	97,675	106, 464	99,325	100,010	100,010	100, 509	104,439	101,577	101, 944	107, 422	103,656	106,464	140,665	104,409	-105,463	109,220
Deposits, total	28,667	31,486	31,626	30,968	29,123	29,920	32.461	30, 822	30,919	34,886	31, 145	31,486	32,134	31,227	$\begin{array}{r} \mathbf{3} 2,250 \\ -00 \end{array}$	32,760
Member-bank reserve balances.	25,647	27,060	27,713	25, 700	24,892	24,818	28, 495	28, 955	28,240	31, 787	28, 108	27,060	28,241	27,989	$\begin{array}{r} 29,838 \end{array}$	28,733
Federal Reserve notes	59, 914	65,470	58,676	59,414	60,223	60,847	61,362	61,640	61,628	62, 120	63,292	65,470	63,497	63,662	64, 121	64, 971
All member banks of Federal Reserve System, averages of daily figures:																
	131,353	${ }^{1} 35,068$	31,973	32,277	32,393	32, 028	33, 524	33,785	34,019	34,912	34,727	35, 068	36,655	35,242	- 34,966	${ }^{\text {p }} 35,922$
	1 31, 134	- ${ }^{134,806}$	31,678	32, 125	32,275	31, 969	33, 202	33,538	33,782	34,712	34, 523	34, 806	36,419	35,053	34,790	p35,772
Borrowings from	1.219 11.049	$\begin{array}{r}1 \\ 1 \\ 11262 \\ \hline\end{array}$	${ }^{295}$	156	1 118	59 1.789	${ }_{2} 322$	246	, 237	, 200	- 204	${ }^{262}$. 236	189	${ }^{\tau} 176$	${ }^{p} 150$
Free reserves.....---	11,049 -830	1 1,298	1,858	1,721	1,786	1,789	2,051	2,143	1,861	1,467	1,399	1,298	1.044 -700	1,186	1,352	1,714
Large commercial banks reporting to Federal Reserve System, Wed. nearest end of yr. or mo.: Deposits:																
	106,219	112,531	96, 205	97, 232	95,919	97,924	100,176	96,466	97,578	99,621	100,178	112,531	99,349	98, 204	${ }^{r} 101,444$	
	169, 768	184,565	149,419	156,704	150,506	149,944	157,604	143,546	156, 014	162,134	156, 083	184,565	158,015	155,789	${ }^{r} 163,148$	
Individuals, partnerships, and corp.... d	121, 308	128,207	105,757	109,077	109,224	107, 453	111,539	105,787	110,371	112, 876	112, 459	128,207	109,056	109,235	-113,210	
State and local governments.-.-.-..... do	7,221	7,352	6,582	7,504	6,561	6,836	6,901	5,697	6,317	7,159	6,173	7,352	6, 238	6,014	$\stackrel{r}{-6,064}$	
U.S. Government.--.---.----------- do	6,469	7,164	7,258	7,447	2,891	5,646	3,010	1,816	5,512	3,480	2,138	7,164	5,690	3,241	-3,714	
Domestic commercial banks .-...-.-.- do	22,412	25,286	19,072	21,021	20,341	19,362	22,748	19,072	21, 246	24,607	22,406	25,286	22,815	22,787	- 24,732	
Time, total 9 \qquad Individuals, partnership	160,661	189, 645	174,299	176,383	180,341	179,960	185, 434	190, 776	189,784	188,702	186,481	189,645	193,137	192,851	r 197,889	
Savings.-.---. do	58,572	57,087	58,466	57,965	58,224	58,253	57,348	56,286	56,172	56,128	56,278	57,087	56,802	57,144	- 58,485	
Other time	72,334	95,405	82, 753	83, 419	86, 338	87, 228	92, 814	97,902	96,585	95, 438	94, 014	95,405	98,902	99,038	- 102,519	
Loans (adjusted), totald ${ }^{\text {a }}$-2.-.............. do	226,042	270,659	238,300	242,952	246,084	250,603	256,120	256,833	259,755	259,297	260,217	270,659	264,503	267,013	r 278,044	
Commercial and industrial.-----------.- do	91,442	110,778	99,823	102,433	102,711	104,812	107,433	106,789	108,299	106,829	107,632	110,778	109,442	110,475	r 118,498	
For purchasing or carrying securities.-.-. do	12,535	9,439	10,672	10,054	10, 120	9,700	12, 128	9,640	9,301	9,508	9,182	9,439	8,129	9, 185	-8,202	
To nonbank financial institutions..-----. do	20,524	28,075	22,246	23, 125	23, 712	24, 897	26,599	25,872	26,312	25,608	25,321	28, 075	26,325	26,272	- 28,221	
Real estate loans.	45, 992	55, 181	47, 535	48,253	49,141	50,121	51, 104	52,037	53,179	53, 877	54,548	55, 181	55, 627	55,659	- 56,148	
Other loans.	72, 063	89,208	72,773	74,510	74,801	76,257	76,549	77,863	79,243	80,315	80, 233	89,208	83,076	83,661	* 86,173	
	85,146 29,133	86,982 25,460	80,573 25,371	79,603 24,493	79,843 23	79,370 23,836	78,256	78,450 22,098	80, 235	82,292 23	82,850 24	86,982 25,460	$\begin{aligned} & 87,086 \\ & 25,691 \end{aligned}$	86,884 25,357	$\begin{aligned} & \boldsymbol{r} 87,230 \\ & r \\ & r \\ & 25,326 \end{aligned}$	
	25,133 22,552	25,460 19,932	25,371 20,460	24,493 19,971	23,989 19,798	23,836 19,797	22,299 19,345	22,098 18,592	22,523 19,202	23,195 19,256	24,257 19,823	25, 460 19,932	25,691 19,832	25,357 20,492	r r r r 20,161	
Other securities.	56,013	61,522	55, 202	19, 110	55,494	19, 534	19, 957	18,352	19,712	59,097	19,893	61,522	61,395	61,527	r 61,904	
${ }^{r}$ Revised. ${ }^{p}$ Preliminary. ${ }^{1}$ Average for Dec. 8 Insured unemployment (all programs) data include claims filed under extended duration provisions of regular State laws; amounts paid under these programs are excluded from State benefits paid data. \triangle Insured unemployment as \% of average covered employment in a 12 -month period. \% Includes data not shown separately. o'For demand deposits, the term "adjusted" denotes demand deposits other than domestic commercial bank and U.S. Government, less cash items in process of collection; for loans, exclusive of loans to and Federal funds transactions with domestic commercial banks and after deduction of valuation reserves (individual loan items are shown gross; i.e., before deduction of valuation reserves). ©Total SMSA's include some cities and counties not designated as SMSA's. II Includes Boston, Philadelphia, Chicago, Detroit, San Francisco-Oakland, and Los Angeles-Long Beach.																

Unless otherwise stated in footnotes below, dats through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

FINANCE-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline BANKING-Continued \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Commercial bank credit (last Wed. of mo., except for June 30 and Dec. 31 call dates), seas. adj.: \(\dagger\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Total loans and investments \(\odot-b i l . ~ \$.-~\) \& 556.4 \& 625.4 \& 583.6 \& 589.6 \& 597.7 \& 602.0 \& 608.2 \& 616.0 \& 618.2 \& 621.7 \& 624.6 \& 625. 4 \& 633.6 \& 641.0 \& 650.3 \& 658.8 \\
\hline Loans® \& 377.8 \& 444.5 \& 405.8 \& 411.1 \& 417.4 \& 420.3 \& 427.3 \& 435.3 \& 438.1 \& 440.0 \& 443.6 \& 444.5 \& 450.2 \& 454.7 \& 464.0 \& 471.6 \\
\hline U.S. Government securitles....--............do. \& 61.9 \& 53. 2 \& 60.4 \& 61.0 \& 61.0 \& 61.6 \& 59.6 \& 57.7 \& 56.3 \& 54.9 \& 54.5 \& 53.2 \& 53.9 \& 55.7 \& 55.7 \& 56.1 \\
\hline \& 116.7 \& 127.7 \& 117.4 \& 117.5 \& 119.3 \& 120.1 \& 121.3 \& 123.0 \& 123.8 \& 126.8 \& 126.5 \& 127.7 \& 129.5 \& 130.6 \& 130.6 \& 131.1 \\
\hline Money and Interest rates: 8 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Bank rates on short-term business loans:
In 35 centers. \& 15.82 \& 18.30 \& \& \& 7.35 \& \& \& 9.24 \& \& \& 10.08 \& \& \& 9.91 \& \& \\
\hline New York City \& 15. 57 \& 18.06 \& \& \& 7.04 \& \& \& 9.08 \& \& \& 9.90 \& \& \& 9.68 \& \& \\
\hline 7 other northeast centers --.---............dido \& \({ }^{1} 6.07\) \& 18.65 \& \& \& 7.71 \& \& \& 9.49 \& \& \& 10.51 \& \& \& 10.28 \& \& \\
\hline 8 north central centers.-................. do. \& 15.74 \& \({ }^{1} 8.29\) \& \& \& 7.44 \& \& \& 9.24 \& \& \& 10.02 \& \& \& 9.98 \& \& \\
\hline 7 southeast centers...............................do. \& \({ }^{1} 6.07\) \& 18.34 \& \& \& 7.37 \& \& \& 9.25 \& \& \& 9.96 \& \& \& 9.80 \& \& \\
\hline 8 southwest centers......-.................. do. \& 16.02 \& 18.30 \& \& \& 7.33 \& \& \& 9. 16 \& \& \& 10.08 \& \& \& 9.93 \& \& \\
\hline \& \({ }^{1} 5.80\) \& \({ }^{18} 8.26\) \& \& \& 7. 25 \& \& \& 9.25 \& \& \& 10.04 \& \& \& 9.78 \& \& \\
\hline \begin{tabular}{l}
Discount rate (N.Y.F.R. Bank), end of year or \\

\end{tabular} \& 4. 50 \& 7.50 \& 5. 50 \& 6. 60 \& 6.00 \& 6. 50 \& 7.00 \& 7.50 \& 7.50 \& 7.50 \& 7. 50 \& 7.50 \& 7.50 \& 7.50 \& 7.50 \& 8.00 \\
\hline Federal intermediate cred \& \({ }^{1} 6.00\) \& 17.16 \& 6.50 \& 6.71 \& 6.34 \& 7.08 \& 7.21 \& 7.38 \& 7.42 \& 8.05 \& 8.18 \& 8.34 \& 8.42 \& 8.52 \& \& \\
\hline Home mortgage rates (conventional 1st mortgages): \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline New home purchase (U.S. avg.) .-....percent.-
Existing home purchase (U.S. avg.) \& 17.45
17.38 \& 137.95
138.01 \& 7.68
7.69 \& 7.71 \& 7.71
7.77 \& 7.79
7.79 \& 7.87
7.84 \& 7.94
8.01 \& 8.17
8.26 \& 8.31
8.50 \& 8.39
8.58 \& 8.49
8.61 \& 8.52
8.64 \& 8.62
8.70 \& 8.64
-8.63 \& \[
\begin{array}{r}
p .67 \\
8.59
\end{array}
\] \\
\hline Open market rates, New York Clty: \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Bankers' acceptances (prime, 90 days) .-.do \& 24.47 \& 28.08 \& 6. 82 \& 6.97 \& 7.15 \& 7.98 \& 9.19 \& 10.18 \& 10. 19 \& 9.07 \& 8.73 \& 8.94
908 \& 8.72 \& \(\begin{array}{r}7.83 \\ \hline 83\end{array}\) \& -8.43 \& 9.61 \\
\hline Commerclal paper (prime, 4-6 months)_-do \& 24.69 \& 28.15 \& 6.85 \& 7.14 \& 7.27
6.85 \& 7.99
7.45 \& 9.18
8.09 \& 10.21 \& 10. 23 \& 8.92
7.84 \& 8.94
7.94 \& 9.08
8.16 \& 8.66
7.92 \& 7
7.83
7.40 \& 8.42
7.76 \& 9.79
8.43 \\
\hline Finance Co. paper placed directly, 3-6 no-do Stock Exchange call loans, going rate....do... \& 24.62
25.16 \& 27.40
28.25 \& 6.44
6.80 \& 6.76
7.00 \& 6.85
7.18 \& 7.45
7.83 \& 8.09 \& 8.90
9.41 \& 8.90
10.04 \& 7.84
10.02 \& 7.94
10.00 \& 8. 16
10.00 \& 7.92
9.95 \& 7.40
9.39 \& 7.76
9.08 \& 8.43
10.23 \\
\hline Yield on U.S. Government securities (taxable): \& 24.071 \& 27.041 \& 6.054 \& \& 6.348 \& 7.188 \& 8.015 \& \& \& 7.155 \& 7.866 \& 7.364 \& 7.755 \& 7.060 \& 7.986 \& 8. 229 \\
\hline 3-month bilis (rate on new issue) --.-. percent.- \& 24.071
25.85 \& 27.041

26.92 \& 6.084
6.85 \& 6.289
6.74 \& 6.348 \& 6.76 \& 7.49 \& 8.672
7.75 \& 8.478
7.16 \& 6.81 \& 7.86 \& 6. 80 \& 6.94 \& 6.77 \& 7.33 \& 7.99

\hline | CONSUMER CREDIT |
| :--- |
| (Short- and Intermediate-term) | \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Total outstanding, end of year or monthmil. \$. - \& 157, 564 \& 180,846 \& 159,320 \& 161, 491 \& 164, 277 \& 167, 083 \& 169, 148 \& 171,978 \& 173, 035 \& 174,840 \& 176, 969 \& 180,486 \& 178,686 \& 177, 522 \& 177,572 \&

\hline Installment credit, total. .---------------- do \& 127, 332 \& 147,437 \& 129,375 \& 131, 022 \& 133, 531 \& 136, 018 \& 138, 212 \& 140, 810 \& 142,093 \& 143, 610 \& 145,400 \& 147,437 \& 146,575 \& 145,927 \& 145, 768 \&

\hline Automobile paper .-.-........-.-.-.........-do. \& 44, 129 \& 51,130 \& 45,610 \& 46,478 \& 47,518 \& 48,549 \& 49,352 \& 50, 232 \& 50,557 \& 51,092 \& 51,371 \& 51,130 \& 50,617 \& 50, 386 \& 50,310 \&

\hline Other consumer goods paper .-..---.-......do \& 40,080 \& 47,530 \& 39,951 \& 40, 441 \& 41, 096 \& 41, 853 \& 42,575 \& 43, 505 \& 44, 019 \& 44, 632 \& 45,592 \& 47,530 \& 47,303 \& 46,781 \& 46,536 \&

\hline Repair and modernization loans..--.-.-.-. do \& 6, 201 \& 7,352 \& 6,328 \& 6,408 \& 6, 541 \& 6,688 \& 6,845 \& 7,009 \& 7,120 \& 7,235 \& 7,321 \& 7,352 \& 7,303 \& 7,343 \& 7,430 \&

\hline \& 36, 922 \& 41,425 \& 37, 486 \& 37,695 \& 38, 376 \& 38,928 \& 39, 440 \& 40,064 \& 40, 397 \& 40,651 \& 41, 116 \& 41,425 \& 41,352 \& 41,417 \& 41,492 \&

\hline | By type of holder: |
| :--- |
| Financial institutions, total | \& 111, 382 \& \& \& \& 118, 165 \& 120, 450 \& 122,479 \& \& \& 127,307 \& 128, 553 \& 129,305 \& 128,870 \& 128,807 \& 128,799 \&

\hline Commercial banks....-------.-.-.-.-.- do \& 11, 59,783 \& 129,495 \& -11, 688 \& 115,
62,459 \& -63, 707 \& 64,999 \& 66, 065 \& 67,381 \& 67, 918 \& 68, 627 \& 69, 161 \& 69,495 \& -69,429 \& 128,807
69,246 \& 69,232 \&

\hline Finance companies .-.---..................do.... \& 32, 088 \& 37,243 \& 32,750 \& 33, 078 \& 33, 859 \& 34, 367 \& 35, 020 \& 35, 634 \& 35, 993 \& 36, 365 \& 36,887 \& 37, 243 \& 37, 140 \& 37, 148 \& 37,005 \&

\hline \& 16, 913 \& 19,609 \& 17,239 \& 17,455 \& 17, 832 \& 18,269 \& 18,517 \& 18,961 \& 19,207 \& 19,339 \& 19,517 \& 19,609 \& 19,429 \& 19,430 \& 19,550 \&

\hline \& 2,598 \& 2,958 \& 2,813 \& 2,735 \& 2,767 \& 2,815 \& 2,877 \& 2,847 \& 2,922 \& 2,976 \& 2,988 \& 2,958 \& 2,872 \& 2,983 \& 3,012 \&

\hline Retail outlets, total..----.-..............- do \& 15, 950 \& 18, 132 \& 15,185 \& 15,295 \& 15, 366 \& 15,568 \& 15,733 \& 15,987 \& 16,053 \& 16,303 \& 16, 847 \& 18,132 \& 17,705 \& 17,120 \& 16,969 \&

\hline Automobile dealers \& 261 \& 18, 299 \& 272 \& - 278 \& ${ }^{15} 284$ \& 289 \& - 293 \& 296 \& - 297 \& 300 \& 302 \& 299 \& 296 \& 293 \& 292 \&

\hline Noninstallment credit, total..-...-.......... do \& 30, 232 \& 33, 049 \& 29,945 \& 30, 469 \& 30,746 \& 31, 065 \& 30,936 \& 31,168 \& 30,942 \& 31, 230 \& 31,569 \& 33,049 \& 32, 111 \& 31,595 \& 31, 804 \&

\hline Single-payment loans, total...-.-.-.------ do. \& 12, 256 \& 13,241 \& 12,540 \& 12,686 \& 12,817 \& 12,990 \& 12,968 \& 13, 111 \& 13, 088 \& 13, 145 \& 13, 161 \& 13,241 \& 13, 117 \& 13, 159 \& 13, 188 \&

\hline Commercial banks \& 10, 857 \& 11,753 \& 11, 074 \& 11, 237 \& 11, 359 \& 11, 520 \& 11,491 \& 11,655 \& 11, 608 \& 11,654 \& 11, 669 \& 11,753 \& 11,652 \& 11,663 \& 11,686 \&

\hline \& 1,399 \& 1,488 \& 1,466 \& 1, 449 \& 1,458 \& 1,470 \& 1,477 \& 1,456 \& 1,480 \& 1,491 \& 1,492 \& 1,488 \& 1,465 \& 1,496 \& 1,502 \&

\hline Charge accounts, tutal..............-.-.-.-. do \& 9,002 \& 9,829 \& 7,702 \& 8, 036 \& 8,319 \& 8,555 \& 8,479 \& 8,605 \& 8,335 \& 8,590 \& 8,785 \& 9, 829 \& 8,875 \& 8,018 \& 7,939 \&

\hline \& 7, 055 \& 7,783 \& 5,825 \& 6,129 \& 6,387 \& 6,544 \& 6,424 \& 6,475 \& 6, 229 \& 6,554 \& 6, 761 \& 7,783 \& 6,894 \& 6,136 \& 6,097 \&

\hline \& 1,947 \& 2,046 \& 1,877 \& 1,907 \& 1,932 \& 2, 011 \& 2,055 \& 2, 130 \& 2, 106 \& 2, 036 \& 2,024 \& 2,046 \& 1,981 \& 1,882 \& 1, 842 \&

\hline \& 8,974 \& 9,979 \& 9,703 \& 9, 747 \& 9,610 \& 9,520 \& 9,489 \& 9,452 \& 9,519 \& 9, 495 \& 9,623 \& 9,979 \& 10,119 \& 10,418 \& 10,677 \&

\hline Installment credit extended and repaid: Unadjusted: \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& 142,951 \& 165,083 \& 13, 681 \& 13,661 \& 14, 792 \& 14,608 \& 14, 812 \& 15,099 \& 12, 824 \& 14,454 \& 14, 098 \& 14, 117 \& 12,375 \& 11,227 \& 13,246 \&

\hline \& 40, 194 \& 46, 453 \& 4, 164 \& 4, 101 \& 4,409 \& 4,313 \& 4, 177 \& 4, 252 \& 3,476 \& 4, 196 \& 3,693 \& 2,872 \& 2,934 \& 2,945 \& 3,546 \&

\hline \& 55, 599 \& 66; 859 \& 5,169 \& 5, 378 \& 5,698 \& 5,678 \& 5,753 \& 6,065
4,782 \& 5,217 \& 5,894
4,364 \& 5,980
4,425 \& 6,826
4,419 \& 5,471
3,970 \& 4,525
3,757 \& 5,479
4,221 \&

\hline All other- \& 47, 111 \& 51,771 \& 4,348 \& 4,182 \& 4,685 \& 4,617 \& 4,882 \& 4,782 \& 3,931 \& 4,364 \& 4, 425 \& 4,419 \& 3,970 \& 3,757 \& 4,221 \&

\hline \& 126, 914 \& 144,978 \& 12,265 \& 12,014 \& 12,283 \& 12,121 \& 12,618 \& 12,501 \& 11, 341 \& 12,937 \& 12,308 \& 12,080 \& 13,237 \& 11, 875 \& 13,405 \&

\hline \& 34, 229 \& 39,452 \& 3,371 \& 3,233 \& - 3,369 \& 3,282 \& 3,374 \& 3,372 \& 3, 151 \& 3, 661 \& 3,414 \& 3,113 \& 3,447 \& 3, 176 \& 3, 622 \&

\hline Other consumer goods paper................d \& 49, 872 \& 59,409 \& 5,013 \& 4,888 \& 5, 043 \& 4,921 \& 5,031 \& 5,135 \& 4,703 \& 5, 281 \& 5, 020 \& 4,888 \& 5,698 \& 5,047 \& 5,724 \&

\hline \& 42,313 \& 46,117 \& 3,881 \& 3,893 \& 3,871 \& 3,918 \& 4,213 \& 3,994 \& 3,487 \& 3,995 \& 3,874 \& 4,079 \& 4,092 \& 3,652 \& 4,059 \&

\hline Seasonally adjusted: \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& 13,852 \& 13,465 \& 13,932 \& 13,646 \& 14,542 \& 14,294 \& 13,691 \& 14, 149 \& 14, 275 \& 12,677 \& 13,714 \& 13, 541 \& 13, 823 \&

\hline Automobile paper. \& \& \& 4,001 \& 3,822 \& 3,989 \& 3,762 \& 3,930 \& 3,968 \& 3,939 \& 3,912 \& 3,819 \& 3,315 \& 3,492 \& 3,389 \& 3,484 \&

\hline Other consumer goods paper-........- do. \& \& \& 5,349 \& 5,563 \& 5, 504 \& 5,505 \& 5,943 \& 5,961 \& 5,537 \& 5,911 \& 5,978 \& 5, 254 \& 5,662 \& 5,647 \& 5, 933 \&

\hline All other-------------------------.--- ${ }^{\text {do }}$ \& \& \& 4,502 \& 4, 080 \& 4,439 \& 4,379 \& 4,639 \& 4,365 \& 4,215 \& 4,326 \& 4,478 \& 4,108 \& 4,560 \& 4,505 \& 4,406 \&

\hline \& \& \& 11, 808 \& 12,061 \& 11,941 \& 12,034 \& 12,544 \& 12,399 \& 12,332 \& 12,449 \& 12,549 \& 12, 267 \& 12,797 \& 12,870 \& 13,206 \&

\hline \& \& \& 3, 225 \& 3, 218 \& 3,261 \& 3,253 \& 3,334 \& 3,293 \& 3,406 \& 3,427 \& 3,471 \& 3,338 \& 3,433 \& 3,394 \& 3,544 \&

\hline \& \& \& 4, 755
3,828 \& 4,963
3,880 \& 4,917
3,763 \& 4,955
3,826 \& 5, 141
4,069 \& 5,168
3,938 \& 5,072
3,854 \& 5,149
3,873 \& 5,154 \& 5, 001
3,928 \& 5,193
4,171 \& 5,340
4,136 \& 5,596
4,066 \&

\hline
\end{tabular}

${ }^{r}$ Revised. ${ }^{p}$ Preliminary.
${ }^{1}$ Average for year. ${ }^{2}$ Daily average. ${ }^{3}$ Beginning Jan. 1973, data reflect changes in
sample and weighting. \odot Adjusted to exclude interbank loans.
§ For bond yields, see p. S-21. †Beginning Jan. 1959, monthly data have been revised to reflect new seasonal factors and adjustment to benchmarks for the latest call date (June 30,
1973). Revisions are in the Nov. 1973 Federal Reserve Bulletin. 1973). Revisions are in the Nov. 1973 Federal Reserve Bulletin.

Uniess otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

FINANCE-Continued

MONETARY STATISTICS-Continued Currency in circulation (end of period) \qquad bll. \$	66. 5	72.5	65.2	66.1	67.2	67.8	68.2	68.4	68.2	69.0	70.3	72.5	69.9	70.5	71.2	
Money supply and related data (avg. of daily fig.): \oplus Unadjusted for seasonal variation:																
Total money supply..................... bll. \$.-	248.9	263.6	255.5	260.9	257.9	263.6	265.7	262.9	263.9	266.0	270.5	278.1	276.8	269.7	-272. 1	- 278.2
Currency outside banks.................. do...-	54.6 190.9	59.3 204.3	$\begin{array}{r}57.4 \\ 198.1 \\ \hline\end{array}$	58.3 202.6	58.7 199.2	204. 4	205.7	60.0	60.1 203.8	60.4 205.6	61.4 209.1	62.6 215.5	61.5 215.3	61.8 207.9	r 62.7 209.5	63.5 214.7
	293.4	345.1	332.6	337.6	342.6	344.5	347.6	356.6	359.2	360.2	358.7	361.8	368.9	373.8	- 378.5	386.5
U.S. Qovernment demand depositsfi.-.-.do.-.-	7.2	7.1	10.4	8.3	8.7	7.1	6.5	4.1	5.3	6.0	4.3	6.3	8.0	8.5	6.3	6.0
Adjusted for seasonal variation: do				259.4	262.4	265.5	266.4	266.2	265.4	266.5	268.8	270.4	269.6	272.5	274.9	
			${ }_{58.0} 58$	259.4 58.6	58.9	20.5 59.4	56.4	${ }_{59.8}$	60.2	60.4	60.9	${ }^{21.6} 6$	61.8	62.6	${ }_{563.3}^{27.9}$	276.7 63.9
			200.1	200.8	203.4	206.2	207.0	206.4	205.2	206.1	207.9	208.8	207.8	210.0	-211.6	212.8
Tlme deposits adjustedf...................-do-			331. 1	337.3	342.6	345.8	349.4	355.0	357.9	358.9	359.9	363.1	369.6	374.2	- 377.0	386.6
Turnover of demand deposits except interbank and U.S. Govt., annual rates, seas. adjusted: Total (233 SMSA's) \odot _-ratio of debits to deposits_			97.1	95.7	97.8	99.9	102.6	106.2	107.4	109.5	113.2	110.2	111.5	118.0	118.3	
New York SMSA --..................do.-.			' 228.3	228.9	235.1	245.0	247.5	252.5	266.4	265.3	274.9	269.8	270.3	294.2	292.5	
Total 232 SMSA's (except N.Y.)...........do.			67.8	${ }^{66.2}$	67.4	68.7	${ }^{71.3}$	${ }^{73.6}$	72.4	74.7	77.1	75.8	77.3	79.3	80.4	
6 other leading SMSA'sor'............................. 226 other SMSA's \qquad do.			104.5 53.9	101.9 52.5	103.7 56.3	107.6 54.0	11.7 55.8	113.6 58.4	${ }_{57.5}^{11.6}$	116.4 58.8	118.6 61.2	115.0 60.6	116.2 62.2	r r $r 63.7$	120.8 64.8	
PROFITS AND DIVIDENDS (QTRLY.)																
Manufacturing corps. (Fed. Trade and SEC): Net proft after taxes, all industries.........mil. $\$$.	36,467	48, 058	10,506			12,972			11,612			12,968				
Food and kindred products..-.-.-.-....-. do...-	3,021	3,790	766			897			996			1, 131				
Textlle mill products-ar-and wod products (except furniture)	659		190			256			199							
	1,012	1,711	${ }_{291}^{370}$			574			443			324				
Chemicals and alled products...--........do......	4,499	5,686	1,337			1,473			1,441			1,435				
Petroleum refining......................... do	b, 151	7,366	1,406			1,671			1,967			2,322				
Stone, clay, and glass products............do	1,060	1,263	168			376			407			312				
Primary nonferrous metal..............-. do	$\begin{array}{r}\text { 687 } \\ 1,022 \\ \hline\end{array}$	1,679	${ }_{336}^{222}$			363 458			411			474				
Fabricated metal products (except ordnance, machinery, and transport. equip.) ...- mil. \$.	1,569	2,223	465			608			564			586				
Machinery (except electricai)-do.	3,481	4,957	1,091			1,340			1,200			1,326				
Elec. machtnery, equip., and supplies--.-do-	2,999	3,968	851			994			974			1,149				
Transportation equipment (except motor vehicles, etc.)...................................il. \$..	780	911	223			288			191			209				
Motor vehicles and equipment.............-do.	3,639	4, 083	1,393			1,461			467			762				
All other manufacturing industries....... do....	5,944	6,788	1,369			1,811			1,693			1,915				
Dividends paid (cash), all industries.......-do	16,110	17,767	4,122			4, 268			4,125			5,252				
SECURITIES ISSUED																
Securities and Exchange Commission: Estimated gross proceeds, total. .-.-.-....-. - mil.	95,408	106, 618	9,030	6,567	11,219	7,943	7,643	8,036	8,091	8,924	12,553	6,635	3,370	3,639		
By type of security:																
Bonds and notes, total................... do.	-82,337	$\begin{array}{r}89,435 \\ r \\ 21 \\ \hline\end{array}$	7, 213 2,117	5,809 1,739	$\begin{array}{r}10,403 \\ 1 \\ \hline\end{array}$	7,122	6,882 1,870	7,610 1,396	7,542	- ${ }_{2}^{7,883}$	2,257	S, 2,469	2,934	2,052		
	r ${ }_{\text {r }}^{\text {9,912 }}$	- $+7,780$	-984	${ }^{1}$	+627	${ }^{2}, 606$	1,836	+ ${ }^{130}$	$\begin{array}{r}1,330 \\ \hline 40\end{array}$	$\stackrel{\text { 285 }}{ }$	${ }_{6}{ }_{668}$	- 573	2284	318		
	-3,372	-3,377	833	200	187	216	226	96	119	355	637	196	152	268		
By type of issuer:																
	r $\mathbf{r} 6,574$ $\mathbf{6} 593$	r 32,823 $r 4,875$	3,933 609	2, 2897	$\begin{array}{r}2,537 \\ \hline 39\end{array}$	3,578	$\begin{array}{r}2,631 \\ \hline 53\end{array}$	1,822				3,238	3,370 883	2,639 373		
	r r r r $r 1,932$	「 $\begin{array}{r}4,875 \\ 1,073\end{array}$	- 909	141	399 109	78 50	${ }^{3102}$	${ }_{141}^{27}$	348 59	5	$\begin{array}{r}44 \\ 34 \\ \hline\end{array}$	157	137	181		
Public utility	r 11,316	-10,270	931	519	765	1,596	920	513	585	949	1,080	888	1,441	829		
Transportation....-..................d. ${ }^{\text {do }}$	-1,230	r 1,541	108	92	245	183	250	86	142	114	245	232				
Communication.......................-do.	-4,832	- 4, 906	1,008	258	374	332	303	325	243	678	796	377	145	397		
Financial and real estate..............do.	-10,055	- 8, 436	1,222	971	581	517	374	357	350	926	814	807	508	843		
	54,610	67, 184	5,096	4, 070	8 8,681	4,365	5,012	${ }^{6,214}$	${ }^{6,176}$	5,525	8.990	3, 397				
	17,080	19,057	${ }^{606}$	-564	3,353	${ }^{559}$	499	3,097				+148				
	23,070	22,760	2,304	1,688	1,870	2,046	1,992	1,474	1,630	2,232	2,224	1,966				
State and municipal issues (Bond Buyer):																
		22,953	2,297	1,688	1,870	2,031	1,992	1,474	1,630	2,232	2,224	2,183	2,289	1,970	${ }^{r} 2,091$	
Short-term.-.-.-.................................d. do...-	25, 222	24, 667	1,638	2,062	2,492	2,517	1,923	1,740	2,750	2,501	1,785	2,507	1,860	2,117	' 1,786	2,018
SECURITY MAREETS																
Stock Market Customer Financing																
Margin credit at brokers and banks, end of month, total.-...	19,045	${ }^{16,382}$	8,347	8, 165	7,650	7,369	7,299	7,081	6,954	7,093		${ }^{6,382}$	${ }_{5}^{6,343}$			
	18,180	${ }^{1} 5,251$	7,468	7, 293	6,784	6, 416	6,243	6,056	5,949	5,912	5,671	5, ${ }_{1} \mathbf{2} 21$	5,323	5,423		
Other sanks.	${ }^{1} 865$	${ }^{1} 1,131$	879 1,566	1872 1,482	866 1,502		1,056	1,025	1,005	1,181	1,003	1,131	1,020			
Free credit balances at brokers:	${ }^{1} 1,528$				1,502											
	414	${ }_{1} 454$	442	389	413	396	379	348	379	419	464	454	442	420		
Cash accounts..............................-do	11,957	11,700	1,719	1,536	1,564	1,472	1,542	1,462	1,623	1,713	1,685	1,700	1,666	1,604		

TAt all commercial banks.
©Total SMSA's include some cities and counties not designated as SMSA's.
oIncludes Boston, Philadelphia, Chicago, Detroit, San Francisco-Oakland and Los
Angeles-Long Beach.
oIncludes data not shown separately. $\quad{ }^{\circ}$ Corrected.

Unless other wise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

FINANCE-Continued

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972 1973	1973										1974			
	Annual	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

FINANCE-Continued

FOREIGN TRADE OF THE UNITED STATES

VALUE OF EXPORTS Exports (mase.), Incl. reexports, total.........mil. \$.-	49,788.2	71,314.0	5,975.1	5,596.1	6,061.8	5,896.4	5,392.2	5,819.3	6,015. 6	6,783.5	7,127.7	6,969.7	6,873.6	7,340. 1	8,547.3	
Excl. Dept. of Defense shipments.-.-....do....	49,218.6	70,798.4	5,922.2	5,560.8	6,020.8	5,857.9	5,326.1	5,787.4	5, 959. 0	6,749.3	7,091.1	6,925. 7	6,831.6	7,298. 2	8,519.6	
	10,218.6		5,308.5	5,491.6	5,557.3	5,725.6	5,859.9	6,044.3	6,413.7	6,584.0	6,870.6	6,953.5	7, 111.0	7,605.5	7,673.9	
By geographic regions:		2,306. 9	188.4	167.4	200.4	232.0	171.3	172.2	217.4	199.2	247.2	208.2	239.7	247.5	284.9	
	11,297.2	18, 425.4	1,536.9	1,417.7	1,444.2	1, 444.2	1,466.3	1,574.0	1,692.6	1,714.0	1,915. 1	1,820.2	1,813.7	2,039.2	2,345.5	
	1,034. 4	1,743.9	1,96.0	109.3	150.5	1, 134.0	125.5	158.1	1, 135.2	142.4	1, 248.5	1, 212.6	183.1	186.1	233.6	
	17,158.0	22, 179.6	2,132.3	1,827.4	2,022.5	1,899.0	1,729.6	1,825.8	1,772. 4	2,061.3	2,237. 3	2, 307.4	2, 210.5	2,452.5	2,774.0	
Northern North America.................. do..--	12,418.8	15, 075. 1	1,283.3	1, 314. 1	1,422.1	1,334. 3	1,049.3	1,080.9	1,190.9	1,516.4	1,343.0	1,377.7	1, 396.8	1,405.9	1,666. 7	
Southern North America \qquad do	3,564. 1	$5,027.3$	1,383.8	+363.1	1,415.9	410.5	+ 427.4	453.3	149.2	1,509.2	$1,3507.1$	$1,374.7$ 474	1, $\begin{array}{r}\text { 541. } 0\end{array}$	1, 525.9	1,624.5	
	3,707.1	4,901. 3	352.2	356.8	353.6	375.2	357.3	442.9	447.5	552.8	539.6	512.7	488.7	482.9	617.9	
By leading countries: Africa:																
Egypt...........-........................... do	76.1	225.4	29.9	12.7	26.2	34.4	20.7	13.2	33. 4	6.0	13.7	15.5	40.7	32.0	45.4	
Republic of South Africa.-.................do.	602.5	746.4	52.5	57.6	56.5	60.3	69.8	60.8	66.9	77.5	71.3	67.0	61.9	80.0	92.1	
Asla; Australia and Oceania: Australla, including New Guinea.	856.5	1,449.1	80.3	90.5	130.2	108.6	107.6	135.2	106.7	116.5	217.4	183.8	133.0	151.1	198.1	
India...........-.............................. do..	350.1	524.9	39.4	35.1	31.4	35.5	37.3	49.7	82.1	61.8	47.5	34.5	20.6	16.2	34.1	
	183.0	238.9	10.3	16.6	16.0	15.7	24.9	9.0	19.0	23.7	28.8	31.6	30.4	25.3	59.3	
	128.0	161.6	11.2	8.6	12.8	10.4	12.3	14.3	15.2	19.7	17.1	20.3	23.4	24.9	29.6	
	307.6	442.1	21.8	27.2	30.6	35.7	34.4	30.2	41.5	42.8	42.5	54.0	43.7	33.2	44.3	
	365.5	495.5 8311.8	32.4	41.4	39.0	44.6	45.6	41.4	41.3	44.7	55.5	55.1	47.0	51.2	69.6	
	4,962.9	8,311.8	771.7	657.5	697.9	706.2	621.9	747.8	704.1	757.4	794.8	771.9	796.3	964.6	939.1	
Europe:																
	$1,608.9$ 17.5	$2,263.1$ 28.0	240.6 .8	191.4 2.0	200.1 1.2	160.5 .6	154.0 .8	165.2 11.0	167.2	200.8 .5	198.4 5.3	217.4 2.7	211.9 5.2	225.1 .3	293.3	
	2,807.5	3,755.9	314.0	306.9	293.6	322.1	280.9	308.4	298.5	355.3	5. 379.6	389.1	367.7	428.6	484.0	
	1,434. 2	2,118.8	183.5	188.7	172.6	225.3	182.3	166.9 97.3	152.8	169.8	213.3	190.6	196.9	224.5	285.1	
Unton of Soviet Socialist Republics....do	542.2	1,189.8	111.6	103.1	137.7	142.9	103.8	97.3 267.9	77.1	76.8	64.4	77.0	55.7	55.8	53.8	
	2,658.2	3,563.5	310.4	248.9	340.5	282.5	272.5	267.9	289.0	346.4	377.4	340.2	345.6	327.5	410.7	
North and South America: Canada.	12,415.2	15, 072.8	1,283,2	1,313.5	1,422.0	1,334.1	1,049.1	1,080.8	1,190.7	1,516.3	1,342.9	1,377.7	1,396. 5	1,405.8	666.6	
Latin American Republics, total \&-do..--	6,466.8	8,921.4	648.7	644.4	688.1	705.7	706.3	812.9	809.2	974.4	933.7	896.2	927.1	912.7	1, 129.5	
	396. 1	451.3	$\underline{27.3}$	34.9	30.6	29.4	25.2 151.3	87.9 160.8	53.5	59.1	53.4	31.0	31.5	35.0	- 43.1	
	1,242.7	1,916.0	123.0	118.4	139.3	149.0	151.3	160.8	183.2	231.0	210.5	234.8	214.6	175.2	245.4	
Chile Colombia	185.9	248.5 436.6	15.4 34.9	${ }_{32.1}^{15}$	11.2 27.0	19.4 39.0	10.2 33.2	47.3	14.8 44.2	38.6 41.1	50.6 40.4	29.4 43.6	20.4 40.2	21.8 51.3	38.1 49.5	
	1,982. 2	2,937.4	215.6	214.8	240.4	235.8	253.0	268.1	271.7	318.1	277.9	281.1	320.8	322.2	365.4	
	1,923.7	1,032.5	81.0	94.9	77.9	71.4	81.9	84.8	82.0	99.2	101.3	91.2	97.1	100.2	140.6	
Exports of U.S. merchandise, total............ do	48,978.6	70,223. 0	-5,879.8	-5,492.1	-5,965.8	-5,792.9	r5,310.5	-5,716.0	5,936. 5	6, 668.1	7,037.8	6,886. 0	6,729.5	7,248. 7	8, 433.8	
Excluding military grant-aid...................do	48,419.1	69,707. 4	r5,826.9	-5,456.8	-5,924.8	r5,754.4	5,244.4	P5,684.1	5, 879.9	6,633.9	7,001. 3	6, 842.0	6,750.4	7,206.9	8, 406.2	
Agricultural products, total....-............ do	9,406.9	17, 676. 4	1, 407.7	1,264. 1	1,364.9	1,376.0	1,218. 1	1, 469. 5	1, 448.7	1,733.7	2,082. 0	1,975. 6	1,839.2	1,918. 5	2, 106. 3	
Nonagricultural products, total...-.---.-.-. ${ }^{\text {do }}$	39,571.7	52,546. 6	4, 471.0	4, 227.7	4,602.8	4, 417.4	4, 087.8	4, 236.9	4,487.8	4,934.4	4,955.9	4,910. 5	4,953.2	-5,330.3	6,327. 5	
By commodity groups and principal commoditles:													198.1	1,156.8	1,257.3	
Meats and preparations (incl. poultry).-do.	$\begin{array}{r}5,660.6 \\ \hline 251.9\end{array}$	$11,930.8$ 444.2	88.4 48.4	45.6	85.1	38.5	27.5	1, 32.4	(1, $\begin{array}{r}18.7\end{array}$	1, 44.7	1,385 41.7	1, 43.9	35.6	30.8	35.0	
Grains and cereal preparations........-do.	3,501.1	8,495. 1	531.1	510.0	565.1	660.3	660.5	920.2	921.1	847.3	989.7	935.6	879.1	820.3	917.0	
Beverages and tobacco....--------------- do..-	908.3	1,008.5	78.4	74.8	68.4	73.4	72.1	77.3	92.9	110.6	128.7	94.3	90.8	87.2	79.1	
Crude materials, inedible, exc. fuels $9 . .$. do....	5,030.4	8,383. 6	840.4	717.3	778.8	676.3	563.7	558.9	506.3	749.8	892.2	852.2	854.0	992.6	1,113.8	
Cotton, raw, excl. linters and waste....do...-	503.3	929.0	104. 7	92.5	69.8	81.5	58.6	52.1	47.5	50.2	56.6	128.9	123.3	145.1	201.0	
Soybeans, exc. canned or prepared....- do.	1,508.1	2,757. 4	304.4	248.1	290.4	187.0	112.0	93.4	50.1	278.0	419.8	334,9	298.0	378.7	404.9	
Metal ores, concentrates, and scrap....do.	507.9	1,080.8	90.8	67.5	101.3	93.3	129.0	129.4	106.0	90.7	79.7	79.5	99.4	109.0	97.0	

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as ehown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

FOREIGN TRADE OF THE UNITED STATES—Continued

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

FOREIGN TRADE OF THE UNITED STATES—Continued

VALUE OF IMPORTS-Continued																
General Imports-Continued By commodity groups and principal commodi-ties--Continued Machinery and transport equipment....-mil. \$.	17,420, 1	20,969.6	1,818.3	1,710.2	1,954.4	1,918.1	1,700.7	1,683.7	1,507.6	1,943.9	2,055. 2	1,443.2	1,943.9	1,770.2	1,984.3	
Machinery, total $\%$-...................-do...-	7,786.9	9, 909.2	1812.3	806.8	853.8	865.0	1,855.3	1,907.2	1,759.4	1,934.9	1,003. 1	710.7	882.5	1,765. 1	1,912.4	
	140.4	187.9	13.3	10.9	16.5	14.5	17.3	19.1	14.5	15.6	20.5	19.6	19.2	17.7	19.6	
	3, 376.7	4,471.1	363.8	344.4	377.4	391.2	387.0	421.6	358.1	466.3	446.5	322.7	419.1	340.2	403.6	
	9, 633.2 ${ }^{\text {7, } 946.1}$	$\underset{\substack{11,060.4 \\ 9,216.1}}{ }$	1,000.6	$\begin{aligned} & 903.3 \\ & 748.3 \end{aligned}$	$\xrightarrow{1,100.5}$	$\begin{array}{r} 1,053.2 \\ 896.2 \end{array}$	$\begin{aligned} & 845.4 \\ & 706.7 \end{aligned}$	776. 5 608.3	$\begin{aligned} & 748.2 \\ & 602.8 \end{aligned}$	1, 009.0	$\begin{array}{\|l\|l\|} 1,052.2 \\ 884.8 \end{array}$	$\begin{aligned} & 732.5 \\ & 611.4 \end{aligned}$	$\left\lvert\, \begin{aligned} & 1,061.5 \\ & 922.0 \end{aligned}\right.$	$1,005.1$ 882.6	$\mid 1,071.9$	
Miscellaneous manufactured articlesdo.	6,910.6	8,184.0	643.2	609.8	649.7	697.1	720.4	820.0	666.2	781.3	772.2	608.3	642.3	640.2	735.6	
Commodities not classified...............do.	1,598.0	1,789.8	151.3	141.4	131.6	160.9	153.8	155.6	144.9	160.2	143.4	155.3	144.6	155.1	170.8	
Inderes																
Exports (U.S. mdse., excl. milltary grant-aid): ${ }_{\text {Unit }}$ value.....................1967 $=100$.	117.6	137.5		128.4	132.4	134.5	137.6	142.9	141.6	147.1	149.2	155.3	156.3	161.8		
Quantity --..- do...-	134.3	165.4	179.3	166.3	175.3	167.5	149.1	155.5	162.5	176.6	183.7	172.5	${ }_{169.1}$	174.4		
	158.0	227.5	228.0	213.6	232.1	225.3	205.2	222.2	230.2	259.8	274.1	267.9	264.3	282.2		
Qeneral imports:																
	126.1	149.6	131.8	184.1	146.9	178.8	116.3	117.5	154.9	178.6	183.6	149.3	179.1	188.8		
	163.8 206.6	171.8 257.1	181.8 249.7	164.8 238.6	289.2	263.3	252.2	267.6	235.9	284.4	302.9	257.8	${ }_{296.8}^{103.7}$	${ }_{298.7}$		
Shipping Weight and Value																
Waterborne trade:																
Exports (incl. reexports): Shipping weight...............thous. sh. tons.																
	25, 520		3,144	2,946	3, 177	3,182	3,050	3,429	3,356	3,802						
General imports: Shipping weightthous. sh. tons																
Value --........-..	$\begin{array}{r} 350,845 \\ 33,617 \end{array}$		3, 319	3,171	3,680	3, 638	3,512	4,048	3,340	3,387						

TRANSPORTATION AND COMMUNICATION

TRANSPORTATION AIr Carriers (Scheduled Service)																
Certificated route carriers:																
	162.41 53.0	161.96 52.1	12.94 50.2	13.24 51.8	13.16 50.3	14.95 55.0	16.00 54.9	16.98 57.5	13.15 48.5	12.88 47.8	11.99 55.5	13.13 56.9	${ }^{p} 12.99$	$\begin{array}{r} p 11.69 \\ p 55.6 \end{array}$		
	20,746	22,242	1,814	1,796	1,822	2,008	2,088	2,230	1,843	1,848	1,736	1,826	${ }^{p} 1,766$	${ }^{p} 1,636$		
	11, 163		2,785			3,111		-----	p 3,431						
Passenger revenues.....-...........-....-. do...--	9, 271		2,322			2, 5969			$p 2,859$ p 282	.-.....						
Freight and express revenues.............dido....	938 271		241 66			260 67			${ }^{p} 282$							
	10,579		2,808			2,923			p 3,089							
Net income after taxes®........................do.....	222		-46			88			P 171							
Domestic operations:																
Passenger-miles (revenue)	118.14 2.567	126.32 2.922	10.26 246	10.44 226	10.11 255	11.55 258	12.00 235	12.96 269	9.86 256	10.13 277	9.77 257	10.58 231	(pr $\begin{array}{r}10.26 \\ p \\ 222\end{array}$	$p 9.45$ $p 221$		
Express and freight ton-miles........................il.. Mall ton-miles. \qquad do...-	2, 6867	2,922	246 61	228 55	$\begin{array}{r}255 \\ 58 \\ \hline\end{array}$	258 55	235 61	269 56	256 53	277 57	257 58	231 74	${ }^{\circ} \mathrm{p} 56$			
	8,652		2,207		...--	2,433			p 2, 597							
	8,158		2,206			2,267			D 2,375							
Net income after taxes®.........-...........-do....-	196		-29			77			D95							
International operations: \triangle																
	34. 27 1,738	35. 64 1,916	2.68 166	2.80 148	3.05 150	3.39 157	4. 00 162	4.02	3.29 180	2.75 187	2.22 175	2.55	${ }^{p} 2.73$	${ }^{p} 2.24$		
	1, 815	1,522	47	43	43	43	40	43	39	39	47	51	p 35	${ }^{p} 35$		
	2,512		579		-..--...-	678 668		---	p 8734							
	2.420 26		-602			666 11			${ }^{7} 714$							
Local Transit Lines																
Fares, average cash rate....................................... Passengers carried (revenue)...	27.4 5,290	27.8 5,296	27.8 r r	27.8 465	27.8 448	27.8 420	27.8 391	27.7 413	27.7 408	27.7 462	27.7 448	27.7 447	27.7 483	457	534	
Motor Carriers																
Carriers of property, large, class I:*																
Number of reporting carriers .-...---------.-.-.---	- 94	94 8,704	94 2,007						94 2,151							
Operating revenues, total ${ }^{\text {Net income }}$ after extraordinary and prior mil. ${ }^{\text {a }}$ -	7,584	8,704	2,007			2,109			2,151			2,433	-			
charges and credits. \qquad period	258	233	51			64			51			67				
Tonnage hauled (revenue), common and contract carrier service. \qquad mil. tons.	171	189	44			47			46			50				
Freight carried-volume indexes, class I and II intercity truck tonnage (ATA):																
Common and contract carriers of property (qtrly.) $0^{2} \ldots \ldots$. average same period, $1967=100 \ldots$	128		140			145			142							
Common carriers of general freight, seas. adj. $1867=100$	136.4	163.4	166.0	162.5	163.4	162.2	159.6	159.3	162.6	167.7	174.6	170.1	r2168.4	${ }^{2} 167.2$	166.4	
Class I Railroads																
Financial operations, qtrly. (AAR):																
Operating revenues, total, excl. Amtrak \oplus ¢ mil. \$--	13,440	14,796	3,523			3,727			3,633	-...-.		3,913 3,634	-......-			
	- 12,598	13,794	3,505 59	-......		3,482 66			3,372 66			3,634 68	.-.....-			
Passenger, excl. Amtrak \oplus....-.............-do...--	257	259	59									68				
	10,580	11,571	2,761			2,925			2, 898			2,990				
	2,030	2,366	562			592			572			641				
Net rallway operating income....-........... do.	830	859	200			211			163			282				
	1483	1558	1119			1151			183			1203				
r Revised. $\quad p$ Preliminary. 1 Before extraordin	ary and	ior perio	items	${ }^{2} \mathrm{Co}$		for a	groups	of carri	rs also r	flect non	schedu	servi	\triangle	ffectiv	July 19	, carrier
parison with year-ago data may be affected by the cha	nge in rep	orting act	al tonn	ge carri		group	referred	to as "	nternati	nal'; n	change	in com	arability	of data.	* N	series.
nstead of billed tonnage, per the ICC Uniform Syste	m of Acc	ounts (1/1	4).	? Includ		Sour	: Inters	tate Com	merce	commiss	n; data	not ava	ailable pr	ior to 19	72.	Indexes
data not shown separately. It Applies to passenge	rs, bagg	ge, cargo	and m	il carrie	d.	are c	mparabl	for the	identic	quarte	of each	year (an	nd from	year to y	year	\oplus Natl.
§ Passenger-miles as a percent of available seat-miles	in revenu	e service;	reflects	proporti		Railr	ad Pass	Corp.	Amtrak)	not inclu	ded in	$A R$ dat	ta above,	for 1972	and 1st	6 months
of seating capacity actually sold and utilized. \bigcirc^{\prime}	Total rev	ues, exp	nses, 8	nd incom		of 197	(mil. d	l.): Pas	revenu	, 138; 7	net in	me, -	$18 ;-79$	(CC).		

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

TRANSPORTATION AND COMMUNICATION-Continued

```TRANSPORTATION-Continued Class I Railroads-Continued \\ Traffic: Ton-miles of freight (net), revenue and nonrev.```																
Ton-miles of frelght (net), revenue and nonrerenue.	800.8					2435.9										
Revenue ton-miles, qtrly. (AAR)	${ }^{776.7}$	846.8	203.6			2 21.607			211.2			214.0			211.3	366.2
Revenue per ton-mile   Passengers (revenue) carried i mile..........cents	1.616 8,560					2 ${ }_{2}^{21.623}$										
Travel																
Hotels and motor-hotels:																
	19.64 63	20.42 64	r 20.06 $r 67$	${ }^{20.06}$	20.53 69	20.39 68	20.25 65	20.93 70	20.71 66 6	21.09 73	21.04 63		20.35 56 56	21.86 63	21.54	
Restaurant sates index....same mo. $1051=100 .$.	123	130	143	129	153	143	130	128	135	132	123	129	107	124	153	
Foreign travel:   U.S. citizens: Arrivals $\qquad$ thous.	19,068	9,211	713	780	775	790	993	1,172	761	751	630	594				
	${ }^{1} 8,312$	8,758	686	746	787	941	1,020	870	741	653	$\checkmark 573$	609				
	8,193	5,750	426	451	427	474	${ }^{1} 615$	663	512	495	416	473				
	4,310	4,905	343	359	${ }_{376}$	418	480	628	470	425	${ }^{+} 381$	414				
	$\begin{array}{r} 2,728 \\ 54,087 \end{array}$	2,729 55,406	2,252	345 3,356	335 4,826	306 7,618	10,035	- $\begin{array}{r}213 \\ \hline 296\end{array}$	152 5,616	148 4,159	- $\begin{array}{r}132 \\ 2,258\end{array}$	108 1,493	1, $\begin{array}{r}168 \\ \hline 295\end{array}$	185 1,450	1,994	287 3,055
COMMUNICATION (QTRLY.)																
Telephone carriers ( 63 carriers except as noted): Operating revenues $9 . . . . . . . . . . . . . . . . . . . . . . .$. mil. $\$$	23, 079								46,563							
	11, 261		12,985			13,074			43,120							
	8,984		42,467			12.570			: 2,621							
Operating expenses (excluting taxes).-.-.-. do-.-	14, 869		4 3,928			${ }^{4} 4,032$			¢4, 186							
Net operating income (after taxes) Phones in service, end of period.	4,032 117.3		41,108 4119.1						( $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 121.9\end{aligned}$							
Phones in service, end of period....---.---.min--	117.3															
Telegraph carriers:																
Domestic:			110.8			113.7										
	349.8		90.4			93.4										
Net operating revenues (before taxes)...do....	55.1		12.0			15.7										
International:																
Operating revenues.....................- do...--	226.0		61.2			63.8										
Net operating revenues (before taxes)...do....	163.7 49.4		43.5 14.3			16.2										

CHEMICALS AND ALLIED PRODUCTS

CHEMICALS   Inorganic Chemicals   Production:																
Aluminum sulfate, commercial ( $17 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ ) $\ddagger$   thous sh tons	1,256	1,138	93	94		88			79	108	96	86	r 92	92		
Chlorine gas ( $100 \% \mathrm{Cl}_{2}$ ) $\ddagger$ -	9,873	10, 303	862	848	886	838	875	866	835	889	882	894	- 878	815		
Hydrochloric acid (100\% HCl) $\ddagger$.	2. 302	2, 388	211	202	209	196	191	210	188	208	204	191		190		
Phosphorus, clementalt.-...-.-....-.-.-. do...-	556 4.310	+525	46 350	49 330	49 337	42	42	$\stackrel{41}{438}$	37 261 261	44 331	$\begin{array}{r}45 \\ 328 \\ \hline\end{array}$	$\begin{array}{r}44 \\ 300 \\ \hline\end{array}$	$\begin{array}{r}\text { r } \\ \\ 271 \\ \hline 81\end{array}$	42		
	4,310	3,837	350	330	337	297	304	338	261		328		271			
	10,217	10,679	895	882	928	870	904	895	868	${ }_{96}^{913}$	913	924 60	$\begin{array}{r}\text {-903 } \\ \hline 57 \\ \hline 97\end{array}$	831 60		
Sodum silicate, anhydrousf.-..............do	- $\begin{array}{r}661 \\ 1,327\end{array}$	+ 727		$\begin{array}{r}64 \\ 138 \\ \hline\end{array}$	172	60 110	${ }_{120}^{60}$	${ }_{1} 12$	62 108	${ }_{138}$	113	105	r 101	102		
Sodium trypolyphosphate $\left(100 \% \mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}\right) \ddagger$	1,327 1,033	1,421 914	$\begin{array}{r}141 \\ 83 \\ \hline\end{array}$	138 77	120 81	10 76	122 79	112 76	70	71		71	69	69		
Titanium dioxide (composite and pure) $\ddagger$. . do-	, 718	772	65	64	68	63	61	67	61	65	67	68	65	63		
Sulfur, native (Frasch) and recovered:																
	$\begin{array}{r} 19,218 \\ 3,794 \end{array}$	$\begin{array}{r} r \\ 10,021 \\ r 3,027 \end{array}$	885 3,791	807 3,774	$\begin{array}{r} 848 \\ 3,763 \end{array}$	3,805	- 799	3501   3,801	$\begin{array}{r} 829 \\ 3,820 \end{array}$	3,903	8,84 3,876	843 $\times 3,927$	r +385 $+3,897$	3,797		
Inorganic Fertilizer Materials																
Production:   Ammonia, synthetic anhydrous $\ddagger$																
Ammorin thous. sh. tons--	15, 193	15,468	1,319	1,316	1,353	1,324	1,254	1,254	1,333	1,361	1, 299	1,323	+1,158	1,114		
Ammonum nitrate, original solution $\ddagger$.-..-- - do	6,881 1,858	6,954 1,983	575 167	611 157	636 160	592 142	558 170	568 192	569   198	561 212	573   152  	613 156	+ 585 +201 +88	214		
Nitric acid ( $100 \%$ HNO3)	7,981	7,440	616	644   15	661	622	611	608	587	626	631	644	${ }^{r} 688$	663		
Nitrogen solutions (100\% N) + -	1.593	1,982	160	181	206	206	156	164	151	164	170	167	${ }^{r} 153$	144		
Phosphoric acid ( $100 \% \mathrm{P}_{2} \mathrm{O}_{5}$ ) $\ddagger . . . . . . . . . . . . .$. do.....	-6,531	6,493	567	,	586	525	531	540				- 539	+ ${ }_{+}^{532}$			
Superphosphate and other phosphatic fertili.................	31,300	31,583	2,672	2,634	2,840	2,573	2,559	2,758		2,603	2,6\%2	2,739	r 2,607	2,446		
perphosphate																
Production--------...---...- thous. sh. tons.-	5,482	5,573	491	494	495	446	444	430	431	471	449	454	${ }^{+} 419$	446		
	433	325	333	${ }^{233}$	${ }^{233}$	298	349	363	340	304	${ }_{5}^{322}$	325		275		
Potash, deliveries ( $\mathrm{K}_{2} \mathrm{O}$ )	4,913 19,612	5,902	$\begin{array}{r}782 \\ 1.820 \\ \hline\end{array}$	$\begin{array}{r}706 \\ \hline \\ \hline\end{array}$	- 581	308 1,540	220 1,785	335 1,798	415 1,639	$\begin{array}{r}\text { 1, } \\ 1,762 \\ \hline 64\end{array}$	$\begin{array}{r}577 \\ 1,678 \\ \hline\end{array}$	$\begin{array}{r}\text { 1, } 692 \\ \hline 19\end{array}$			+ 1,375 1,314	
Exitrogenous materials....................................	19,123	$\begin{array}{r}20,128 \\ 1,044 \\ \hline\end{array}$		1,709	1,518 110			1,798	1,639 92	1,769	1,678 100	1,698	1,896 126	1,785		
	14,953	14, 895	1,437	1,391	1,141	1,109	1,295	1,276	1,115	1,362	1,233	1,221	1,334	1,308	1,030	
	1,353	1,579	${ }^{1} 129$	83	114	146	184	125	192	120	130	122	184	120	100	
Imports:										24			31		7	
Ammonium sulfate............................................	264	${ }_{299} 29$	46	46	22	12	11	12	23	29	23	26	20	25	44	
Potassium chloride.-.............-.-..............- do	4,855	5,899	761	713	547	305	261	295	385	669			610	626	52	
	111						0	0	5	16	3	12	3	10		
$r$ Revised. ${ }^{p}$ Preliminary.   I Annual total; revisions not distributed to the monthly or quarterly data. months ending in month shown. ${ }^{3}$ For month shown. ${ }^{4}$ For 66 carriers. ID Data include visits to Voyageurs National Park effective July 1073.   of Includes data not shown separately.				${ }^{2}$ For six		$\ddagger$ Monthly revisions back to 1971 are available upon request.   oIn the footnote of the 1973 Business Statistics a distinction is made between "gross weight" and "sulfur content." Ilowever, because the difference is so minute, the Bureau of Mines no longer makes this distinction.										


Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

## CHEMICALS AND ALLIED PRODUCTS-Continued

CHEMICALS-Continued   Industrial Gases $\ddagger$																
Production: Acetylene   Carbon dioxide -.............................. mil. cu. ft.Carbon dioxide, hquid, gas, and solid	11, 568	8,370	717	661	659	633	627	650	622	653	663	665	626	631		
thous. sh. tons	1, 1881	\%1,381	108 4058	102 4680	${ }_{5}^{112}$	${ }_{4}^{120}$	126	136	116	131	116	114	$\begin{array}{r} \\ \hline\end{array} 109$	103		
Hytrogen (high and low purity) $\square$	193,540	225,557	18, 444	18,035	19,326	18,601	19,221	19, 484	-5,482	19,953	19, 215		r   5, 719   $\mathbf{2 0 , 0 4 3}$	5, $\begin{array}{r}\text { 5,705 } \\ 18.115\end{array}$		
oxygen (high and low purity) .-..............do.....	353, 190	383,997	32,945	31, 627	32, 203	31, 273	32, 328	31, 667	31, 959	34,092	33,035	33, 329	r32,684	30, 059		
Organic Chemicals $\sigma^{\text {r }}$																
Production:	134.6	32.2	3.0	2.4	2.4	3.0		2		3.0	28	2.6	2.6	5		
	119.1	1110.6	10.7	8.9	9.1	8.7	8.5	9.1	8.4	8.8	8.5	10.2	8.5	8.9	10.7	
Ethyl acetate ( $85 \%$ )	${ }^{1217.2}$	1219.1	23.8	24.5	17.1	18.7	15.0	21.3	18.5	15.6	13.1	15.1	16.4	16.4	15.9	
	15,500.0	16,173.6	519.2	527.7	${ }_{5}^{511.3}$	524.5	506. 9	525.1		543.8	516.7	534.7	515.7	- 510.3	538.3	
Glycerin, refined, all grades	353.0 1897.0	r $11,072.0$	30.8 93.1	29.5 88.7	29.8 79.7	30.0 94.3	29.9 85.6	31.5 94.5	27.6 90.8	29.9 83.9	30.2 95.3	30.3 88.1	30.8 78.6	28.8 +78.5	30.8 83.2	
	1936.0	11,026.9	89.8	81.9	91.6	88.3	80.1	92.2	85.2	81.3	82.3	${ }_{95.6}$	88.5	78.2	88.1	
ALCOHOL $\ddagger$																
Ethyl alcohol and spirits:																
Production-.-.-.-..-.-...........-mil. tax gal.-	621.3	692.0	57.1	58.4	58.1	55.9	54.2	57.4	59.9	62.7	62.2	56.4	49.9			
Used for denaturation...--.-..............-- do	453.0	467.9	41.3	36.7	38.8	37.8	34.3	39.8	38.0	41.8	44.4	36.2	35.4			
Taxable withdrawals.-.-.------...........- do	82.5	72.9	6.2	5.7	6.6	6.4	5.6	6.2	5.8	7.0	6.9	5.6	6. 3			
Stocks, end of period $\qquad$ Denatured alcohol: do	76.9	100.9	87.8	97.6	87.7	89.6	94.3	90.9	81.1	82.2	84.9	100.9	79.7			
Production..-.-.-......-- .-......mil. wine gal.-	245.9	253.4	22.2	19.8	21.6	20.3	18.9	22.1	20.3	22.5	23.8	19.5	22.6			
Consumption (withdrawals) ................-do...-	246.7	253.6	22.5	19.6	21.5	20.2	19.1	22.1	20.3	22.7	23.6	19.7	23.0			
Stocks, end of period......................-do...-	2.1	2.5	2.5	2.7	2.8	2.9	2.8	2.7	2.8	2.5	2.8	2.5	2.8			
Plastics and resin materials																
Production:																
	${ }_{1}^{17,680.1}$	$18,912.3$	182.6 721.0	159.1	${ }^{172.6}$	688.2	149.7	${ }^{147.1}$	686.1	165.7 784.6	143.0 710.4	${ }_{742.5}^{145.2}$	${ }_{719.2}^{14.4}$	${ }^{163.6}$	730.8	
Polypropylene -....-............-.-. do	11,732.3	12,152.5	156.8	182.5	170.0	169.5	183.5	185.7	186.1	188.4	184.6	194.7	176.6	178.0	194.3	
Polystyrene and copolymers....-..........do.	14,602.0	$14,896.3$	443.6	407.3	418.4	420.5	411.6	410.0	395.8	362.8	370.9	388.3	${ }^{399.5}$	$\stackrel{+}{582.1}$	446.6	
Polyvinyl chloride and copolymers........do....	14,288.9	14,423.4	395.0	385.9	388.8	358.7	354.1	349.8	365.9	374.9	367.9	377.2	377.5	- 374.1	402.1	
miscellaneous products																
Explosives (industrial), shipments, quarterly mil. 1b..	2,108.7	2,083.7	476.0			528.5			551.2			527.9				
Paints, varnish, and lacquer, factory shipments: Total Shipments.																
	$3,009.2$ $1,659.3$	$\begin{array}{r} 3,152.0 \\ 1,673.9 \end{array}$	264.0 140.1	270.0 147.4	294.4 161.6	297.5 166.3	279.4 163.6	301.7 171.3	272.5 140.3	274.3 137.6	240.0 114.6	197.8 91.8	$\xrightarrow{r} 243.8$	248.4 121.3		
Industrial finishes..............................do.	1,349.8	1,478.1	123.9	122.6	132.8	131.2	115.8	130.4	132.2	136.7	125.4	106.0	- 128.8	127.1		

## ELECTRIC POWER AND GAS



Unless otherwise stated in footnotes below, data through 1972 and deacriptive notes are as shownin the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	Msy	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

FOOD AND KINDRED PRODUCTS; TOBACCO

Beer: ALCOHOLIC BEVERAGES ${ }^{\text {\% }}$																
	141.34	148.60	13. 14	12.86	13. 83	13.09	13.76	14.17	12.12	12.38	10. 90	10.65	12.19	10.98		
	131.81 12.44	138.45 12.76	14.00 12.01	14.65 14.42	12.87 14.48	12.55 14.20	12.77 14.30	13.68 13.81	${ }_{13}^{11.58}$	11. 54 13.52	12.72	10.08 12.76	10.97 13.17	9.87 13.56		
Listilled enpirits (total):-																
	183.79	183.24	18.44	16. 14	18.31	17.49	9.66	11.77	13.20	16.09	15.72	15.	16.02			
sumption, apparent, for beverage purposes mil. wine gal.	-1393.42	${ }^{1} 404.36$	${ }^{33.83}$	30. 44	33.64	33.65	29.64	32.29	29.48	- 36.09	- 41.06	47.13				
Taxable withdrawals...-....------mil. tax gal.-	200. 41	${ }^{209.98}$	17.98	16.00	19.36	17.39	14.22	18. 04	17.03	${ }^{23.96}$	21. 14	15.90	17.76			
		939.70   107	972.74 8.37	${ }^{971.86}$	${ }_{9}^{970.31}$	${ }^{971.05}$	965. 20	959.75	954. 16	930.87	940.43	939.70				
Whisky:	100.16	107.28	8.37	7.58	9.30	8.17	7.12	7.73	8.20	11.36	13.69	11.20	7.32	7.67	9.93	
Production_.-.-----------------.-mil. tax gal..	116.56	108. 38	11.89	11. 18	11.93	10.78	5. 34	6.61	6. 95	6.77	7.93	7.54	8.63			
Taxable withdrawals.--------............-do	130. 10	133.63	11. 33	10. 23	11. 96	10. 44	8.86	10.62	11. 05	16.68	14. 32	9. 59	10.82			
	924.41	893.00	${ }_{7}{ }_{7} 926$	${ }^{926.58}$	925.34	926. 11	922.29	917.57	${ }^{912.87}$	888.11	895.00	893.00	889.61			
	87.69	92.30	7.21	6.55	7.95	6.98	6.07	6. 68	7.08	9.75	11.98	9. 66	6.27	6.42	8.54	
Rectified spirits and wines, production, total mil. proot gal.-	c2 60	14	4	9.11	${ }^{10.78}$	9.70	3.48	4.	9.47	12.41	10.31	8. 51	10.26			
Whisky   wines and distilling materials:	62.60	53.14	4.40	4.42	5.27	4.62	3.48	4.49	4.43	6.52	4. 66	3.46	4.10			
Effervescent wines:																
	21.	20.50	1.93 1.24	1.91 1.06	1.72   1.54	1.85 1.58	$\begin{array}{r}1.26 \\ .90 \\ \hline\end{array}$	1.73 1.15	1.99   1.56	${ }_{2}^{2.88}$	${ }_{2}^{2.65}$	1.56 2.25 8.4	1.86 1.26 8	1.46		
	20.36 8.08	$\begin{array}{r}18.97 \\ 8.48 \\ \hline\end{array}$	$\xrightarrow[9.07]{1.24}$	1.06	10.00	1.17 9.17	-909	1.15 9.95	1.56 10.29	2.81 9.76	${ }_{9}^{2.63}$	2.25 8.48	1.26   8.89	1.01 9.24		
	1.98	8.02 2.08	. 18	. 14	. 15	. 14	. 14	. 12	. 10	. 20	. 27	. 24	. 13	. 10	. 14	
StIll wines: Production	301.16	437.46	19	10.54	10.01	8.83	8.42	18.80	89.49	46.	86.32	23.	12.98	8.63		
Taxable with	269.58	273.18	26.26	22.87	24.54	22.60	18.19	21.80	20.00	26.	24.64	22.59	24.88	19.72		
Stocks, end	350.88	422.37	294.31	277.34	257. 93	236.95	221.03	214.87	275. 43	386.66	437.96	422.37	406. 51	388.76		
	45.07	53.15	4.30	4.42	5.10	4.93	4. 86	4.26	3. 97	4.35	4.90	4.17	3.93	2.07	3. 66	
Distilling materi	261.10	378.67	4.25	1.10	3.41	4.18	1.32	30.24	136. 45	138.23	35.69	18.78	3.94	4.80		
DAIRY PRODUCTS																
Butter, creamery: Production (lactory).....................mil. $1 \mathrm{l} .$.				93.7	100.3	87.6	69.1	58.4	51.3	62.7						
	+107.5	946.4	117.2	125.1	139.4	150.2	143.8	113.2	94.3	67.5	54.3	46.4	51.5	$\begin{array}{r}\text { r } \\ \hline 50.2\end{array}$	77.4 56.0	
Price, wholesale, 92-score (N.Y.)......... ${ }^{\text {p }}$ per ib..	. 696	2.674		. 624	. 620	619	. 639				. 770	. 744	. 708	. 653	$\begin{aligned} & 56.0 \\ & .698 \end{aligned}$	
Cheese: Production (factory) ,totsl mil								218.3								
Production (factory), total American, whole milk $\qquad$ mil.	r $41,6002.5$	$2,651.2$ $1,665.8$	226.5	151.3	2171.7	261.6 172.4	154.7	137.6	186.5 110.3	194.3 119.6	200.4 120.9	${ }^{228.6}$	240.1 153.1	232.2 153.6	$\begin{aligned} & 270.7 \\ & 181.0 \end{aligned}$	
Stocks, cold storage, end of peri	331.4	357.8	302.4	3.4	330.6	374.2	392.9	395.5	382.3	371.0	356.0	357.8	364.2	r 391.7	435.3	
American, whole milk ----------------do	269.4 179.4	- 2930.3	245.0 14.8	247.3 12.2	$\stackrel{271.1}{16.1}$	307.5 20.2	320.2 31.2	320.6 14.5	310.5 13.0	31.1 28.9	290.0 29.2	290.3 29.9	297.6 37.1	- ${ }^{327.0}$	361.9	
Imports   Price, wholesale, American, single daisies (Chicag0)........................................... $\$$ per 1 lb .	179.4 .714	3232.0 .844	14.8 .765	12.2 .783	16.1 .792	20.2 .802	31.2 .801	14.5 .847	13.0 .898	28.9 .944	29.2 .971	29.9 1.020	37.1 1.350	54.7 1.040	56.6 1.060	
Condensed and evaporated milk:							101.0									
Production, case goods, ${ }^{\text {a }}$ - - .-.......-.mil.	-4,183.6	1,081.3	92.4	97.4	114.2	114.6	101.0	99.4	83.9	80.6	69.8	. 7	81.6	77.7	92.4	
or yearo' $\qquad$ month	74.7	69.2	35.6	66.2	85.4	114.1	133.6	67.1	95.6	89.	75.2	69.2	54.5	57.5	62.2	
Exports:   Condensed (sweeten	14.4								. 1	(5)						
	40.5	41.4	4.8	4.0	3.1	3.0	3.0	4.6	1.9	3.8	2.5	3.4	3.2	3.9	3. 6	
Fluld milk:																
Production on farms.-..........-.....-.-. do	${ }^{1} 119,904$	115,620	10,213	10,321	$\underset{r}{\text { r } 5909}$		${ }_{5}{ }_{5}^{10,029}$	- ${ }_{-}^{9}, 466$	$\begin{array}{r}8,888 \\ +3 \\ \hline\end{array}$	- $\begin{array}{r}8,939 \\ \hline 4086\end{array}$	8,609	9,024	9, 278	8,711	9,933	10,084
Urice, wh	160,931 +46.07					- $\begin{array}{r}\text { - } 5,885 \\ \cdot 6.40\end{array}$		r   7.178   7.17	$\begin{array}{r}\text { r } \\ \mathrm{r} \\ \mathrm{r} .88 \\ \hline 88\end{array}$	r $+8,086$ $r 8.30$	$\begin{array}{r}\text { r } \\ +8.85 \\ \hline 8.65 \\ \hline\end{array}$		4,719 8.89	8,540 8.92	5,299 -8.94	万8.86
Drymmill																
Production: ${ }_{\text {Dry }}$ whole milk	-475.5	79.9	6.9	8.6	9.3	9.3	6.4	5.9	8.5	5.2	4.6	5.5	5.7	6.1	6.5	
Nonfat dry milk (human food).............do.	41,223.5	954.5	95.1	97.3	121.5	119.0	87.1	64.0	51.1	48.7	45.1	60.5	58.4	56.0	75.3	
Stocks, manufacturers', end of per															8.2	
	3.4 37.9	5.4 74.5	3.4 39.0	5.3 57.7	5.1 81.5	102.2	100.7	${ }_{93.3}$	84.7	78.1	63.5		5.9 58.6	53.7	58.8	
Exports:															4.1	
Nonfat dry milk (human fod)	$\begin{array}{r}38.3 \\ 164.1 \\ \hline\end{array}$	49.7 10.4	4.4	4.6	$\stackrel{3}{.2}$	1.5	3.8 .2	. 2	. 7	. 2	4.3 .5	.4	. 5	2.5	,	
Price, manufacturers' average selling, nonfat dry milik (human food) ........................ per ib..	. 331	. 464	. 42	. 44	44	. 44	. 461	. 48	. 500	. 518	. 522	. 531	. 54	. 57	. 623	
Grain and grain products																
Exports (barley, corn, oats rye, wheat)...-mil. bu...	31,789.3	32,896.2	216.8	216.4	243.6	282.7	262.9	310.1	267. 6	237.0	251.5	217.8	202.0	181.7	198.4	
Barley:																
Production (erop estimate)--.--..-.......do	${ }^{6} 423.5$	${ }^{6} 424.5$														
Stocks (domestic), end of period...-.........- do	361.8 246.2	${ }^{+} 321.6$	+ 2258.5			$\begin{array}{r} 7162.5 \\ 788.8 \end{array}$			423.7 286.1			'321.6			122.0	
Off farms.	115.6	+ 1131	-973			${ }^{7} 73.8$			137.6			-113.1			93.4	
Exports, including maliş	60.6	94.6	7.7	7.5	10.4	7.6	9.8	8.8	11.9	5.8	9.3	7.5	8.2	6.0	3.9	
Prices, wholesale (Minneapois): No. 2 , malting																
Corn:																
Production (crop estimate, grain only)..-mill bu.-	${ }^{6} 5,573$	${ }^{6} 5,643$										-5,643				
Stocks (domestle), end of period, total....-do	4,831	- ${ }^{4,469}$	- ${ }_{\text {3,330 }}$			-1,931			7709   7405			r 4,469 3,353			2, 2008	
Off farms	1,689 1,141	3,353 -1.116	$\stackrel{\text { r }}{ }$ 2, 385			1, 564			7304			- 1,16			2,80	
Exports, including meal and four	886.2	1,312.3	104.6	92.0	92.	136.6	124.3	138.0	112.4	92.3	112.5	112.7	108.1	99.7	128.0	
Prices, wholesale: No. 3. yellow (Chicago)............... per bu..-	1.30	2.19	1.57	1.63	2.01	2.43	2.59	2.98	2.39	2.34	2.53	2.67	2.92	3.10	3.01	2.69
Weighted avg., selected markets, all grades	1.26	212	1.56	1.65	2.02	2.30	2.33	2.70	2.40	2.35	2.39	2.58	2.58	3.02	2.95	2.64
Oats:		2.12	1.60													
Production (crop estimate) --.-.-.-.-.-mil. bu	$\bigcirc 692$	${ }^{6} 664$										664				
Stockrs (domestic), end of period, total.....do	776	634	586			${ }_{7}^{7} 412$			805			634			435	
On farms	556	473	377			${ }^{7} 231$			606			473				
	220	161	207			${ }^{7} 181$			199			161			148	
Exports, including oatmeal	25.2	54.3	. 9	2.5	7.0	6.9	5.8	5.7	5.2	9.1	5.6	4.8	. 3	. 8	. 5	
Price, wholesale, No. 2, white (Chicago)																1.33

Revised. ${ }^{\text {2Preliminary. }}$ I Includes Hawaii; no monthly data available for Hawaii. Average for Jan., Feb., Apr.-July, Nov., and Dec. ${ }^{3}{ }^{3}$ Annual total reflects revision
not distributed to the months. request. ${ }^{5}$ Less than 50 thousand pounds. ${ }^{6}$ Crop estimate for the year. ${ }^{7}$ Previous years' crop; new crop not reported until beginning of new crop year (July for barley and
oats; Oct. for corn). ${ }^{8}$ Average for July-Sept., and Dec. ${ }^{8}$ Average for April, May, and Dec. $\sigma^{7}$ Condensed milk included with evaporated to avoid disclosing operations of indi-
vidual firms. \& Excludes pearl barley. of Scattered monthly revisions for 1972 will be shown later.

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown In the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

FOOD AND KINDRED PRODUCTS; TOBACCO—Continued


Unless other wise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

## FOOD AND KINDRED PRODUCTS; TOBACCO-Continued

MEATS-Continued																
Pork (excluding lard):																
Production, inspected slaughter---.----mil. lb--	12,551	11,874	1,074	976	1,079	940	839	924	882	1,094	1,074	992	1,143	940	1,101	
Stociss, cold storage, end of period....-...--do...-	214	286	240	248	259	252	201	179	196	224	277	286	303	-307	342	
	105	169	33	31	29	14	${ }^{6}$	4	${ }^{6}$	14	8	5	5	3	4	
	395	398	29	37	37	35	30	34	30	37	36	30	34	36	40	
Hams, smoked composite	. 626	1.810	. 798	. 764	. 722	. 745	. 794	1. 045	. 839		. 957		. 937		. 909	
Fresh loins, 8-14 lb. average (New York).-do...-	. 645	. 818	. 756	. 737	. 737	. 730	. 883	1. 167	. 866	784	. 765	.818	. 815	859	752	. 720
Poultry: POULTRY AND EGGS																
Slaughter (commercial production) .-...-mil. Ib.- Stocks, cold storage (frozen), end of period, total	10,883	-10,649	-775	- 717	- 878	$r 909$	- 946	+1,025	r 905	-1,105	-990	「847	933	766	806	
mil. lb.-	324	431	205	180	173	228	290	355	460	577	466	431	424	r 392	382	
	208	281	115	91	88	137	199	261	351	451	321	281	268	- 243	225	
Price, in Georgia producing area, live broilers \$ per lb.	' . 134	'. 241	'. 225	r . 250	r .235	「. 235	- . 300	r . 370	+ . 330	r . 215	. 185	. 180	. 200	. 230	210	195
Eggs:   Production on farms. mil. cases $\odot$.	193.2	184.9	16.1	15.7	16.0	15.1	15.3	15.2	14.8	15.4	15.1	15.8	15.7	14.3	16.0	
Stocks, cold storage, end of period:																
	41	34	97	37	39	73	54	62	86	72	67	34	23	- 42	63	
Frozen...-.......-.-.......-.-.	68	43	49	46	44	46	48	49	53	54	49	43	38	36	40	
Price, wholesale, large (delivered; Chicago) \$ per doz..	. 338	c. 592	. 499	. 500	. 486	562	. 650	. 756	. 688	. 632	. 664	. 713	(5)			
MISCELLANEOUS FOOD PRODUCTS																
Cocos (cacao) beans:																
Imports (incl. shells).---.......thous. lg. tons	282.2	248.0	27.7	29.0	29.3	17.0	15.8	9.9	5.4	2.8	11.1	27.6	28.9	21.1	31.7	
Price, wholesale, Accra (New York).... \$ per lb.-	. 322	. 636	. 414	. 525	. 614	. 674	. 870	. 790	758	. 805	. 770	. 651	. 648	. 738	. 830	1.085
Coffee (green) :																
Inventories (roasters', Importers', dealers'), end of period................................thous. bagso'.	3,663	- 4,146	3,920			4,325			4,582			r 4, 146			4,933	
Roastings (green weight)....-................-do-.--	20,075	-19,415	5,203			4,784			4,275			- 5, 153			5, 056	
	20,757	21,799	2,101	2,050	2,494	1,710	1,573	1,731	1,399	1,624	1,624	1,652	2,182	2,022	2, 457	
	6,152	4,606	2, 266	331	2,475	1,424	, 211	1,411	1,348	- 489	, 420	. 282	- 459	- 272	- 364	
Price, wholesale, Santos, No. 4 (N.Y.). $\$$ per Jb--	${ }^{2} .544$	. 676	. 655	650	. 650	. 670	700	. 700	. 725	. 723	. 730	. 720	720	710	750	. 755
Confectionery, manufacturers' sales........mil. \$. .	1,976	2,141	182	154	143	135	114	183	233	227	234	180	211	228		
Fish:   Stocks, cold storage, end of period..........mill. lb.-	415	459	298	263	270	291	324	336	364	411	453	459	451	r 435	p 427	
Bugar (United States):   Dellveries and supply (raw basis): $\delta$ Production and recelpts:																
Production..........-thous. sh. tons.-	4,896	4,934	305	281	212	168	112	77	135	663	1,019	915	563	386		
Entries from off-shore, total $\%$........... do....	6,700	6,556	536	617	592	648	707	408	587	597	, 581	356	663	474	432	
Hawall and Puerto Rico................d. do...-	1,262	1,218	90	120	137	140	103	92	138	127	81	86	38	32	47	
Deliverfes, total\% .-......................... do	11, 528	11,539	1,058	892	988	1,063	1,027	1,203	1,026	942	890	919	959	867		
For domestic consumption--..-.-..-.do.	11, 415	11,482	1,049	886	984	1,058	1,025	1,197	1,022	938	888	918	957	864		
Stocks, raw and ref., end of period.......- do....-	2,710	2,608	2,777	2,831	2, 604	2, 291	2, 040	1,454	979	1,251	1,902	2,608	2,488	+ 2,509	p 2,450	
Exports, raw and refined.-...............sh. tons.-	778	3,946	64	134	137	313	239	286	196	299	439	349	587	3,969	6, 086	
Imports:																
Raw sugar, total 9 $\qquad$ thous. sh. tons.-	5,154	5,200	441	475	506	418	448	586	393	220	550	461	244	500	554	
From the Philippines...--.----.-.-.-.- do-..-	1, 246	${ }^{3} 1,566$	127	139	168	153	262	215	285	24	82	52	0	94	140	
	76	29	3	,	1	( $)$	5	5	1	0	6	(4)	(4)	0	$\left.{ }^{4}\right)$	
Prices (New York):																
	. 091	. 103	. 094	. 097	. 100	. 103	. 102	. 108	. 109	. 112	. 111	$\therefore 12$	. 122	. 155	. 195	. 195
Refined: (incl. N.E. New Jersey) .... \$ per 5 lb..																
	. 123	. 733	. 734	. .138	. 751	. 727	. 732	.779 .137	. 8137	. 821	. 840	. 8128	. 8143	.896 .161	1.024 .200	. 200
	151, 495	173,314	15,399	14,107	17,423	12,425	13,660	12,614	12,527	16,878	16,506	11,997	11,675	14, 974	16,583	
Fats, OILS, and related products																
Baking or frying fats (Incl. shortening):																
	3,532. 5	3,445. 2	317.6	275.3	291.6	262.5	240.4	294.7	261.9	338.2	301.1	290.9	330.0	+ 290.1	304.2	
	127.3	114.6	125. 1	136.8	120.6	137.3	120.4	86.2	95.2	97.6	111.5	114.6	104.7	+118.3	146.1	
8atad or cooking ols:	3,904. 8	3,927.7	367.9	306.2	354.3	352.3	287.1	330.4	288.3	327.8	348.8	329.9	381.0	+ 343.8	372.0	
	3, 85.6	3, 74.1	88.8	92.6	354.3 90.9	112.2	72.3	52.2	63.8	62.2	66.3	74.1	76.5	-79.5	101.2	
Margarine:																
	2,361. 2	2,357.0	198.4	184.3	200.1	168.3	151.7	187.7	185.7	224.1	217.9	214.8	248.1	205.7	210.7	
Stocks, end of period $\oplus$--...-.-.-.-.-.-.-. do...-	69.3	61.2	70.1	66.6	68.2	69.7	57.4	47.1	58.4	60.2	59.3	61.2	55.3	r 63.0	75.1	
Price, wholesale (colored; mfr. to wholesaler or large retaller; dellvered) . $\$$ per lb..	. 313	. 340	. 313	. 317	. 324	. 327	. 327	. 348	. 367	. 373	. 381	. 381	.415	. 429	. 455	. 455
Animal and Ash fats:																
Tallow, edible:																
Production (quantities rendered) ...-.-.mil. 1b.-	544.8	474.7	40.5	32.4	39.5	39.6	34.9	27.1	35.8	50.9	52.7	42.7	44.0	+37.0 +51.5	46.3	
Consumption in end products...-...-...-do...-.	633.6	548.7	61.8	44.9	44.3	41.7	36.2	36.7	35.8	50.4	43.3	45.2	50.9	+51.5 +33	53.7	
	45.3	40.4	31.8	28.3	26.9	22.8	22.2	20.8	18.7	25.7	37.6	40.4	52.8	${ }^{7} 33.7$	36.5	
Tallow and grease (except wool), inedible: Production (quantitles rendered)																
Consumption in end products...............do.......	$4,834.3$ $2,761.6$	4,335.1 $2,540.3$	365.5 234.7	312.3 205.3	375.9 231.1	352.0 206.8	345.5 191.4	$\begin{array}{r}335.3 \\ 199.6 \\ \hline\end{array}$	320.2 197.0	404.3 229.9	390.2 208.9	384.7 197.3	416.5 234.6	+343.5 $\sim 202.3$	398.8 225.6	
	346.1	, 355.6	363.7	336.3	313.4	326.2	370.3	363.5	328.4	389.1	370.1	355.6	407.7	- 407.9	393.4	
${ }^{r}$ Revised. $\quad$ PPreliminary. $\quad 1$ Average for Jan.-	ept., and	Nov.		$\mathrm{e} \text { for } \mathrm{Ap}$		reflect	cumula	ve revi	ons for	rior pert	ods.	¢ Includ	data	ot show	separat	19; see
$J$ une and Aug.-Dec. ${ }^{3}$ Reflects revisions not avain	ailable by	months	4 Le	than		also n	te "§".	$\oplus \mathrm{Pro}$	ucers'	nd ware	house	tocks.	\#Factor	$y$ and w	rehouse	stocks.
sh. tons. ${ }^{5}$ Series discontinued; monthly data for and . 431 respectively.	Jan. an	132.276 Ib	73 should § M	nthly d		- Corr	cted.									


Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	19721973	1973										1974			
	Annual	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

FOOD AND KINDRED PRODUCTS; TOBACCO-Continued

FATS, OILS, AND RELATED PRODUCTS-Continued																
Vegetable oils and related products: Coconut oil:																
Production, refined.....................-mil. 1b.-	593.0	604.1	56.5	54.2	${ }^{62.5}$	54.0	44.2	47.5	46.6	51.4	${ }^{35.2}$	43.2	42.7	30.2	48.9	
Consumption in end products...-......do....	824.9	879.0	79.4	71.0	82.1	78.2	64.7	68.2	73.8	83.3	66.1	62.3	70.1	-60.7	62.7	
	229.1 677.0	105.9 716.9	218.8 70.6	181.0 36.7	183.4 61.3	166.6 43.7	148.4 41.9	140.4 64.1	114.3 29.8	79.0 46.7	102.7 64.8	105.9 74.6	101.4 24.3	+90.0 25.3	108.4 45.0	
Corn oil:																
Production: Crude -.........-.-.-.-....-. ${ }^{\text {do }}$	507.2	527.9	46.3	40.6	46.2	45.9	45.8	44.3	43.8	45.2	42.4	43.1	45.1	${ }^{4} 41.8$	44.6	
Consumption in end products--.-................-	464.5 463.7	529.5 508.7		40.4 40.2	41.0 39.5	44.1	${ }^{44.1}$	41.9	42.6	50.7			51.0		44.4	
Consumption in end products.  	463.7 76.8	508.7 45.0	45.5 66.7	40.2 79.5	39.6 88.4	41.7 91.2	37.4 92.1	${ }^{451.9}$	42.6 56.6	49.8 54.4	44.1 43.4	41.2 45.0	51.5 42.2	38.0 -51.5	39.7 59.0	
Cottonseed oil: Production: Crude	1,355. 2	1,571.7	163.4	172.0	136.3	108.4	92.9	87.8	56.2	120.6	169.8	149.0	176.9	- 150.2	159.9	
Refined	1,133.5	1,330. 2	140.7	128.9	128.0	99.1	76.8	102.7	66.6	89.0	117.2	123.3	134.9	r118.2	126.0	
Consumption in end products..............do	1712.0	${ }^{1} 864.5$	88.4	73.7	88.1	80.5	69.5	66.1	52.3	70.2	75.1	84.0	84.3	-73.4	77.1	
Stocks, crude and ref., end of period T.....do	187.4	158.0	212.7	220.6	232.5	215.8	190.0	181.6	114.4	124.5	161.6	158.0	202.4	177.9	198.6	
	475.4 .159	545.0 3.157	78.7 .185	40.9 .190	63.7 .210	55.3	39.0	23.8	43.2	22.6 .250	24.9 .220	38.2 .300	28.8 .320	79.0 .365	52.3 .345	. 380
Soybean cake and meal:										1,424.9						
Stocks (at oil milis), end of period....... do	180.5	-245.6	167.1	169.4	156.5	158.5	166.0	168.1	141.8	195.7	206.3	1,245.6	${ }^{1,691.5}$	r243.4	$\begin{array}{r} 1,738.8 \\ 327.3 \end{array}$	
Soybean ofl:																
	8,083.7	7,540.2	680.8 575.2	618.3 511.8	655.8 638.9	553.1 514.2	470.1 428.9	510.5 538.8	439.8 502.3	676.8 575.5	764.9 595.8	769.8 591.7	797.7 660.3	751.5      789.5	813.5 609.0	
Consumption in end products	$6,464.0$ $6,748.7$	$6,462.6$ $6,724.9$	685.2 689.0	812.8 521.2	688.9 581.8	514.2 534.3	484	538.8 569.3	502.3 522.7	575.5 616.4	695.8 619.2	598.7 59	660.3 668.6		609.0 631.7	
Stocks, crude and ref. end of period $\uparrow$ - do	${ }^{896.5}$	${ }^{690.5}$	920.5	.1,004.8	900.1	822.7	748.7	620.1	515.5	531.5	599.9	690.5	623.3	-642.4	635.6	
Exports (crude and refined) -.........-.-do	1,148.7	${ }^{874} 3$	132.3	49.3	111.8	90.3	81.5	37.0	45.2	$\begin{array}{r}12.9 \\ \hline\end{array}$	${ }^{31.7}$	108.6	122.2	120.2	98.3	
Price, wholesale (refined; N.Y.).......-\$ per 1b..	. 131	3.206	. 166	. 174	. 189	. 226				309	219	. 302	287	. 374	. 304	278
Lear: TOBACCO																
Production (crop estimate)...............mil. Ib..	11,749	:11,738										-11,738				
Stocks, dealers' and manufacturers', end of period																
Exports, incl. serap and stems........thous. lb	606, 176	2612,980	45,597	-43,573	46,192	45,321	-40,122	40,593	54,580	70, 213	-11,897	56,617	53,510	47,633-	39,115	
Imports, incl. scrap and stems...--.-......do....	240, 509	268,585	20,052	20,904	25,603	19,045	19,069	21, 650	21, 665	26,113	23,216	25, 434	10,532	42, 384	21,805	
Manulactured:																
Consumption (withdrawals): Cigarettes (smail):																
	47, 172	58,225	5, 219	4,821	3, 988	4, 237	4,469	4,913	4, 857	5,005	7,897	3,832	4,833	4,407		
Taxable...-...........................-- do...-	551, ${ }^{\text {5 }} 806$	588, 019	49, 346	44, 693	52,042	50, 483	43,555	56, 806	46, 122	58,502	52, 420	39, 838	53, ${ }_{418}$	48, 910		
	34, 602	- 41,543	3,834	4,226	2,642	2,917	3,133	4,391	3, 544	3, 814	4, 194	2,960	2,889	3,730	3,637	

## LEATHER AND PRODUCTS

HIDES AND SKINS																
Value, total 8....-......................thous. s.-	292,023	376,999	44, 199	30,863	33, 474	25,441	23,731	24,077	25,636	30,958	29,359	27,892	29,025	31, 212		
Calf and kip skins.........--.......thous. skins	2,064								139			151	, 144	169		
	17,589	16, 867	1,802	1,340	1,411	1,266	1,155	1,100	1,229	1,463	1,412	1,391	1,423	1,500		
Imports:																
Value, total 9 $\qquad$ thous. s.	65,200 16.852	83,900 12,833	9,700 1,883	9,400 1,647	8,700 1,219	7,900 804	8,600 1,598	6,900 1,157	4,600	4,400	5,200	3,800	4,600 765	3,900		
	-	12, 1,600	${ }^{1,883}$	1,647	$\begin{array}{r}1,272 \\ \\ \hline 12\end{array}$	${ }_{52} 8$		${ }^{1} 113$	${ }_{5} 5$	${ }_{27}$	84	16	65	57		
Prices, wholesale, f.o.b. shipping point:   Caliskins, packer, heavy, $01 / 1 / 15 \mathrm{lb}$._.... \$ per lb..   Hides, steer, heavy, native, over 63 Jb .   ...-.do...	.563 .296	${ }_{343}^{622}$	.660 .883	.610 .383	.610 .363	.610 .338	.610 .363	.610 .383	.610 .355	. 610	. 610	. 610	. 610		.610 .241	${ }^{.610}$
Production: Leather																
Calf and whole kip-...---.....- thous. sktns.-	1,603	17, 262	${ }_{1} 99$	77	1117	124	81	${ }_{1} 122$	103	-105	122	$\begin{array}{r} 110 \\ \text { 1. } 374 \end{array}$	$\begin{array}{r} 129 \\ 1.445 \end{array}$	- 136		
Cattle hide end side kip-.- thous. hides and kips.--	20,084 3 3	17,687	1,637	1,515	1,627	1, 1882	1,141	1,463	1,413	1,546	1,437	$1,374$	$1,445$	1,401		
	$\begin{array}{r}\text { 3, } \\ \text { 20, } \\ \hline 192\end{array}$	14, 534	1,422	1, 274	1,4278 1,418	1,380	${ }_{968}^{141}$	1,087	991	1,134	1,104	1,076	-1,115	1,122		
Exports:   Upper and lining leather $\qquad$ thous. sq. ft.-	2117, 656	2 120,104	9,254	11,311	12,618	10,873	8,154	10,353	9,919	10,184	6,459	9,563	10,014	10, 274		
Prices, wholesale, f.o.b. tannery:   Sole, bends, Hght Index, $1967=100$.	4167.6	${ }^{\circ} 184.5$	194.2	194.2	194.2	166.8	166.8		187.0	179.8	179.8	179.8	179.8	179.2	185. 4	165.
Upper, chrome calf, B and C grades $\begin{gathered}\text { inder, } 1967=100 . .\end{gathered}$	106.7	${ }^{7} 119.5$	117.9	124.2												
Leather manufactures																
Shoes and slippers:   Production, total thous. pairs.-	526,500	488,326	46, 495	41,678	41,669	41,513	31, 939	43,971	39,187	45,206	38,573	33,966	38, 380	39,869	42,015	
Shoes, sandals, and play shoes, except athletic																
thous. pairs--	417,604	377,719	36,761	32,584	31, 395	32, 301	25,536	33, 079	29,252	33,590	28,345	27,310	31, 116	32, 127	33,447	
	98,272 8,726	98,245 10,129	8,701	8,059 860	9,094	8,169 842 8	5,745 569	${ }^{9} 9$	8,886	10,411	${ }^{9,107}$					
	2,053	2,233	149	175	237	201	89	244	182	278	207	163	152	148	151	
	' 2,253	3, 599	254	264	284	335	312	357	320	406	370	312	246	321		
Prices, wholesale, f.o.b. factory:   Men's and boys' oxfords, dress, elk or side																
upper, Goodyear welt .-...index, $1967=100$.	128.6	140.7	138.9	140.1	140.1	140.1	140.1	140.1	140.1	142.6	146.1	146.1	147.4	147.4	152.1	153.9
Women's oxfords, elk side upper, Goodyear welt			131.2													
Women's pumps, $\mathrm{low-medium} \mathrm{quality} \mathrm{...do...}$.	${ }^{12727.0}$	${ }^{8} 122.1$		130.4	121.1	121.1	121.1	121.1	121.1	121.1	121.1	121.1	123.8	123.8	123.8	126.7

 July and Oct.-Dec. 5 Jan.-Aug. average.

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

## LUMBER AND PRODUCTS

LUMBER-ALL TYPES\%																
National Forest Products Association:																
	1 ${ }^{138,867} 7$	$\begin{array}{r}138,275 \\ 6,803 \\ \hline 3,43\end{array}$	3,456	3,272 510	3,290 491	3,207 549	3,038 580	3,456 631	3,250 631	3,453   682	3,057	2,710	2,741	2,945		
	31,622	31,473	2,890	2,763	2,799	2,658	2,458	2,825	2,618	2,771	2,486	2,199	2,272	2,427		
	${ }^{1} 40,070$	${ }^{1} 38,215$	3,474	3,386 620	3,351	3, 264	3, 534	3, 482	3,096 578	3,312	3,008	2,623	2,647	2,850		
	32, 339	31,112	2,832	2,766	2,788	2,720	2,511	2,820	2,518	2,683	2,415	2,088	2,151	2, 321		
Stocks (gross), mill, end of period, total...do	4,086	4,235	3,802	3,896	3,835	3,765	3,758	3,813	3,967	4,108	4, 157	4,235	4,499	4,596		
		+301	3, 224	- 222	${ }_{3,686} 15$	-1513	-198	3, 248	$\stackrel{301}{3,66}$	${ }_{3} 355$	-334	301	443	435		
Exports, total sawmill products	1,390	1,959	176	194	201	174	152	181	204	192	141	129	163			
Imports, total sawmill products...-.-.-.-....-.-. ${ }^{\text {do }}$	9,428	9,537	883	837	931	899	823	623	1,453	764	780	640	634	547		
SOFTWOODS																
Douglas fr:																
	9,242 617	8,978 679	864 752	781	${ }_{643}^{692}$	813 636	803 726	736 622	715 670	682 632	745 616	666 679	${ }_{701}^{631}$	${ }_{692}^{626}$		
	8,983	9,116	877	814	769	792	682	814	722	769	760	638	644	691		
	9,191	8,916	8887	804 893	780 882		713 823	840		720	${ }_{900}^{761}$	${ }_{603}^{603}$				
Stocks (gross), mill, end of period..........-do	735	935	883	893	882	854	823	797	852	901	900	935	970	1,026		
	405 111	637 176	53 6	76 27	79 39	53 13	47 10	56 16	68 24	63 13	37   11   1	42	60 19	46 12		
Boards, planks, scantlings, etc.-...........d.do...-	294	462	47	49	40	40	37	40	44	50	26	28		34		
Prices, wholes																
er M ${ }^{\text {b }}$ d. ft .-	144.27	181.86	193.96	197.22	209.91	192.13	180. 93	180.19	190.27	176.11	170.43	170. 26	159.25	163.06	181.51	186.18
Southern plne:																
Orders, new-.......-.---.-..--mill bd. ft.-	18,539	${ }^{1} 7,697$	763	${ }_{6}^{644}$	726	${ }_{565}$	609	690	564	576	617	472	571	627		
Orders, unflled, end of period.-----.-.-.--do..--			561	525	556	546	528	550	497	412	441	405	423	507		
Production.....-.............................- ${ }^{\text {do }}$	18,337	${ }_{1}^{17} 7847$	${ }_{731} 7$	643	705	649	628	689	644	684	${ }_{6}^{618}$	557	599	573		
Shipments.---.-.-.-.........-...............do-	18,525	${ }^{1} 7,727$	738	680	695	666	627	668	617	661	588	508	553	543		
Stocks (gross), mill and concentration yards, end of perlod....-...................................... bd. ft.	1,028	1,148	1,041	1,004	1,014	997	998	1,019	1,046	1,069	1,099	1,148	1,194	1,224		
Exports, total sawmill products...-.....M bd. ft.-	64, 456	94, 346	6,508	10,020	8,803	9,580	7,946	9,696	11,037	8,826	6,365	5,973	7,077	5,675		
Prices, wholesale, (Indexes):   Boards, No. 2 and better, $1^{\prime \prime} \times 6^{\prime \prime}$, R. L.																
$1967=100 . .$	154.7	198.2	176.5	188.4	195.0	204.9	201.4	214.1	217.6	217.7	218.8	215.8	210.6	207.4	207.7	212.8
Fooring, $C$ and better, F. G., ${ }^{\text {x }} \times 1967=100$	140.8	186.2	162.7	169.9	178.6	200.1	185.9	192.4	211.0	211.0	214.3	214.3	215.4	215.4	220.8	231.8
Western pine:   Orders, new.-............................................. bd.   Orders, unfilled, end of period $\qquad$ do	$\begin{aligned} & 10,756 \\ & 555 \end{aligned}$	$\begin{aligned} & 10,452 \\ & 556 \end{aligned}$	950 629	$\begin{aligned} & 877 \\ & 602 \end{aligned}$	${ }_{552}^{901}$	$\begin{aligned} & 885 \\ & 551 \end{aligned}$	$\begin{gathered} 949 \\ 631 \end{gathered}$	$\begin{gathered} 957 \\ 627 \end{gathered}$	$\begin{aligned} & 872 \\ & 592 \end{aligned}$	$\begin{aligned} & 918 \\ & 384 \end{aligned}$	$\begin{aligned} & 748 \\ & 568 \end{aligned}$	698 556	748	88		
	10,395	10,498	933	934	971	882	857	970	924	937	798	729	651	755		
	10,563	10,451	937	904	951	886	869	961	907	926	764	710	647	744		
Stocks (gross), mill, end of period.......... do	1,214	1,261	1,137	1,167	1,187	1,183	1,171	1,180	1,197	1,208	1,242	1,261	1,265	1,276		
Price, wholesale, Ponderosa, boards, No. 3, $1^{\prime \prime} \times$ $12^{\prime \prime}$, R. L. ( $6^{\prime}$ and over) ........\$ per M bd. ft.	130.91	179.62	183.12	212.59	243.95	228.13	197.73	160.65	155.33	154.98	155.00	168. 99	193.90	190.23	204.37	234.99
HARDWOOD FLOORING																
Oak: ${ }_{\text {Orders, }}$ new																
Orders, new   Orders, unfilied, end of period $\qquad$	$\begin{array}{r} 268.2 \\ 11.6 \end{array}$	178.3 5.1	16.3 7.3	13.3 5.0	15.1 4.0	$\begin{array}{r} 16.2 \\ 6.0 \end{array}$	13.2 6.3	17.4 5.5	$\begin{array}{r} 14.9 \\ 5.5 \end{array}$	15.7 4.8	$\begin{array}{r}13.7 \\ 5.5 \\ \hline\end{array}$	9.3 5.1	14.4 5.1	8.8 3.9	10.5 3.4	
		188.0	16.3	15.1					15.4	18.5	15.4	13.6				
	261.1	184.6	17.1	15.9	16.6	15.3	11.6	18.1	15.0	16.4	13.4	10.8	14.3	9.5	11.2	
Stocks (gross), mill, end of period.......-.-do...-	6.6	8.2	4.6	3.8	3.7	3.2	3.6	4.4	4.5	6.1	7.7	8.2	10.1	12.6	15.0	

metals and manufactures

Erports: IRON AND STEEL																
Steel mill products....----.-.-.-. thous. sh. tons.-	2,873	14,052	323	340	372	323	343	324	281	374	388	473	455	448	503	
	7,383	11, 256	1,090	751	1,202	1,057	1,130	1,234	1,025	757	600	675	859	884	703	
	15	15	1	2		2			3	1	1	2	3	2	13	
Imports:																
Steel mill products. ........................... do	17,681	15,150	1,170	1,051	1,604	1,229	1,380	1,316	1,075	1,235	1,313	1,092	827	830	892	
	${ }^{17} 373$	- 391	1,170	, 33	${ }^{1,604}$	1, 51	1,39	1,36	1, 20	1, 33	- 21	, 20	24	20	22	
	653	459	11	59	71	53	45	36	41	24	55	31	13	10	15	
Iron and Steel Scrap																
Production.------.-...-..........-thous. sh. tons.-	151,184	57,301	5,071	5,013	5,099	4,810	4,539	4,725	4,570	4,948	4,732	4,473	p 4, 597			
	-1 41,670	43,121	3,899	3,693	3,856	3,668	3,356	3,433	3,357	3,909	3,783	3,515	${ }^{p} 3,346$			
	-193,371	101, 462	8,915	8,846	9,039	8,495	7,832	8, 107	8,288	8,938	8,542	8,219	${ }^{p} 8,244$			
Stocks, end of period..................-.......-. ${ }^{\text {do...- }}$	8,169	6,990	7,973	7,843	7,792	7,789	7,878	7,912	7,460	7,321	7,266	6,990	p 6,500			
Prices, steel scrap, No. 1 heavy melting:																
Composite ( 5 markets)........-...... \$ per lg. ton..	34.65	55.95	46.37	44. 57	49.65	52.92	52.95	52.95	56.28	65.89	77. 53	80.48	79.60	102.20	115. 40	127.63
	38.00	57.40	48.00	44.50	52.50	55.50	55.50	56.00	58.50	64.50	80.50	77.00	82, 00	101.50	117.50	117.50
- Revised. ${ }^{\circ}$ Preliminary. ${ }^{1}$ Annual data;   o Totals include data for types of lumber not s	monthly hown sep	revisions rately.	are no $0^{7}$ Thr	availa   gh Ma		$\begin{aligned} & 19710 \\ & \text { for flo } \end{aligned}$	a are ing, $C$	floorin ad bett	$\begin{aligned} & \text { B and } \\ & \text { F.G., } \end{aligned}$	$\begin{aligned} & \text { better, } \\ & \text { " } \times 4 \text { ", } \end{aligned}$	$\text { G., } 1^{\prime \prime}$	$4^{\prime \prime}, \mathrm{S}$	., begin	$\text { ning } A$	il 1971,	they are


Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

METALS AND MANUFACTURES-Continued

IRON AND STEEL-Continued Ore																
Iron ore (operations in all U.S. districts): Mine production............thous.					9,046	8,940		8,911	8,496	8,197	6,321	5,977				
	175,434   78,287	$+87,225$ 90,665	$\stackrel{3}{2,931}$	6,635	10, 9 , 114	10,404	-8,606	10,868	10,342	9,631	6,876	6,448	2,979	2,445		
Imports...-..-..........-.-.-...................- do...--	35, 761	43,331	1,529	2,863	3,977	4,577	4,353	5,071	4,233	5,577	4,705	3,080	3,199	1,780	2,010	
U.S. and foreign ores and ore agglomerates:																
Receipts at iron and steel plants --......-do..	112,303	132,905	4,334	9,058	14,419	14,363	15,657	14,940	14,194	14, 240	12, 151	10,968	5,096	4,427	5,151	
	119,937 2,095	137,073 2,747	11,542	11,404	11,771 164	11,408	11,636	11,645	11,077 400	11,672 310	11, 219	11,848	11,676 .94	10,479 36	11,267 38	-.......
Stocks, total, end of period................do.	167,352	59, 461	55, 267	52,347	53,499	55, 301	57,006	58,415	60, 291	61,609	60,705	59,461	54, 889	50, 915		
	1 14,679	10,418	24,174	23,537	22,096	20,642	18, 196	16, 125	14,383	12,949	11,394	10,418	12,727	15,368		
	50, 061	45,990	29,853	27, 582	30, 230	33, 204	37, 231	40,524	43, 641	46, 209	46, 869	45,990	$\xrightarrow{39,241}$	33, 189	27,073	
Manganese (mn. content), general Imports.	949	916	52	101	99	58	85	72	51	127	41	51	56	41	81	
Pig Iron and Iron Products																
Pig Iron:   Production (excluding production of ferroalloys) thous. sh. tons.	88,952	100, 834	8,627	8,490	8,809	8,468	8,516	8,282	8,087	8,588	8,402	8,609	8, 563	7,804	8,386	
Consumption-...........................-- do...-	189,140	100, 300	8,762	8,526	8,931	8, 871	8,506	8,290	7,941	${ }_{8}^{8,466}$	8,114	8, 184	9,120			
Stocks, end of period ...........................d.d.	1,660	1,203	1,450	1,415	1,358	1,295	1,372	1,335	1,285	1,241	1,207	1,203	1,126			
Price, basic furnace T............ \$ per sh. ton..	${ }^{3} 71.38$	75.24	75.89	75.89	75.89	75.89	75.89	75.89	75.89	75.89	75.89	75.89	75.89	77.44	82.81	96.00
Castings, gray iron:   Orders, unfiled, for sale, end of period   thous. sh. tons	1,140	1,666	1,297	1,339	1,383	1,447	1,493	1,521	1,547	1,559	1,592	1,666	+1,748	1,740		
Shipments, total...........................-do. do.	-15,328	17,099	1, 1,542	1,437	1,550	1,500	1,312	1,360	1,367	1,570	1,446	1,228	-1, 1,78	1,237		
For sale   Castings, malleable iron:   Orders, unfiled, for sale, end of period	-8,301	9, 148	781	746	815	815	727	800	752	876	754	683	$\stackrel{r}{ } 751$	704		
thous. sh.tons	96	147	115	116	118	124	131	138	140	139	130	147	142	144		
	961 579	1,031	95 57	88 51	$\begin{aligned} & 96 \\ & 57 \end{aligned}$	$\begin{aligned} & 88 \\ & 52 \end{aligned}$	$\begin{aligned} & 77 \\ & 49 \end{aligned}$	82 50	80 48	95 57	84 50	71 42	r $\times 54$ $r$	73 45	-.........	
Steel, Raw and Semifinished																
Steel (raw):   Production.   thous. sh. tons.	133, 241	150,422	13,088	12,789	13, 174	12,488	${ }_{1}^{12,290}$	${ }_{1}^{12,181}$	12,229 117	${ }_{1}^{12,876}$	12,587	12,722	${ }_{117}^{12,726}$	11,598 18.8	$\stackrel{12,758}{1181}$	${ }_{p}^{p 12,440}$
Index Steel castIngs: daily average $1967=100$.. Orders, unfiled for sole end of period	104.5	118.2	121.1	122.3	121.9	119.4	113.8	112.7	117.0	119.2	120.4	117.7	117.8	118.8	118.1	$p_{p} 119.0$
(hous. sh. tons.	318	929	407	444	471	535	602	689	729	796	899	929	- 996	1,059		
Shipments, total	¢ $\begin{array}{r}\text { ¢ } 1,5986 \\ \hline 1,308\end{array}$	1, 1,896 1,569	168 140	157 131	162 136	164 140	122	150	147 124	174	180 139	174	174	168		
Steel Mill Products																
Steel products, net shipments:   Total (all grades). $\qquad$ thous. sh. tons.-	191,805	1111, 430	9,861	9,163	10,023	9,657	8,703	9,422	8,805	9,892	9,445	8,670	9,779	8,714	10,303	
By product:																
	4, 917   1,656	$\begin{array}{r}15,749 \\ 7,081 \\ \hline 1\end{array}$	529   562	460 $60 \pm$	540 672	477 619	424   598	479 622	493   584	475 671	510 618	507	504   630	470 552	${ }_{703}$	
Plates.....................................do	7,553	9,678	821	785	847	806	786	863	801	879	851	867	908	841	1,034	
	1,601	1,689	167	146	156	143	125	119	126	145	148	130	153	153	168	
Bars and tool steel, total .................do	'15,518	118,176	1,667	1,522	1,660	1,578	1,419	1, 331	1,470	1,649	1,545	1,412	1,592	1,454	1,703	
Bars: Hot rolled (incl. light shapes)....do		${ }^{1} 10,763$	1,033	937	977	952	829	890	864	939	902	806	945			
Relnforcing--..--........---.-. - do	4,454	15,135	${ }^{1} 10434$	396	481	434	418	445	422	496	447	444	447	428	483	
	1,675	12, 161	190	179	192	184	164	187	175	205	187	153	189	174	211	
Pipe and tubing...-.-.-.................. do	7,609	9,133	776	737	818	785	708	791	729	864	822	795	802	770	908	
Wire and wire products	2,952 6,135	3,245 7,316	318 486	483	292 586	${ }_{629}^{286}$	290	273 628	266 565	292 609	${ }^{252}$	209			${ }_{636}^{297}$	
Sheets and strip (nncl. electrical), total... do	${ }^{1} 39,862$	49,370	4, 535	4,134	4,453	4,334	3,812	4,128	3,871	4,307	4,120	3,625	4,182	3, 550	4,343	
Sheets: Hot rolled.....................-do	14, 036	16,886	1,568	1, 1,188	1,449	1,439	1,320	1,394	1,290	1,489	1,440	1,300	1,503	1,278	1,525	
Cold rolled..............-...-. do	16, 123	20,377	1,883	1,744	1,908	1,801	1,521	1,679	1,606	1,730	1,683	1,459	1,697	1,416	1,764	
By market (quarterly shipments): ${ }_{\text {Service centers and distributors }}$																
Service centers and distributors--.-...-.-- do...-	[18,598 ${ }_{\mathbf{9}, 299}$	22, 7105	8,322 2,56			5,842 2,980			5,580 2,917			- ${ }_{2}^{5,961}$	${ }_{2}^{2} 1,987$	21,857 2927	2   2   2   1,144   1	
Contractors', products........................do	5,055	6,459	1,459			1,721			1,651			1,628	${ }_{2}{ }^{1} 591$	2497	${ }_{2} 1631$	
	18,217	23, 217	6,129			6,153			5,611			5,361	2 1, 742	${ }^{2} 1,366$	${ }^{2} 1,581$	
Rail transportation.-...-.-...-.........- do..		3, 228	771			842			775			841	${ }^{2} 291$	276	${ }^{2} 334$	
Machinery, industrial equip., tools.......do.....	5,396	6,351	1,607			1,628			1,507			1,609	${ }^{2} 5878$	${ }^{2} 528$	${ }^{2} 641$	
Containers, packaging, ship materials...do...	-6,616	7,811 130,254	$\xrightarrow{2,186}$			1,870			7,087			7,802	${ }_{2}^{2} 28.764$	2 2 2,537	2 2 2,968	
Steel mill products, inventories, end of period:																
Consumers' (manufacturers only) .-mil. sh. tons.-	8.8	11.2	8.9	9.0	9.5	9.7	9.9	10.0	10.7	10.7	11.0	11.2	${ }_{11}^{11.7}$	$\underset{r}{11.9}$		
	68.0 69.2	83.6 81.2	7.1 7.2	6.7 6.6	7.5 7.0	7.2	6.5 6.3	7.0 6.9	7.1 6.4	7.4 7.4	7.2 6.9	6.2 6.0	7.3 6.8	r 6.4 6.2	$p 7.0$ $p 7.0$	
Service centers (warehouses) .-....-..........-do...	8.6	8.7	8.0	8.5	8.4	8.0	8.4	8.6	8.2	7.7	8.1	8.7	r 8.5	8.3		
Producing mills:																
In process (ingots, semifinished, etc.).-.- do .	11.3	9.7	10.5	10.2	10.0	10.0	10.0	10.0	9.9	9.5	9.3	9.7	9.4 7.2	9.2	${ }^{p} 9.6$	
Finished (sheets, plates, bars, pipe, etc.). do...	10.2	7.4	9.2	9.0	9.0	8.0	7.9	7.6	7.5	7.3	7.0	7.4	7.2	7.0	${ }^{p} 6.2$	

${ }^{\text {r Revised. }}{ }_{2}$ Preliminary. ${ }^{1}$ Annual data; monthly or quarterly revisions are not

[^18]| Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS | 1972 | 1973 | 1973 |  |  |  |  |  |  |  |  |  | 1974 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Annual |  | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |

METALS AND MANUFACTURES—Continued

NONFERROUS METALS AND PRODUCTS luminum:																
Production, primary (dom. and forelgn ores) thous. sh. tons.	14,122	4,530 1,060	389 99	371 90	380 99	373	382	374	372	${ }_{92} 88$	379	399	403	376		
mports (general):																
Metal and alloys, crude $\triangle$................do	646.4	507.6	50.9	43.1	44.7	50.7	34.6	36.0	33.0	46.0	35.1	36.5	30.5	34.7	48.6	
	80.9	57.3	6.4	4.6	5.6	4.8	4.3	4.9	3.8	3.6	3.5	3.0	3.6	3.7	3.4	
Exports: Metal and alloys, crude....................do....	108.3	229.6	10.6	12.4	11.1	10.3	14.1	16.4	29.8	31.2	47.0	22.8	22.0	20.9	30.4	
Plates, sheets, bars, etc.-...................do....	154.0	215.1	18.5	19.4	17.0	17.3	15.1	15.7	18.7	20.5	20.8	20.4	20.9	16.0	20.0	
Price, primary ingot, $99.5 \%$	. 2645	. 2533	. 2500	2500	. 2500	. 2500	. 2500	. 2500	. 2500	. 2540	. 2625	. 2725	. 2900	. 2900	. 2924	. 3150
Aluminum products:																
Ingot and mill prod. (net ship.) .........mil.	11,877.6	p14,438	1,257.3	1,182.4	-1,262.9	1,242.7	1,117.6	1,203.4	1,185.4	1,336.5	1,209.6	-1,194.1	r1,240.6	1,192.6		
Mill products, total .-.....................do	9,246.2	D10, 302	951.3	910.2	973.4	954. 9	\$86.3	918.1	880.1	1,969.3	907.2	r905.6	r986.7	1,92.6		
Sheet and plate..	$4,767.9$ 18858	$\underset{\substack{p 5,741 \\ 2,036}}{ }$	502.0 191.	479.1 172.7	518.7 180.0	498.2	467.5 438	480.8	+462.6	506.8	482.9	- 489.0	537.3   5167	484.4		
Castings.	1,858.6	2,026	191.9	172.7	180.0	173.2	138.3	162.6	155.3	181.8	164.6	140.7	+167.9	152.2		
Inventories, total (ingot, mill prod., and scrap), end of period. $\qquad$	4,861	+4,366	4, 696	4,622	4,561	4,547	4,574	4,544	4,504	4,423	4,375	r 4, 366	「4, 276	4,290		
Copper:																
Production: ${ }^{\text {Mine, recoverable copper......thous. sh. tons.. }}$	1,664.8	1,726.9	151.9	150.4	152.1	147.5	130.5	142.6	140.9	154.3	141.8	141.9	134.6	131.0		
Refinery, primary .-......................-do...-	1,873.2	1,833.2	167.7	158.1	168.7	163.4	145.0	137.2	135.1	154.1	150.8	143.7	147.1	138.3		
	1,680.4	1,663.0	146.7	143.1	153.7	147.3	132.8	127.5	121.3	141.4	141.6	129.8	132.4	121.4		
From forelgn ores	192.8 383.0	170.2 444.0	21.0 $r 103$	15.0	15.0	${ }_{-113}^{16.1}$	12.2	9.8	${ }_{r}^{13.8}$	12.7	9.2	13.9 121.0	14.7	16.9		
Imports (g																
Refined, unrefined, scrap (copper cont.)..do	423.6	425.6	44.6	27.9	31.5	21.5	36.4	21.1	25.5	${ }^{42} 3$	57.4	36.7	42.7	47.1	65.9	
	189.8	199.9	21.5	12.7	16.2	10.4	12.2	8.0	10.2	17.1	30.3	21.7	23.8	25.5	33.8	
Exports: Refined and scrap $\triangle \ldots . . . . . . . . . . . . . . . . . . . ~ d o ~$	267.7	342.0	23.7	29.4	24.0	31.2		36.3	28.5	26.0	24.7	21.7	20.4	28.4		
	182.7	189.4	12.8	17.7	13.5	18.3	19.7	18.4	16.2	15.9	13.6	11.9	8.2	13.1	9.5	
Consumption, refined (by mills, etc.) qtrly..d	- 2,230	2,396	$\bigcirc 638$			$\checkmark 634$			${ }^{+} 516$			608				
Stocks, refined, end of period...............d. do. Fabricators	114	157 108	229			180 98			153			${ }_{108}^{157}$				
Price, electrolytic (wirebars), dom., delivered \$ per lb.	. 5124	. 5949	. 5981	. 6008	. 6008	. 6008	. 6008	. 6008	. 6008	. 6008	. 6016	. 6637	. 6875	6858	6858	. 6858
Copper-base mill and foundry products, shipments (quarterly total):																
Brass mill products .-................mil. lb .-												${ }_{731}^{833}$				
Copper wire mill products (copper cont.)...do....	2,647	3,004	+758 +200			810 195			${ }^{\text {'705 }} 178$			${ }_{202}^{731}$				
Lead:																
Production: Mine, recoverable lead. .......thous. sh. tons_-																
Mine, recoverable lead .-......thous. sh. tons Recovered from scrap (lead cont.) .-....... do	618.9 1616.6	600.3 636.9	44.8 56.4	39.3 56.8	56.1 59.1	43.4 56.3	51.4 45.7	55.7 52.9	51.3 47.3	53.6 51.4	$\begin{aligned} & 48.7 \\ & 58.5 \end{aligned}$	$\begin{aligned} & 53.1 \\ & 48.2 \end{aligned}$	$\begin{aligned} & 57.6 \\ & 50.3 \end{aligned}$	53.2   54.8		
Imports (general), ore (lead cont.), metal...do	344.6	280.5	17.7	16.5	22.1	21.3	36.5	28.4	13.3	1.9	20.5	19.6	19.4		23.1	
Consumption, total-...-.......-...........- ${ }^{\text {do }}$	1,485. 3	1,483.7	134.4	121.7	123.7	124.0	99.7	123.1	122.2	136.3	128.4	117.3	130.9	121.7	23.1	
Stocks, end of period:																
Producers', ore, base bullion, and in process (lead content), ABMS......thous. sh. tons	168.0	157.5	141.7	127.4	126.3	134.3	154.2	144.7	147.2	154.3	156.7	157.5	160.9			
Refiners' (primary), refined and antimonial																
	64.5 1118.5	${ }_{117.5}^{27.1}$	$\begin{array}{r} 39.7 \\ 115.6 \end{array}$	32.9 117.1	$\begin{array}{r} 34.7 \\ 118.7 \end{array}$	$\begin{array}{r} 33.1 \\ 120.3 \end{array}$	$\begin{array}{r} 21.8 \\ 131.0 \end{array}$	25.2 128.7	$\begin{array}{r} 27.7 \\ 119.3 \end{array}$	$\begin{array}{r} 23.5 \\ 108.4 \end{array}$	$\begin{array}{r} 21.8 \\ 121.1 \end{array}$	$\begin{array}{r} 27.1 \\ 117.5 \end{array}$	$\begin{array}{r} 21.7 \\ 113.4 \end{array}$	$\begin{array}{r} 21.8 \\ 120.2 \end{array}$		
Scrap (lead-base, purchased), all smeilers																
(gross weight) - .-. - .-. thous. sh. tons	166.3 +1503	78.6 .1688	${ }^{63.0}$	64.9	68.8	64.3 .65	64.2	${ }^{64.2}{ }^{2}$	70.7	71.5	72.2	78.6		86.2		
Price, common grade, delivered........-\$ per lb.-	. 1503	. 1628	. 1600	. 1602	. 1648	. 1650	. 1650	. 1650	. 1650	.1650	. 1650	. 1772	. 1898	. 1900	. 1953	. 2149
Tin:																
Imports (for consumption):   Ore (tin content) $\qquad$ Ig. tons..	4, 216	4,480	452		564	489	0	0	190	496	41					
Metal, unwrought, unalloyed.-.-----.-.-.do-.--	52, 451	45,845	5,221	3,547	5,474	4,083	4,858	3,622	3,193	2,615	1,430	3,732	2,637	1,797	3,308	
Recovery from scrap, total (tIn cont.) ....... do As metal....	120,180 12 12 199	+19,800	1,955	1,755	1,725	1,705 160	1,290	1,900	1,285	1,795	1, 575	1,410	1,600			
	${ }^{1} 69,033$	73,500	6,370	6,310	6,465	6,230	5,210	5,630	5,820	6,255	5,950	5,785	6,650	5,900		
Primary	${ }^{1} 53,506$	57,770	5,025	5,040	5,185	4,850	4,255	4,460	4,580	5,145	4,535	4,485	5,025	4,625		
Exports, incl. reexports (metal)............. do	1,466	3, 741	130	95	51	158	291	249	113	306	512	1,399		c 584	1,346	
Stocks, pig (industrial), end of period....--do	11,766	9,620	9,610	9,270	8,155	9,030	8,895	10,795	9,645	8,860	9,345	9,620	8,935	8,690		
Price, plg, Straits (N.Y.), prompt......-\$ per ib--	1.7747	2.2748	2. 0509	2.0244	2.0911	2. 1227	2.3755	2.4345	2.4023	2.4591	2. 6244	3.0099	2.1814	3. 5154	3. 8943	4.4077
Mine prod, recovorable zinc...- thous. sh. tons--	478.3	475.9	39.3	36.9	40.1	36.8	40.0	40.9	42.8	42.8	40.8	38.2	42.6	- 39.3	41.	
	${ }_{5}^{254.9}$	199.1	20.4	18.0	20.6	19.0	12.1	16.2	9.8	15.7		13.7	15.4			
Metal (slab, blocks)...--.-...-.................d. ${ }^{\text {do }}$	522.6	588.7	52.1	38.8	40.7	50.3	53.4	49.8	40.7	51.5	48.2	47.3	56.2	49.4	52.1	
Consumption (recoverable zinc content):																
	1118.3	158.7	13.9	15.1	14.9	12.5	11.5	11.7	12.7	12.7	14.3	13.2	12.1	12.3		
	${ }^{1} 292.1$	290.1	22.8	22.3	25.6	24.8	23.0	24.6	25.2	26.4	26.0	25.4	25.8	25.2		
Slab zinc:																
Production (primary smelter), from domestic and forelgn ores				54.1	53.2	47.3		48.6	50.7	51.1	48.6	49.6	44.7	43.1		
Secondary (redistilled) production.-...-do.--	173.7	73.0	6.4	6.4	6.4	5.3	5.3	6.8	6.2	5.9	5.9	5.7	5.7	5.7		
Consumption, fabricators.......---.-.-.- do	11,418.3	1,488.9	134.7	128.3	134.0	122.3	111.4	124.1	121.9	135.2	118.0	105.5	118.0	109.3		
	4.3	14.6	. 3	. 4	. 4	. 6	1.0	1.5	1.2	1.3	3.3	4.5	3.1	3.6	1.9	
Stocks, end of period: Producers', at smelter (ZI) $\bigcirc$...........d	121.2	29.3	30.4	28.1	24.6	22.2	25.1	27.4	32.3	31.6	29.7	29.3	29.8	25.1	22.9	18.8
Consumers'	1126.1	104.9	127.4	120.9	114.0	110.9	116.3	115.1	117.8	106.7	101.8	104.9	111.5	109.9		
			1985	2032	2039	2031	2034	2034	2031	2037	2035	2736	. 3117	. 3190	3264	82

- Revised. Preliminary. ${ }^{1}$ Annual data; monthly revisions are not available.

E Effective Jan. 1974 includes items not covered for earlier periods: Aluminum-pipes,
tubes, blanks, etc.; copper-imports of alloyed refined, and exports of ores, concentrates,
blister, etc. ${ }^{\text {corrected. }}$

Uniess otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown In the 1973 edition of BUSINESS STATISTICS	1972	1973														
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec	Jan.	Feb.	Mar.	Apr.

METALS AND MANUFACTURES-Continued

MACHINERY AND EQUIPMENT   Foundry equipment (new), new orders, net mo. avg. shipments $1967=100$.	75, 4	110.3	113.6	108.7	84.6	166.5	119.7	97.2	84.0	133.3	131.1	126.3	116.2			
Heating, combustion, atmosphere equipment, new orders (domestic), net, qtrly $\frac{8}{2}$ mil. \$.	79.3	128.6	27.0			32.8			33.8			35.0			32.2	
Electric processing heating equip-............do.	12.8	19.9	5.7			5.2			4.1			4.9			6.8	
Fuel-fired processing heating equip...........do	41.3	75.8	13.0			18.9			23.2			20.8			15.5	
Material handling equipment (industrial):   Orders (new), index, seas. adj.......... $1967=100 \ldots$	128.4	190.3	180.6	186.7	174.0	168.0	186.5	209.6	207.4	217.0	220.4	222.5				
Industrial trucks (electric), shipments:																
Hand (motorized) .-..-..-.-.-.-..........-	15,482 16,902	$\xrightarrow{21,387}$	1,849 1,978	1,740 1,860	$\xrightarrow{2,001}$	2,155 1,947	1,621 1,361	1,765 1,737	1,890 1,876	1,775 1,745	1,682 1,919	1,669	1,535 1,763	1,536 1,554		
Industrial trucks and tractors (Internal combustion  	40,698	52,014	4,809	4, 260	4,654	4,865	3,568	3,869	4,484	4,652	1,389 4,325	4,903	6,025	1,554		
Industrial supplies, machinery and equipment:   New orders index, seas. adjusted... $1967-69=100$.-	116.3	149.7	139.1	144.2	147.7	148.0	154.0	156.8	153.7	156.6	164.6	166.7	171.3	171.0	172.0	
Industrial suppliers distribution:   Sales index, seas. adjusted $\dagger \ldots$.-............. $1967=100$	120.3	139.6	129.9	135.4	140.0	143.4	144.8	154.4	146.8	144.2	149.9	142.9	149.9	148.9	149.5	159.6
Machine tools:																
Metal cutting type tools:   Orders, new (net), total ...........................	1,008.95	1,825.4	170.80	159.95	154.85	133. 20	131.30	127.35	168.70	184. 05	160.80	179. 25	169.55			
	1,877. 25	1,550.40	149.10	145.90	139.55	110.00	108.20	111.45	138.80	165. 35	138.45	122.55	144.95	${ }_{r}^{149.25}$	${ }_{\text {p }}{ }^{\text {p25 } 219.35}$	
Shipments, total	714.45	1,073.75	98.80	76.30	100.60	102.90	72.65	76.90	95.75	98.45	86.35	124.50	84.10	-95.85	p129.40	
Domestic	${ }_{6}^{627.15}$	935.05 $1,453.7$	83.95 888.6	68.80 972.2	84. $1,026.4$	90.40 $1,056.7$	$\xrightarrow{63.15}$	$\xrightarrow{64.85}$	$7,238.9$	( $\begin{array}{r}85.65 \\ 1,324.5\end{array}$	75.90 $1,399.0$	$\xrightarrow[1,453.7]{112.35}$	-72.50	$\underset{r}{r} 8.617 .4$	${ }^{p} 110.95$	
Order backlog, end of period...-----.---do	702.0	1,453.7	888.6	972.2	1,026.4	1,056. 7	1,115.4	1,165.9	1,238.9	1,324. 5	1,399.0	1,453.7	1,539.2	r1,617.4	P1,743.8	
Metal forming type tools Orders, new (net), tota	403.05	787.20	76.70	80. 95	70.95		52.90		61.55	71.40			41.80		p 67.00	
Domestic	368. 20	717.20	72.05	74.45	66.50	74.15	48.40	52.50	53.50	64.45	49.65	45. 60	39.85	- 38.05	${ }^{\circ} 56.95$	
Shipments,	304. 25	427.25	${ }^{35} 55$	30.60	${ }^{38 .} 25$	42.05	30. 05	33.85	36.40	38.80	41. 25	${ }^{44.80}$	38. 50	+37.95	p 47.45	
Domestic	267.20	388.05	${ }^{33} 55$	28.60 425.8	35.30	39.85	27.45	29.35	32.40 567.1	32.45 599.7	38.20 615.4	39.35 620.6	34.85 623.9	$\stackrel{+}{+33.05}$	- 40.60	
Order backlog, end of period....-.......-do	260.5	620.6	375.4	425.8	458.5	494.6	517.4	541.9						-631.7	- 651.2	
Tractors used in construction:   Tracklaying, total. unit		24,097				6,467			5,719							
	${ }^{1} 546.0$	724.6	190.9			192.8			174.7			${ }_{2} 166.5$	${ }^{3} 56.5$	${ }^{3} 56.2$		
Wheel (contractors' off-highway).-........-units.-	15.056	2 2 2 2 2	1,430			${ }^{2} 1,747$			21,419			$\left\lvert\, \begin{array}{r} 21,133 \\ 2 \\ 2 \end{array}\right.$				
Tractor shovel loaders (integral units only), wheel and tracklaying types. units.	1198.5 46,052	2223.4 53,616	13, 83.0			267.7 14,627			255.5 12,578			2 12, 280				
Tractors, wheel (excl garden and contractors' mil. S.--	1801.7	951.9	252.3			12, 6			225.1			215.3				
highway types) $\qquad$ $s^{\prime}$ oft-						61, 111							3. 19.751			
mil. \$--	$\begin{array}{r} 196,988 \\ 1,141.0 \end{array}$	1,381.9	345.6			382.6			${ }_{304.9}^{46}$			348.8	3,5138.9	${ }^{115.0}$		
ELECTRICAL EQUPMENT																
Batteries (auto. replacement), shipments. ..thous. Motors and generators:	43,220	43, 468	2,837	2,503	2,631	2,807	2,915	4,120	4, 525	4,830	4,741	4,208	4,629	3,607	3,070	
New orders, index, qtrly . .-.--	99.3	129.6	122.0			134.2			127.2			134.9				
	20,086	50, 198	45,211	2,916	3,860	- 3,990	3,067	3,935	-6,303	3,870	3,952	4 3,860	3, 141	2,976	+3,427	2,435
Television sets (incl. combination models), production, total market $\sigma^{\prime}$..............................thous.-	13,507	17,367	41,681	1,189	1,341	-1,778	1,018	1,424	11,778	1,535	1,453	${ }^{4} 1,494$	1,024	1,327	4,655	1,258
Household major appliances (electrical), factory shipments (domestic and export)* $\stackrel{+}{2}$........thous.	31,094	35, 049	3,309	3,094	3,353	3,384	${ }^{2} .965$	2,935	2,690	3,070	2,625	2,346	2,585	2,576	3,175	
Air conditioners (room)...................... do.	4, ${ }^{4}, 508$	15,346 3 3	782.4 322.7	686.4 296.9	722.4	731.6	306.2 272.4	146.0 318.2	128.7	204.0 379.3	299. 81 325.	348.5 279.1	497.6 253.5	494.7 242.8	651.9 310.2	
Disposers (food waste) --...................................	2,771	2,976	254.4	245.6	260.6	268.2	236.0	252.5	266.9	280.5	244.4	${ }^{233.8}$	209.8	200.7	264.8	
	3,232	3,430	293.9	286.4	311.9	292.6	304.0	295. 2	294.0	331. 3	264.3	231. 2	242.3	234.6	271.6	
Refrigerat	6.315	${ }^{16,774}$	579.8	554.1	623.8	618.5	703.2	707.8	578.6	596.2 9 13	470.8	${ }^{423.7}$	441.2 188	450.3	552.9 3688	
${ }_{\text {Freasers }}$ Freezers.	+1,576	2.415 5 5	191.4 464	199.7 428.5	216.7 476.0	227.3 463.4	311.0 432.5	20.1 543.3	183.8 502.3	218.7 880.0	216.6 420.8	316. 9	${ }_{407.3}^{188 .}$	195.7 4008	268.8 454.6	
Dryers (incl. gas)	3,925	4, 256	331.9	305.4	309.3	330.3	319.2	422.3	419.2	470.6	${ }^{362.1}$	288.7	319.3	295.8	307.8	
Vacuum cleaners............................do	8,337	9,030	795.9	710.5	677.6	671.7	632.5	755.2	857.9	929.5	871.8	624.5	674.1	799.5	940.3	
GAS EQUIPMENT (RESIDENTIAL)																
Furnaces, gravity and forced-air, shipments.. thous..	2,0	1,720	161.8	148.8	145.5	136.6	143.1	146.0	149.5	152.5	124.4	114.4	136.0	133.5	149.6	
Ranges, total, sales -.--...-...............-do-	661		260.9	${ }^{206.3}$	230.6	238.7	166.8	210.7	${ }^{232} 2.1$	201.5	183.4	169.7	-162.9	${ }^{+} 1488.9$	187.0	
Water heaters (storage), automatic, sales....do....	3,163	+3,080	280.3	275.0	281.8	263.1	225.4	251.7	228.3	279.7	228.7	+ 209.4	-235.8	189.3	246.9	-

## PETROLEUM, COAL, AND PRODUCTS

COAL																
Production $\ddagger$................ thous sh tons																
	7,106 780	$\begin{array}{r}16,725 \\ \\ \hline\end{array}$		574 58	633 91	601 72	429 33	580 95	525 37	606 97	575 47	513	495 39	440 12	545 40	
Price, wholesale, chestnut, f.o.b. car at mine																
Bituminous: \$ per sh. ton-~	18. 228	20.044	19.110	19.600	19.600	19.600	19.845	20.458	20.703	20.703	21.070	21.621	21.621	22.785	85	6.03
Production $\ddagger$...------------------- thous. sh. tons	595,386	1591,000	50,635	40,620	51, 020	46,010	43,675	55,005	-48,785		50,550	48,05	53,470	49,010	51, 120	
${ }_{r}$ Revised. ${ }^{p}$ Preliminary. ${ }^{1}$ Annual data; monthly revisions are not available. ${ }^{2}$ Excludes figures for rubber-tired dozers. ${ }^{3}$ For month shown. ${ }_{4}$ Data cover 5 weeks;   $\sigma^{7}$ Effeetive Jan. 1973, data refiect total market as follows: Sets produced in the United States, other periods, 4 weeks. ${ }^{5}$ Includes nonfarm industrial tractors previously classified in the imports by U.S. manufacturers for sale under their brand name and, beginning 1973, sets imtractor shovel loader group shown above; for Jan. 1974, shipments of this type totaled 3,446 ported directly for resale. units valued at $\$ 25.1$ mil.   *New series. Source: Association of Home Appliance Manufacturers.   $\dagger$ Effective June 1973 SURVEY, index revised back to 1970.   $\$$ Includes data not shown separately.   $\ddagger$ Monthly revisions for 1972 will be shown later.																


Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

PETROLEUM, COAL, AND PRODUCTS-Continued

COAL-Continued																
Bltuminous-Continued																
Industrial consumption and retail deliveries, totals $\qquad$ thous. sh. tons.	516,776	556,022	44, 814	42,689	43,628	45,115	47,715	48, 840	45, 471	46,427	46,703	50,130	50,415	45,122		
	348, 612	386,879	30,533	28, 868	29,655	31, 824	34, 620	35, 933	32, 735	32, 263	31,962	33,886	34, 468	30,020		
Mfg. and mining industries, total..........do.	159, 253	160,827	13,596	13,412	13,596	12, 895	12,651	12,447	12, 052	13,348	13,798	15, 228	14,637	14,002		
Coke plants (oven and beehive).........do...-	87, 272	93,634	7,950	7,727	8,048	7,774	7,964	7,894	7,603	7,887	7,736	8,048	7,977	7,307		
Retail deliveries to other consumers.-.-.-do.	8,748	8,200	683	396	360	381	431	446	672	804	932	1,009	1,310	1,100		
Stocks, industrial and retail dealers', end of period, total thous. sh. tons.-	115, 372	99,022	109,065	110,861	114,681	107,616	105, 027	104,488	103,561	104,397	104,095	99,022	96,005	93,970		
Electric power utilities .-.-.------.-.-.- do..--	98,450	85,512	92, 246	92,971	97,470	90,747	90, 818	90, 055	88,886	90, 200	89, 734	85,512	83,366	80,910		
Mfg. and mining industries, total	16, 632	13,220	16, 499	17,550	16,681	16,594	13,949	14, 123	14,400	13,917	13,991	13, 220	12,339	12,670		
	9,032	6,875	8,439	8,500	8,821	8,544	6,039	6,493	6,575	7,097	7,171	6,875	6,269	6,090		
	290	290	320	340	360	275	260	310	275	280	370	290	300	390		
Exports $\qquad$ do $\qquad$ Prices, wholesale:	55,960	52,870	3,377	5, 063	5,140	4,969	4,164	5,125	3,424	5,882	5,214	4,889	2,813	4,627	3,179	
Screenings, indust. use, f.o.b. mine																
( ${ }^{\text {s per sh. ton.- }}$	10.378	11.816	11.160	11. 641	11. 570	11.616	11.551	11.651	12.040	12.129	13.010	13.103				
Domestic, large sizes, f.o.b. mine.........do...-	11.367	411.659	11.267	11.267	11. 283											
COKE																
Production:   Beehive. thous. sh. tons.-	654	2784	(3)	64	66	60	64	71	67	68	66	82				
	59,853	63,496	5,356	5, 262	5,454	5,325	5,307	5,383	5,153	5,358	5,218	5,426	5,422	4,974		
	23,953	26,458	2,227	2,175	2,229	2,315	2,351	2,309	2,067	2,215	2,099	2,175				
Stocks, end of period:																
	2,941	1,184	2,291	2,035	1,796	1,712	1,514	1,520	1,501	1,435	1,313	1,184	1,125	1,139		
	2,590	1,113	2,039	1,829	1,638	1,572	1,367	1,370	1, 375	1,339	1,236	1,113	1,053	1,070		
At merchant plants.----.-...................do	351	71	252	, 206	159	139	148	150	126	1,96	76	, 71	72	69		
	1,563	1,995	1,948	1,895	1,922	1,965	2, 057	2, 087	2,027	1,957	2,017	1,995	1,928			
	1,232	1,395	114	61	227	108	119	147	211	109	88	101	70	57	149	
PETROLEUM AND PRODUCTS																
Crude petroleum:																
Oll wells completed.....--..--..............number--	2 11,306	9,892	953	699	749	767	912	724	854	790	822	1,087	763	901	936	
Price at wells (Oklahome)......-...-... \$ per bbl--	3.45	${ }^{8} 3.87$	3.56	3.77	3.77	4.13	4.11	4.11	4.12	4.12					6.33	
	4,280.9	4,537.3	378.2	366.2	380.7	385.9	395.2	391.7	376.8	395.5	371.2	376.6				
Reflnery operating ratio......-.-... \% of capacity.-	88	91	90	90	90	94	94	93	92	94	91	89				
All oils, supply, demand, and stocks:																
New supply, total ${ }^{2} \ddagger$....................................... Production:	5,839.0	6,262. 3	543.0	497.8	523.6	505.3	531.2	540.8	516.7	542.0	534.2	519.3	495.8			
	3, 455. 4	3,353.4	284.4	277.0	288.4	276.3	285.0	284.0	272.3	284.3	274.3	280.3	276.1			
Natural-gas plant liquids $\ddagger$...............-do..---	648.3	645.4	54.8	53.2	84.9	52.6	54.8	55.1	63.1	55.3	54.0	54.7	53.6			
Imports: Crude and unfnished olls...............do....-	856.8	1,234. 2	102.2	96.2	103.7	101.3	113.0									
	878.5	1,029. 4	101.6	71.4	76.7	75.1	188.3	85.8	82.5	119.5 82.8	108.5 97.4	90.0	88.5			
Change in stocks, all olls (decrease, -) .......do	-85.0	49.3	20.5	25.9	20.4	24.3	28.3	10.7	18.7	21.8	-14.2	-14.9	-33.2			
Demand, total $\oplus$ $\qquad$ do $\qquad$ Exports:	6,071.7	6,381.7	539.9	486.0	522.0	500.6	514.8	546.6	505.9	536.8	559.1	547.3	541.8			
Crude petroleum.-.-.-.-.-.-.-.-...........do.-.-	. 2	. 7	-	0	. 1	0	. 2	0	2	0	0	2	. 5			
Refined products	81. 2	83.5	6.9	8.3	7.2	6. 4	7.2	6.7	7.1	6. 9	6.1	6. 9	5. 9			
Domestic product demand, total $\%$ ¢ $\ldots$....do....	5,990. 3	6,297. 5	533.0	477.7	514.7	494.1	507.3	539.8	498.6	529.9	553.0	540.3	535.4			
	2,350. 7	2,452.0	203.2	197.5	215.7	210.3	218.9	226.6	198.7	208.6	206.0	194. 1	181.2			
	85.9	78.9	6.2	4.9	4.1	3.5	4.6	4.5	5.5	5.6	9.2	7.4	9.7			
	1,066.1	1,124, 3	102.7	79.0	82.2	72.4	72.2	79.2	79.8	90.4	105.3	114.2	118.4			
	925.6	1,019.9	95.2	74.2	78.1	78.0	74.7	83.4	80.0	79.0	93.6	90.2	94.1			
	382.5	383.4	30.8	30.4	34.5	30.2	32.4	32.5	31.9	33.0	30.4	32.2	27.8			
	82.8	59.0	4.9	4.4	5. 1	4.5	5.4	5.3	4.6	5.7	5.0	4.9	5.2			
	163.8	182.6	8.1	11.3	16.1	20.1	23.4	26.1	21.1	20.9	15.1	9.3	6.9			
	519.8	528.6	43.6	38.9	39.3	34.5	34.2	39.3	38.7	46.0	50.8	49.5	54.8			
Stocks, end of period, total ....-.-...-...-..- do	959.0	1,008. 3	887.4	913.3	933.7	958.0	986.3	997.0	1,015. 6	1,037.4	1,023.2	1,008.3	975.1			
Crude petroleum	246.4	242.5	244.1	248.8	257.9	248.9	243.7	248.3	1, 241.3	1,246.3	1, 250.0	${ }^{1} 242.5$	233.0			
Unfinished olls, natural gasoline, etc..... do.	100.8	107.0	103.6	111.6	112.7	111.0	109.5	106.4	109.4	110.3	111.7	107.0	105.9			
Refined products.---............---........d. ${ }^{\text {do...- }}$	611.7	658.8	539.7	552.9	563.1	598.2	633.1	642.2	665.0	680.9	661.6	658.8	636.1			
Refined petroleum products: Gasoline (incl. aviation):																
Production $\qquad$ do	2,320.0	2,401.9	192.2	192.9	209.8	211.3	218.3	215.4	200.2	207.1	193.2	190.4				
Exports $\ddagger$ $\qquad$ do $\qquad$	2,32.0	1.7	21. ${ }^{\text {. }} 1$	192.9	209.8	(1)	218.3   1.1	2.1	(1) 2	207.1	193.2	190.4	. 1			
	217.1	213.4	211.1	208.2	205.3	211.6	215.0	208.6	213.9	218.2	211.4	213.4	221.3			
Prices (excl. aviation):																
Wholesale, ref. (Okla., group 3) .... \$ per gal.Retail (regular grade, excl. taxes), 55 cities	. 119	. 146	. 130	. 130	. 133	. 145	. 145	. 145	. 145	. 155	. 178	. 198	. 238	. 238	. 270	. 270
(1st of following mo.) ................... per gal.A viation gasoline:	. 245	. 275	. 263	. 265	. 268	. 268	. 268	. 267	. 277	. 286	. 303	. 328	. 361	. 381	. 316	
Production.............................................. Exports $\ddagger$	17.0	16.4	1.2	1.2	1.4	1.3	1.6	1.9	1.4	1.7	1.8	1.1				
Exports $\ddagger$.   Stocks, end of period $\qquad$	17.2 4.3	3. ${ }^{2}$	.1 3.3	(t) 3	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)			
Kerosene:	4.3	3.9	3.3	3.3	3.1	3.1	3.4	3.4	3.5	3.6	4.0	3.9	3.8	-----		
	80.1	80.1	8.0	6.6	5.2	4.5	4.9	5.4	5.9	7.0	6.6	7.1				
Stocks, end of period $\begin{aligned} & \text { Price, wholesale, bulk jots (N.Y. Harbor) }\end{aligned}$	19.1	21.0	16.4	18.1	19.1	20.2	20.5	21.6	22.1	23.5	21.2	21.0	17.5			
\$ per gal	. 127	. 143	. 138	. 138	. 138	. 138	. 138	. 138	. 138	. 146	. 166	. 174	. 316	. 226	. 257	. 257

? Revised. 1 Less than 50 thousand barrels. ${ }^{2}$ Reflects revisions not available by months. ${ }^{3}$ Withheld to avoid disclosing individual company data. ${ }_{4}$ A verage for Jan.May. ${ }^{5}$ A verage for Jan,-Oct
§Includes data not shown separately. § Includes nonmarketable catalyst coke.
or Includes small amounts of "other hydrocarbons and hydrogen refinery input," not . Monthly revisions for 1972 will be shown later.
crude losses not previously included,'comparable data for earlier periods will be shown later.

Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

## PETROLEUM, COAL, AND PRODUCTS—Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
PETROLEUM AND PRODUCTS-Continued \\
Refined petroleum products-Continued Distillate fuel oil:
\end{tabular} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Production-----.----....-..........-mil. bbl.- \& 963.6 \& 1,030.2 \& 82.8 \& 75.4 \& 78.9 \& 84.8 \& 85.4 \& 86.9 \& 84.4 \& 90.3 \& 87.7 \& 97.3 \& \& \& \& \\
\hline  \& 66.4
1.2 \& 138.8
3.2 \& \(\begin{array}{r}18.0 \\ \hline 1\end{array}\) \& 7.2
.2 \& \(\begin{array}{r}7.7 \\ .1 \\ \hline\end{array}\) \& 6.5
.3 \& 9.9
.1 \& \(\begin{array}{r}8.9 \\ \hline\end{array}\) \& 8.9
.8 \& 13.5
.7 \& 14.8
.1 \& 13.5 \& \& \& \& \\
\hline Stocks, end of period..................do-... \& 154.3 \& 196.5 \& 111.3 \& 114.7 \& 119.1 \& 137.9 \& 160.9 \& 177.3 \& 190.2 \& 203.0 \& 200.2 \& 196.5 \& 181.2 \& \& \& \\
\hline Price, wholesale (N.Y. Harbor, No. 2 fuel) \$ per gal.- \& 117 \& 135 \& 128 \& 128 \& . 128 \& 138 \& . 138 \& . 128 \& . 128 \& . 137 \& 159 \& 164 \& . 250 \& . 215 \& 193 \& . 193 \\
\hline Residual fuel oil: \& 292.5 \& 354.6 \& 29.6 \& 26.3 \& 29.4 \& 27.4 \& 27.4 \& 26.4 \& 26.3 \& 30.5 \& 31.8 \& 35.9 \& \& \& \& \\
\hline  \& 637.4 \& 666.7 \& 67.7 \& 51.1 \& 51.7 \& 52.7 \& 49.5 \& 57.3 \& 56.2 \& 48.2 \& 58.2 \& 55.6 \& 53.7 \& \& \& \\
\hline  \& 55.1 \& 9.2
53.5 \& 44.8 \& 1.2
47.0 \& \(\begin{array}{r}1.2 \\ 49.2 \\ \hline\end{array}\) \& 51.8 \& 1.11 \& .9
58 \& \({ }_{55.1}{ }^{7}\) \& \({ }^{5} 5\) \& \& \({ }_{5}\). \& . 3 \& \& \& \\
\hline Stocks, end of period \& 15.2
\(\mathbf{5 . 5 5}\) \& 53.5
2.76 \& 44.7
2.35 \& 47.0
2.60 \& 49.2
2.60 \& 51.8
2.60 \& 53.4
2.60 \& 53.6
2.60 \& 55.1
2.60 \& 55.0
3.00 \& 52.0
3.25 \& 53.5
4.25 \& 46.25 \& 4. 25 \& 4.25 \& 8. 10 \\
\hline \begin{tabular}{l}
Jet fuel: \\
Production mil. bb
\end{tabular} \& 310.0 \& 313.7 \& 28.4 \& 26.6 \& \& 25.1 \& 25.6 \& 26.2 \& 25.4 \& 27.1 \& 25.6 \& 25.7 \& \& \& \& \\
\hline  \& 25.5 \& 28.5 \& 27.6 \& 27.9 \& 25.8 \& 25.4 \& 25.7 \& 24.9 \& 25.1 \& 25.6 \& 28.5 \& 28.5 \& 29.7 \& \& \& \\
\hline \begin{tabular}{l}
Lubricants: \\
Production
\end{tabular} \& 65.3 \& 68.7 \& 5.9 \& 5.6 \& 5.8 \& \& \& 5.6 \& 5.5 \& 6.2 \& 6.0 \& 6.0 \& \& \& \& \\
\hline  \& 15.0 \& 12.8 \& 1.2 \& 1.2 \& 1.2 \& 1.2 \& 1.0 \& 1.0 \& 1.0 \& . 8 \& . 9 \& 1.1 \& 1.0 \& \& \& \\
\hline  \& 13.3 \& 12.2 \& 13.3 \& 13.4 \& 12.9 \& 12.8 \& 12.2 \& 11.8 \& 11.8 \& 11.6 \& 12.1 \& 12.2 \& 12.0 \& \& \& \\
\hline Price, wholesale, bright stock (midcontinent, f.o.b., Tulsa)............................ \(\$\) per gal. \& \({ }^{1} .270\) \& 3.260 \& \& \& \& \& \& \& 2.60 \& \& \& \& \& \& (4) \& \\
\hline Asphalt: \& \& \& \& 12.1 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
Production- \\
Stocks, end of period. \(\qquad\) do..
\end{tabular} \& 155.3
21.6 \& 167.9
15.0 \& 30.0 \& 31.0 \& 30.2 \& 27.3 \& 17.7
22.9 \& 16.8 \& 18.1
14.9 \& 12.5 \& 14.0
12.1 \& 11.4 \& 18.0 \& \& \& \\
\hline Liquefled gases (1ncl. ethane and ethylene): Production, total \& 575.1 \& 583.9 \& 50.4 \& \& 51.5 \& 48.4 \& 49.2 \& 48.7 \& \& \& 47.2 \& \& \& \& \& \\
\hline At gas processing plants (L.P.G.)......do... \& \({ }^{444.7}\) \& 447.0 \& 38.6
11.7 \& 37.7 \& 31.4

138 \& 38.8 \& 36.5 \& 36.6 \& 36.0 \& 38.0 \& 37.3 \& 48.8
38 \& 37.6 \& 35.0 \& \& <br>
\hline At refineries (L.R.G.) - .-.............do \& 130.4
85.7 \& 136.8
98.6 \& 11.7
63.8 \& 11.2 \& 13.0
80.0 \& 11.6
90.0 \& 12.7
101.0 \& 12.1
106.8 \& 111.1 \& 11.7 \& r9.9 \& 10.5
98.6 \& \& \& \& <br>
\hline stocks (at plants and refineries)...........d. \& \& \& \& \& \& \& \& \& 111.3 \& 11.3 \& 104.2 \& 98.6 \& 90.1 \& \& \& <br>
\hline
\end{tabular}

PULP, PAPER, AND PAPER PRODUCTS

PULPWOOD AND WASTE PAPER																
Pulpwood:																
Receipts...............thous. cords (128 cu. it.).--	70,273 71 5158	71,772	6,994	5,603	6,027 6,133	6,234	5,998	6,347 6,097	${ }_{5}^{5,746}$	6, 6 605	6,081	5,876 5,796	6,068 6,307	6,027 6,023		
	5,165	5,092	4,636	4, 343	4, 291	4,330	4,421	4,515	4,890	5,184	5,217	5,092	4,805	4, 640		
Waste paper:																
	11,703 626	${ }_{516}^{12,223}$	1,078 546	1,012	1,059 495	1,032	926 492	1,047	${ }_{433}^{977}$	1,097	1,057 485	977 516	$\left.\begin{array}{r} r_{1,069} \\ \underset{5}{537} \end{array}\right)$	${ }_{543}^{999}$		
WOODPULP																
Productl, anl grades ..................thous. sh. tons..	46,767	48,238	4,217	3,983	4,189	4,058	3,928	4,181	3,849	4,185	4,104	3,748	4,100	3,767		
Dissolving and special alpha.............do....	1,656	1,672	155	125	4,141	, 148	${ }^{118}$	${ }^{4} 144$	113	${ }^{4} 165$	${ }^{4} 143$	${ }^{3} 148$	4,144	125		
	31, 826	32,460	2,845	2,715	2,838	2,714	2,663	2,803	2,619	2,764	2,753	2,463	2,730	2,490		
	2,173	2,293	206	186	197	198	185	205	185	197	198	177	196	174		
	4,639	4,678	390	365	409	412	393	421	350	421	404	386	405	382		
Deffibrated or exploded....................do..	2, 502	3,130	271	257	264	253	253	258	253	289	269	259	298	305		
Soda, semichem., screenings, etc...........do.-.--	3,971	4,003	351	335	339	333	317	351	329	349	336	316	327	290		
Stocks, end of perlod:   Total, all mills..																
	${ }_{323}^{848}$	${ }_{7}^{725}$	388	777 330	782 324	807   343	${ }_{318} 736$	736 327	683   294   8	707   324	729	${ }_{296}^{725}$	702 310	${ }_{309}^{685}$		
	393	348	381	377	379	385	339	341	328	323	335	348	+329	314		
Nonpaper mills..............................do.	86	81	66	70	78	79	79	68	62	60	61	81	63	63		
Exports, all grades, total.--....-.-.........-do	22,253	22,343	198	214	184	210	181	196	198	211	211	180	193	206		
Dissolving and speclal alpha.-.-............- do- All	2,793		74	65 149	68 116	60 150	${ }_{62}$	47 149	53	62	60	52 128	75	61		
				149	116	150	119	149	144	149	151	128	118	145		
Imports, all grades, total ------....-.-.-.-- do....	23,728	2 3,993	359	329	365	333	324	250	279		378	287		337		
		${ }^{177}$		13	22	17	17	3	10	17	23	21	21	22		
All other.......................-...............-do.	23,504	23,816	353	316	343	315	307	247	270	339	355	266	341	316		
Paper and parer products																
Paper and board:   Production (Bu. of the Census):																
All grades, total, unadjusted...thous. sh. tons..	59,445	61,833	5,416	5.171	5,505	5,196	4, 919	5,380	4,813	5,491	5,228	4,710	-5,258	4,911		
	25, 426	26,486	2,312	2,191	2,363	2, 213	2,123	2, 280	2,050	2,338	2,237	2,077	${ }^{-2,277}$	2, 110		
	28, ${ }_{147}$	29,654	2,605 +11	2,487	2,633 12	$\begin{array}{r}2,509 \\ \hline 12\end{array}$	2,332 10	2, 11	2,305 11	2,647 12	2, ${ }_{11}$	2,210 10	$\xrightarrow{\text { r } 2,547} \begin{array}{r}\text { r } 12\end{array}$	2, ${ }_{12}$		
Construction paper and board.....-----do...--	5,341	5,559	488	482	497	462	454	495	447	494	470	412	- 422	418		
Wholesale price indexes: Book paper, A grade. a																
	105.5	115.1	110.7	113.0	114.6	116.7	116.7	116.7	116.7	118.0	119.7	120.7	127.0	131.0		
	106.4	112.8	108.5	109.3	110.8	111.7	112.2	112.8	115.9	117.7	118.8	120.1	121.7	121.8		

[^19][^20]| Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS | 1972 | 1973 | 1973 |  |  |  |  |  |  |  |  |  | 1974 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Annual |  | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |

## PULP, PAPER, AND PAPER PRODUCTS—Continued

PAPER AND PAPER PRODUCTS-Con.																
Selected types of paper (API):																
Orders, new.................thous. sh. tons..	1,405	1,431	134	132	112	125	130	136	112	126	96	100	124			
Orders, unfilied, end of period..........d.d....	1, 164	${ }_{1} 152$	181	205	192	195	207	211	219	201	168	152	147			
shipments.................................do....	1,317	1,427	221	106	124	122	109	132	120	136	123	119	133			
Coated paper:	3,630	3,826	354	329	344	318	292	316	293	312	279	309	333			
Orders, new	3, 393	${ }_{346}$	448	457	462	462	420	435	419	422	359	346	352			
	3,522	3,852	347	318	339	328	310	324	301	325	330	310	345			
Uncoated book and writing and related papers. $\ddagger$ - ${ }_{\text {Orders, }}$ new..........................	6,089	7,022	647	586	616	598	522	572	588	607	584		614			
Shipments.................................-.-.-. do.	6,023	6,743	583	540	592	564	542	588	539	614	569	534	592			
Unbleached kraft packaging and industrial converting papers:																
Orders, new --.........................d.....	4,039	3, 967	314	308	300	370	${ }^{374}$	324	303	387	313	320	337			
Orders, unfilled, end of period.-.........do...-	${ }^{241}$		${ }_{2} 219$	224	212	192	191	196	190	178	176	193	190			
	3,916	4,011	${ }^{347}$	336	354	340	314	${ }_{346}$	327	351	${ }^{339}$	${ }_{3}^{332}$	340			
Tissue paper, production.-.-.-.............-do....	3,977	3, 984	353	339	349	334	314	336	308	340	328	311	340			
Newsprint:																
Canada:			827	792	828											
	8 8,901	9, 199	796	821	846	811	781	665	665	722	826	780	3791	740	${ }_{7} 76$	
Stocks at mills, end of period........-......do.	251	193	313	283	265	279	273	292	218	213	188	193	${ }^{3} 216$	233	292	
United States:																
Production $\qquad$ do O...	3,422 3,437	3,431	312   310	290	309   313	282 281	${ }_{278}^{278}$	288	258		$\stackrel{289}{289}$	263	3 3 3 3	${ }_{261}^{258}$	${ }_{272}^{277}$	
	$\begin{array}{r}3,487 \\ \\ \\ \hline\end{array}$	- 24	36	38	${ }_{34}$	${ }_{35}^{281}$	${ }^{275}$	30	27	29	26	24	${ }^{3} 28$	25	31	
Consumption by publishers or'---......do $^{\text {d }}$	7,569	7,658	671	682	702	642	620	610	608	652	652	623	${ }^{3} 569$	539	619	
Stocks at and in transit to publishers, end of period $\qquad$ thous. sh. tons	544	603	637	637	642	671	670	628	606	590	606	603	${ }^{3} 657$	718	707	
Imports..................................do	7, 101	7,410	679	634	656	678	606	586	511	567	656	549	682	628		
Price, rolls, contract, f.o.b. mill, freight allowed or dellvered $\qquad$ $\$$ per sh. ton	163. 20	170.44	167.75	168.88	168.58	168.58	169.42	169.42	170.25	170.25	179.67	182.34	184.34	184.34	195.05	205.13
Paperboard (American Paper Institute):   Orders, new (weekly avg) thous sh tons								595	573	575	579	518	583	563	622	
Orders, unfilied ¢	1,446	1,603	1.792	1,905	1,899	1,860	1,874	1,903	1,909	1,817	1,723	1,603	1,753	1,741	1,789	1,775
	, 549	568	592	${ }^{1} 584$	${ }^{1} 588$	583	518	-587	${ }^{1} 548$	585	+590	${ }^{574}$	+579	587	+ 597	, 587
Paper products:																
Shipping containers, corrugated and solld fiber, shtpments. ..................mil. sq. ft. surf. area..	1211,926	226,851	20, 434	18,192	19,758	19,591	16,762	20,239	18,267	21,744	19,410	16.934	19.556	18,238	19,518	
Folding paper boxes.............thous. sh. tons.-	2,525.0	2,614.0	225.0	211.4	217.5	215.1	193.5	232.4	216.7	243.0	227.0	225.3	225.7	「200. 5	224.9	
mil \$--	1,330.0	1,460.0	122.1	114.8	118.9	119.5	107.0	130.9	125.0	138.9	130.2	133.0	r 133.0	r 122.7	135.5	

## RUBBER AND RUBBER PRODUCTS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUBBER \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Natural rubber: \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Consumption-.----.............thous. Ig. tons.. \& 640.60 \& 685.44 \& 263.15 \& 59.43 \& 57.34 \& 54.46 \& 48.97 \& 56.40 \& 56.30 \& 63.41 \& 57.12 \& 53. 96 \& 64.43 \& \& \& \\
\hline Stocks, end of period.--.-.-.--.-.........do. \& 116. 72 \& 122.44 \& 2120.47 \& 117. 54 \& 116.17 \& 111.08 \& 111.49 \& 111.04 \& 121.68 \& 114.92 \& 122.47 \& 122. 44 \& 122. 04 \& \& \& \\
\hline Imports, incl. latex and guayule. .-.-.-.-. do \& 602.16 \& 642.91 \& 59.44 \& 43.26 \& 55.48 \& 53.44 \& 40.71 \& 66.26 \& 63.69 \& 60.17 \& 56.32 \& 38.32 \& 53.18 \& 59.09 \& \& \\
\hline Price, wholesale, smoked sheets (N.Y.)..\$ \& . 181 \& . 351 \& . 286 \& . 308 \& . 310 \& . 368 \& . 413 \& . 413 \& . 364 \& . 336 \& . 395 \& . 540 \& . 538 \& . 510 \& . 488 \& \\
\hline Synthetic rubb \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Production-.......................thous. Ig. tons. \& 2,424.68 \& 2,585. 49 \& \({ }^{2} 218.54\) \& 223.63 \& 222. 59 \& 199.86 \& \({ }_{180}^{210.04}\) \& 220.38 \& 210.67 \& \({ }^{227.49}\) \& \({ }^{219.61}\) \& \({ }^{219.37}\) \& 222.74 \& \& \& \\
\hline  \& 2, 296. 12 \& 2,400. 84 \& 2220.64 \& 199.03 \& 197. 72 \& 196.06 \& 180.33 \& \({ }^{209.48}\) \& \({ }^{209.08}\) \& 219.68 \& 196. 86 \& 188.97 \& \({ }^{221.03}\) \& \& \& \\
\hline Stocks, end of \& \& \& 2454.83 \& 461.63 \& 469.41 \& 469.93 \& 499.28 \& 505.91 \& 517.18 \& 500.88 \& 494.73 \& 520.99 \& 500.84 \& \& \& \\
\hline Exports (Bu. of Census) \& 257.10 \& 275.84 \& 22.99 \& 22.36 \& 24.18 \& 23.58 \& 20.86 \& 18.96 \& 29.34 \& 25.01 \& 21.60 \& 21. 10 \& 22.40 \& 20.55 \& \& \\
\hline Reclaimed rubb \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline  \& 194.45 \& \({ }_{163}^{201.02}\) \& 222.29
217 \& 19.39 \& 19.02 \& 18. 46 \& 16. 79 \& 15.30 \& 11.71 \& 13. 04 \& 11.31 \& 14. 10 \& 11.27 \& \& \& \\
\hline  \& 187.58
19.91 \& 163.71
20.96 \& 2 \(\begin{aligned} \& 217.40 \\ \& 219.42\end{aligned}\) \& 14.35
20.55 \& \({ }_{22.40}^{13.42}\) \& \({ }_{23.16}^{13.81}\) \& 11.38
25.04 \& 11.89
23.87 \& \({ }_{22.18}^{11.27}\) \& 14.52
21.43 \& \(\xrightarrow{11.17}\) \& 10.80
20.96 \& 11.19
17.55 \& \& \& \\
\hline TIRES AND TUBES \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
Pneumatic casings, automotive: \\
Production thous
\end{tabular} \& 229,611 \& 223,418 \& 22, 229 \& 19, 193 \& 18,693 \& 17,752 \& 14, 287 \& 17, 325 \& 17,727 \& 19,841 \& 18,035 \& 17,343 \& 20,366 \& \& \& \\
\hline Shipments, total...-.........................do \& 227,944 \& 238, 916 \& 22,352 \& 23, 429 \& \& 21, 994 \& 19,433 \& 19,658 \& 20,765 \& 22, 582 \& 17, 559 \& 13,950 \& 17,055 \& \& \& \\
\hline Original equipment.-.-.......................do \& 63,924 \& 69,600 \& 7,114 \& 6,211 \& 6,360 \& 6,562 \& \& 4,473 \& 5, 424 \& \& \& 3, 778 \& 4,846 \& \& \& \\
\hline  \& 161,689
2,331 \& 165,216
4,100 \& 14,907
330 \& 16, \({ }_{268} \mathbf{2 6 8}\) \& 14,969
317 \& 15, \({ }^{139}\) \& \[
\begin{array}{r}
14,462 \\
300
\end{array}
\] \& \[
\begin{array}{r}
4,480 \\
14,892 \\
293
\end{array}
\] \& \[
\begin{array}{r}
8,420 \\
14,920 \\
420
\end{array}
\] \& 15, 504 \& [12,203 \& 9,762
409 \& \[
\begin{gathered}
\text { ri, } \\
11,657 \\
5651
\end{gathered}
\] \& \& \& \\
\hline \begin{tabular}{l}
Stocks, end of period. \\
Exports (Bu. of Census)
\end{tabular} \& 60,255
\(\mathbf{2} 127\) \& 50,275
4,393 \& 66,708 \& 62, 827 \& 60,485 \& 56, 834 \& 52,341 34 \& 50, 392 \& 47,775 \& 45,636 \& 46, 472 \& 50,275 \& 53, 308 \& 601 \& \& \\
\hline Inner tubes, sutomotive: \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline  \& 37,962 \& 38,701 \& 3,836 \& 3,364 \& 3,438 \& 3. 233 \& 2,350 \& 2,950 \& 3,209 \& 3,592 \& 3,041 \& 3, 008 \& 3,554 \& \& \& \\
\hline Shipments \& 41,774 \& 44,710 \& \& \& \& \& \& \& \& 4,273 \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
Stocks, end of period \\
Exports (Bu. of Census) \(\qquad\) do
\end{tabular} \& 9,391
766 \& 8,556
1,290 \& 10, 153 \& 10, 175 \& \[
\begin{array}{r}
0,360 \\
10,360
\end{array}
\] \& 10,203
149 \& 9,633 67 \& 9,

$\mathbf{3}$
110 \& 9,234
82 \& 8, 143 \& 8,601 141 \& 8,556 \& 8,298
80 \& \& \& <br>
\hline Exports (Bu. of Census)...-.......-....-...do \& 766 \& 1,290 \& 71 \& 149 \& 121 \& 149 \& 67 \& 110 \& 82 \& 143 \& 141 \& 129 \& 80 \& 138 \& \& <br>

\hline \multicolumn{6}{|l|}{\multirow[t]{4}{*}{| $\checkmark$ Revised. $\quad$ Preliminary. $\quad 1$ Reported annual total; revisions not allocated to months. |
| :--- |
| ${ }^{2}$ Publication of monthly rubber statistics was discontinued by the Census Bureau effective with the Dec. 1972 renort (Series M30A). Data beginning Jan. 1973 are from the Rubber Manufacturers Association and are not strictly comparable with earlier data. ${ }^{3}$ Beginning January 1974, data reflect reduction in basis weight of newsprint from 32 to 30 lbs. for 500 sheets measuring $24^{\prime \prime} \times 36^{\prime \prime}$; data for January 1974 on $32-16$. basis (thous. short tons): Canadaproduction, 840 ; shipments, 815 ; stocks, 222 ; United States-production, 289; shipments, 285 ; |}} \& \multicolumn{11}{|l|}{\multirow[t]{3}{*}{mill stocks, 29; consumption by publishers, 586 , stocks at and in transit, 676 .

$\ddagger$ Represents the sum of uncoted book paper and writing and reated
papers formerly}} <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \multicolumn{2}{|l|}{$\sigma^{7}$ As reported by publishers accounting for about 75 percent of total newsprint consumption.} <br>
\hline \& \& \& \& \& \& \multicolumn{11}{|l|}{§Monthly data are averages for the 4 -week period ending on Saturday neatest the end of the} <br>
\hline
\end{tabular}

Unless atherwise stated in footnotes below, data through 1972 and descriptive notes are as ahown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

STONE, CLAY, AND GLASS PRODUCTS


## TEXTILE PRODUCTS

WOVEN FABRICS $\ddagger$   Woven fabrics (gray goods), weaving mills:																
Production, total 9 ...--...-------mil. linear yd.-	11,098	11,751	966	2 1, 168	948	942	2934	902	900	${ }^{2} 1,130$	920	830	- ${ }^{21}, 159$	956		
	5,666	5,416	453	${ }^{2} 1556$	445	444	2430	414	404	2506	404	370	${ }_{-}^{2} 518$	431		
Manmade flber .-..................-.-.......d. ${ }^{\text {do.--- }}$	5,336	6,214	501	${ }^{2} 599$	492	488	${ }^{2} 495$	479	489	2611	509	453	${ }^{2} 2628$	518		
Stocks, total, end of period \% $0^{\text {r }}$.	983	718	871	830	789	800	792	763	739	720	728	718	「741	777		
	408	285	352	342	321	310	311	315	304	295	296	285	295	321		
	567	428	513	483	462	484	477	444	432	422	429	428	${ }^{*} 442$	452		
Orders, unflled, total, end of period\% \%...do...-	4,164	3,502	4,673	4,840	4, 666	4,489	4,251	3,894	3,821	3, 640	3,553	3,502	-3,477	3,452		
Cotton	2,111	1,559	2, 338	2, 432	2,280	2, 174	2,078	1,799	1,640	1,541	1,527	1,559	1,491	1,524		
	2,010	1,905	2,283	2,358	2,337	2,272	2,133	2,057	2,143	2,020	1,986	1,905	r 1,950	1, 894		
COTTON																
Cotton (excluding linters):																
Ginnings $\triangle$ thous. running bales.. Crop estimate, 480 -pound bales, net weight	${ }^{3} 13,267$	412,596					3	135	496	5, 012	9, 202	11,603	12,375	${ }_{4}^{4} 12,596$		
Consumption thous. bales. .	${ }^{3} 13,702$	-12,958												4 $\begin{array}{r}4 \\ 12,958 \\ \text { r } \\ \hline 92\end{array}$		
Consumption Stocks in the United States, total, end of period	7,777	7,279	601	2719	579	575	2573	567	543	2706	564	509	2712	r 592	589	
Domestic cotton, total thous. bales..	12,333	12,595	8,781	7,351	6,203	5,200	3,929	15,985	15,217	14, 444	13,421	12,595	10,822	-9,633	8,176	
Domestic cotton, total - -.................- do On farms and in transit.	12,319 3,346	12,586 2,788	8,766 1,895	7,336 1,376	6,191 1,065	5,187	3,916	15,975 13,160	15,206 12,836	14,434 9,031	13,411 5,015	12,586 2,788	10,813 1,521	r 9,620 1,432	8,162 1,156	
Public storage and compresses...-------- do.	7,947	8,761	5,463	4,397	1,476	2,737	2,074	1,494	1,249	4,374	7,401	8,761	8,145	- 6,964	5,613	
Consuming establishments....-.-.......-do...--	1,026	1,037	1,408	1,563	1,650	1,572	1,492	1,321	1,121	1,029	995	1,037	1,147	- 1, 224	1,393	
	1, 14	1,0 9	1, 15	1, 15	${ }^{1} 12$	13	13	10	11	10	10		9	${ }^{5} 13$	14	
- Revised. ${ }^{1}$ Annual total; revisions not allocated	to the	onths or	uarter	2 D			cks (o	ned by	eaving	mills a	bille	nd he	for oth	ers) exc	e be	heeting,
cover 5 weeks; other months, 4 weeks. ${ }^{3}$ Crop for the	year 1972	${ }_{4} \mathrm{Cr}$	for th	year 19		towel	ng, and	blanketi	g, and b	illed and	held sto	cks of de	nims.			
${ }^{5}$ Excludes unglazed and salt glazed facing tile. $\ddagger$,	Monthly	evisions	970-72)	appear			filled or	ders cove	wool ap	parel (in	cluding	polyester	-wool) fi	nished fa	rics; pr	duction
"Woven Fabrics; Production, Stocks, and Unfilled 1973), Bureau of the Census. of Includes data not	Orders," hown sepa	M22A-S arately.	pleme	$\text { nt } 3 \text { ( } \mathrm{Au}$		and st and bl	ocks exc anketing.	ude figu	es for su	$h$ finishe	fabrics.	Orders	also exclu	ude bedsh	eting.	oweling,


Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1972 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

TEXTILE PRODUCTS-Continued

COTTON-Continued																
.fotton (excluding Iinters)-Continued																
	3,089 75	5,495 33	676 3	608 2	437 4	500 2	388 2	${ }_{(3)}^{329}$	266 6	259 3	257 3	592 1	545 3	598 3	778 11	
Price (farm), American upland.-...cents per lb--	-127.3	${ }^{7} 46.8$	26.4	27.1	30.2	29.5	30.4	36.7	44.6	43.6	41.2	47.9	57.2	56.5	55.4	58.4
Price, Strict Low Middiling, Grade 41, staple 34 ( $13 \mathrm{i}^{\prime \prime}$ ), average 11 markets*. $\qquad$ cents per lb.	135.6	${ }^{7} 73.2$	35.0	40.2	45.2	46.0	52.1	66.9	80.5	75.3	${ }^{6} 66.7$	76.6	78.1	68.6	62.4	63.4
COTTON MANUFACTURES																
Spindie activity (cotton system spindies):																
Active spindles, last working day, total . .-.mil.-	18.3	18.0	18.1	18.1	18.1	18.1	17.8	18.0	18.1	18.1	18.1	18.0	18.1	-18.1	18.1	
Consuming 100 percent cotton-------.-do.---	10.4	9.8	10.0	10.0	9.9	9.9	9.9	9.9	9.8	9.8	9.8	9.8	9.8	r9.8	9.7	
Spindle hours operated, all fibers, total-.....-bil	115.9	116.2	9.3	211.6	9.2	9.1	${ }^{29.3}$	9.0	8.9	211.5	9.2	8.2	${ }^{2} 11.4$	r 9.4	9.4	
A verage per working day	. 445	. 447	. 46.1	. 462	. 458	. 456	. 372	452	. 444	. 458	.460	. 409	. 455	-. 468	468	
Consuming 100 percent cotton.-...-....-do. ${ }^{\text {do--- }}$	67.7	63.1	- 6.1	28.3	5.0	5.0	25.0	4.9	4.8	26.1	4.9	$\stackrel{4}{4} 4$	${ }_{2} 6.0$	- 5.0	5.0	
Cotton cloth:																
Cotton broadwoven goods over $12^{\prime \prime}$ In width:   Production (qtrly.).................mil. lin. yd..	8,666	5,161	1,396			1,343			1,177			1,245				
Orders, unflled, end of period, as compared with avg. weekly production ..--No. weeks' prod.	22.7	18.4	23.2	24.0	22.5	21.4	26.2	19.3	17.6	16.5	16.4	18.4	15.8	15.6	16.0	
Inventories, end of period, as compared with avg. weekly production.-No. weeks' prod.-	4.1	18.4 2.9	3.2	24.0 3.2	3.0	2.8	3.6	2.9	17.6 2.6	16.5 2.7	16.4 2.8	18.4 2.9	15.8 2.7	15.6 2.8	2.8	
Ratto of stocks to unflled orders (at cotton mills), end of period.	4.1 .18	2.9 .16	3.2 .14	3.2 .14	3.0 .13	2.8 .13	3.6 .14	2.9 .15	2.6 .15	2.7 .16	2.8 .17	2.9 .16	2.7 $r .17$	2.8 .18	2.8 .17	
Exports, raw cotton equiv.........thous. bales. .	409.2	459.9	38.3	38.0	38.8	37.9	35.4	33.9	42.5	43.8	44.8	43.3	44.1	43.6		
Imports, raw cotton equiv................ do...-	735.5	680.9	59.4	56.0	59.2	56.2	54.2	58.1	49.4	60.4	57.7	56.0	53.6	58.6	59.5	
MANMADE FIBERS AND MANUFACTURES																
Fiber production, qtriy, total..-.........-mil. lb.-	7,293. 6	8,329.7	2,023.3			2,099.3	---		2,077.2			2, 129.9				
Fllament yarn (rayon and acetate).........do.	653.1	635.1	158.0			164.7			153.7			158.7				
Staple, incl. tow (rayon) ---.-.-...........do.	713.2	696.7	168.5			168.2			172.6			187.4				
Noncellulosic, except textlle glass:																
Yarn and monoflaments...----.......--- do.	$2,773.3$ 2	3,339.6	813.1			827.8			842.3			856.4				
	2, 582.4	2,969.8	720.3			765.9			738.2			745.4				
Textile glass fiber	571.6	688.5	163.4			172.7			170.4			182.0				
Exports: Yarns and monoflaments ...--thous. lb.-	117,405	${ }^{5} 252,829$	18, 196	20,743	19,451	21,773	19, 802	17,099	27, 451	25,270	27, 213	27, 232	29,907	27,351	27,509	
Staple, tow, and tops.-----.-.---.-. do.	205, 485	316,441	25,082	27,438	28, 661	24,730	25, 523	21, 196	29, 190	29,687	25,025	28,425	34, 536	25,248	32,515	
Imports: Yarns and monofilaments..........-do...-	249,948	171, 102	22,692	19,277	16,876	14,695	11, 281	10,511	6,877	8,242	6,986	4,510	6,049	4,305	4,935	
	157, 857	164, 251	14,504	10,329	16,759	16,276	18, 172	13, 033	11,032	14,487	13, 266	8,861	13,358	6,439	10,254	
Stocks, producers', end of period:																
Filament yarn (rayon and acetate) . ...-.mil. lb.-	61.6	46.4	60.7			48.9			48.4			46.4				
Staple, incl. tow (rayon) --..-.----.-.-..- do...-	61.5	34.0	50.9			32.5			26.5			34.0				
Noncellulosic flber, except textile glass:																
Yarn and monoflaments...-...----.--- do...-	293.7	232.2	279.9			250.0			254.8			232.2				
	298.1	186.5	259.3			228.6			199.6			186.5				
	84.0	70.8	75.4			70.2			69.4			70.8				
Prices, manmade flbers, f.o.b. producing plant:   Staple: Polyester, 1.5 denfer.............	. 62	${ }^{4} .61$	. 61	. 61	. 61	. 61	. 61	. 61	. 61	. 61	. 61	. 61	, 61	.61	. 61	. 61
Yarn: Rayon (viscose), 150 denier-.........do..... Acrylic (spun), knitting, 2/20, 3-6D..do....	1.03 1.22	1.04 1.30	1.02 1.28	1.03 1.30	1.05 1.31	1.05 1.31	1.05 1.31	1.05 1.32	1.05 1.32	1.05 1.32	1.05 1.32	1.05 1.32	1.08 1.32	1.11 1.32	1.13 1.32	1.15 1.35
Manmade flber and silk broadwoven fabrics:																
Production (qtrly, ) total 9 --..-.--mil. lin. yd..	5,530.9	6,033. 5	1,555.4			1,551.4			1,397.5			1,529.2				
Fllament yarn (100\%) fabrics 9 -	1,723.0	1,895. 0	1,580.4			1,577.2			137.2			500.6				
Chlefly rayon and/or acetate fabries....do....	806.2	173.1	126.2			122.2			109.1			115.6				
Chiefly nylon fabrics...-.-.-.-.-.-.-.- do...-	377.0	365.8	99.7			94.1			85.7			86.3				
Spun yarn (100\%) fab., exc. blanketing $\%$. do.... Rayon and/or acetate labrics and blends	3,062.6	3,451.6	895.4			895.7			799.5			861.0				
Polyester blends with eotton do-.--	428.2	435.5	115.5			115.0			105.3			99.7				
Polyester blends with cotton.-.....-.-do.---	2,190.1	2,438.7	641.0			639.3			554.2			604.2				
Filament and spun yarn fabrics (combinations and mixtures) $\qquad$ mil. lin. yd	515.4	474.7	123.6			119.6			113.4			118.1				
WOOL AND MANUFACTURES																
Wool consumption, mill (clean basis):																
	142.2	112.4	9.6	${ }^{2} 10.9$	10.1	9.7	38.7	8.6	8.1	${ }^{2} 10.6$	7.1	6. 4	28.0	6.3	6.6	
	76.4	41.4	4. 2	25.0	3.7	3.5	${ }^{2} 2.9$	2.9	2.3	22.8	1.9	1.3	${ }^{28.0}$	2.0	1.7	
	96.6	59.8	5.7	5.6	6.4	6.8 5.3	5.6	4.7	2.8	2.9 2.2	2.6 1.4	2.1	1.6	3.0 1.1	2.5	
	71.8	40.6	3.1	3.6	4.3	5.3	4.7	3.5	2.1	2.2	1.4	1.3	1.1	1.1	1.7	
Wool prices, raw, clean basis, Boston:																
Graded territory, fine.................- per lb.	1. 157	2.500	3.025	2.338	2.335	2.575	2.600	2.750	2.750	2. 630	2.419	2.375	2.360	2.225	1. 975	1. 850
	. 925	1.594	2.075	1. 462	1.375	1. 600	1. 650	1. 700	1.512	1. 420	1.475	1.500	1.480	1.388	1. 350	1. 362
Australian, 64s, warp and half-warp...-......do.-.--	1.321	3.036	3. 968	2.955	3. 093	3.242	3. 215	3.210	2.942	2. 741	2.596	2.825	2.725	2.532	2.400	2. 360
Wool broadwoven goods, exc. felts:   Production (qtrly.) $\qquad$ mil. lin. yd.-	101.8	106.2	29.7			30.8			24.9			20.8				
FLOOR COVERINGS																
Carpet and rugs:*																
Rugs, carpet, and carpeting, shipments, quarterly:																
T otal woven, tufted, other . . ......mil. sq. yds..	934.9	1,028.8	251.3			259.9			256.6			261.0				
${ }^{r}$ Revised. ${ }^{1}$ Season average. ${ }^{2}$ For 5 weeks; other months, 4 weeks. ${ }^{3}$ Less than 500 bales. "Price not directly comparable with earlier data. ${ }^{5}$ Annual total; revisions rect distributed by months or quarters. 6 Effective Nov. 1, 1973, Little Rock, Ark., deleted $\pi / 2 \mathrm{~m}$ market average. ${ }^{7}$ Preliminary average based on sales through Feb. 1974.						*New series. Cotton market price (U.S. Department of Agriculture) available monthly back to 1947. Carpet and rug shipments (Bureau of the Census) quarterly data back to 1968 are available. For 1973, data have been revised to omit estimates for rugs not specified by kind; these estimates have been temporarily withdrawn.   \% Includes data not shown separately.										


Unless otherwise stated in footnotes below, data through 1972 and descriptive notes are as shown in the 1973 edition of BUSINESS STATISTICS	1972	1973	1973										1974			
	Annual		Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.

TEXTILE PRODUCTS—Continued


228,723	228, 269	20,354	17,805	17,875	22, 267	19,851	23,066	19,982	22,
18, 174	${ }^{16,701}$	1,589	1,649	1,372	1,278	862	1,480	1,401	7
18, 202	18, 801	1,830	1,697	1,665	1, 533	1,125	1,689	1,541	1,77
182, 31	149, ${ }^{13,447}$	14, 1,097	13, 1,342	15, 123	13, 1,36	1, ${ }^{1,1206}$	13, 1,010	11, 1115	
20,914	33, 392	2,925	2,768	2,920	3, 001	2,113	2,942	2,739	3,067
20, 877		1,492	1,571	1,751					
221,546		20, 864	20,648	16, 614					
13,824   5		1,722	1,677	1,753					
5,319		858	740	737					



TRANSPORTATION EQUIPMENT

AEROSPACE VEHICLES																
ders, new (net), qtrly. tota	23,842	27,034	7,115			6,099			6,908			6,912				
U.s. Government.-------	14, 177	15,920	3,568			3,709			4,442			4,201				
Prime contract--..---------------	21, 274	24, 414	6,381			5,567			6,252			6,214				
Sales (net), recelpts, or billings, qtriy, total..do U.S. Government	21,499 13,492	24, 274	6,637 3,403			6,532 3,723			5,646			6,462 3,809				
U.S.																
acklog of orders, end of perlod	26,922	29,679	28,400			27, 967			29,229			29,679				
U.S. Govern	15,322	16,710	15,487			15, 473			16,318			16,710				
Alrcraft (complete) and parts...............-do.	13,060 2,572	13,567 2,804	$\begin{array}{r}13,736 \\ 2 \\ \hline\end{array}$			13,507 2,763			$\begin{array}{r} 13,765 \\ 2,756 \end{array}$			13,567 2,804				
Engines (aircraft) and parts. $\qquad$   Missiles, space vehtcle systems, engines, propu	2,572	2,804	2,650			$2,763$			$2,756$			2,804				
sion units, and parts ...e...........-mil.	5,272	5,671	5, 653			5,255			6,010			5,671				
Other related operations (conversions, modifici tlons), products, services..........-mil.	2,990	2,939										2,939				
Arcraft (complete)																
	$3,231.8$ 47.694	4,588.2	364.6 5462	435.8	599.6 7.698	436.9 5.376	332.2 4,630	4.1	${ }_{4.12}^{285}$	$\begin{aligned} & 252.2 \\ & 3,856 \end{aligned}$	$\begin{aligned} & 454,2 \\ & 5,717 \end{aligned}$	$516.8$	$\begin{array}{r} \mathbf{r} 321.5 \\ \mathbf{r} \mathbf{3}, \mathbf{4} 7 \end{array}$	$\begin{aligned} & 502.1 \\ & 6.312 \end{aligned}$		
Exports, cominerclai...............................ill \$..	1,608.7	2,311.0	3,462 325.2	205.0	7,698 314.2	5,376 145.2	4,690	4.196 125.0	4,112 210.9	88.7	254.5	6,86. 256	134.6	360.8	381.7	
MOTOR VEHICLES																
Factory sales (from plants in U.S.), total....tho	11, 270.7	$12,637.3$	1,220.0	1, 096.5	1,219.8	1,186. 3	949.1	640.1	943.4	1, 231.9	$1,139.8$	737.9	855.9	781.4	857.9	20
	10,646. 8	11,865.7	1, 143.1	1, 021.5	1, 140.4	1, 122.5	898.3	603.6 440.3	878.0	${ }^{1}, 143.7$	$1,062.3$ 887.8	691.9 540.0	787.6 599.9	780.3 551.9	774.1 616.0	
	8, 8 852.5	9,67.6 $9,078.8$	941.2 882.8	844.0 786.6	940.9 880.1	921.3 873.3	714.0	440.3 415.7	766.9	- 885.2	${ }_{827.1}^{87}$	5407.1	532.1	${ }_{501.5}^{551.9}$	656.0 557.1	2674
Trucks and buses,	2,446.8	2,979.7	278.7	252.5	278.9	265.0	235.1	199.7	226.5	276.4	${ }_{235}^{252.0}$	197.8	${ }_{2356}^{256}$	229.5	241.9	${ }^{2} 246$.
Domestle.	2,294.4	2,786.8	260.3	234.8	260.3	249.2	220.8	187.8	211.9	256.5	235.1	184.8	235.6	206.8	217.0	
Retall sales, new																
Total, not seasonally adjusted..............thou	10,950	11,457	1,144	1,025	1,146	1,086	961	86	875						780	703
Dmports $\triangle$ -	9,327 1,623	9,676 1,781	180	${ }_{162}^{863}$	174	909 178	808 153	+686	754   121				551 128			703
Total, seasonally adjusted at annual rates...m			13.0	12.4	12.5	11.6	11.8	11.5	11.7	9.9	10.1	9.5	9.3	9.1	9.2	9.
Domestres $\triangle$.............................. do			11.0	10.5	10.7	9.7	10.0	1.9	10.2	8.4				7.6	7.7	
Imports $\triangle$.			. 9	1.9	1.8	1.8	1.8	1.7	1.5	1.5	1.8	1.8	1.7	1.6	1.4	1.3
Retall inventories, new cars (domestics), end of period: $\triangle$   Not seasonally adjusted......................thous..									1,360		1,628	1,600				
Seasonally adjusted..............................do	1,454	1,765	1,493	1,480	1,452	1,523	1, 592	1,553	1,478	1,664	1,812	1,765	1,713	1,644	1,540	1,499
ventory-sales ratio, new cars (domestics) $\Delta$	2.0	2.0	1.6	1.7	1.6	1.9	1.9	1.9	1.7	2.4	2.6	2.7	2.7	2.6	2,4	
Exports (Bureau of the Census):																
Passenger cars (new), assembled..........thous.. To Canada	410.25 376.23	509.19 452.37	53.3	51.06 46.94	49.62 48.81	41.74 38.24	30.27   26.08   1	20.95 18.68	40.33 37.55	54.46 47.32	43.18 34.80	52.66 45.71	42.37 33.00	47.06 40.96	56.10 49.20	
Trucks and buse	120.62	452.37 151.65	48.59	46.94 14.80	4.8181 13.49	38.24 12.96	12.67	18.68 9.18	${ }_{9}{ }_{9} 1.14$	14.08	11.22	${ }_{12.71}$	13.37	18.84		
Imports (Bureau of the Census): Passenger cars (new),																
Passenger cars (new), complete units From Canada, totail..............	2, 485.90	2,437.34	247.73 91.02	203.09 64.37	253.73	232.73 91.01	$\begin{array}{r}189.15 \\ 56.34 \\ \hline\end{array}$	149.32   28.86	$\begin{array}{r}140.56 \\ 61.60 \\ \hline\end{array}$	203.04	222.18   84.03   1.80	148.03   55.77   37	252.03 74.28 50	245.01	$\begin{array}{r}254.71 \\ 80.08 \\ \hline\end{array}$	
Trucks and buses $\downarrow$	${ }^{829.41}$	800.68 50	${ }_{39.61}^{91.02}$	64.37 37.36	100.69 51.39	${ }_{48.46}$	${ }_{37}{ }^{56,158}$	39.79	36.96	48.86	46.80	37. 35	51.42	48.90	43.41	
Truck trailers and chassis, complete (exclud detachables), shipments $\oplus \ldots \ldots . . . .$. numbe								12,997	12,915	15,585	14,839	14, 201	-15,240	15,248		
	${ }^{\text {P95, }} 481$	-109,061	9,599	${ }_{8}^{13} 9$	-14,222	9,002	8,792	8,690	8,441	10, 384	10, 139	9,723	+10,130			
Trailer bodies (detachable), sold separate ....d	18, 166	- 18,626	1,969	1,948	1,365	1,512	1,935	963	1, 068		1,337	1,596	1,887	1,190		
Trailer chassis (detachable), sold separate....do	15,498	- 12,441	1,384	707	696	1,028	1,078	1,012	828	1,018	977	912	1,027	478		
Registrations (new vehicles): $\odot$																
Passenger cars--....i. Imports, incl. domestically sponsored........do	1410,488 $1+1,529$	- $\begin{gathered}1411,351 \\ 141,720\end{gathered}$	4   4   4   162.4   162.4	${ }^{4} 968.7$	[ $\begin{aligned} & 41,061.2 \\ & 1170.6\end{aligned}$	[ $\begin{array}{r}41,068.9 \\ 1163.7\end{array}$	$41,103.1$ 1167.3 18	4   4   3   159.6   25.1	4815.9 4132.6 4	4 419.5	4888.6 4119.6 4	4875.6   4141.8   4	( $\begin{aligned} & 4643.4 \\ & 4110.8 \\ & 4\end{aligned}$	3   3   3   3   3	3650.6   3   3   114.9	
Trucks........................................do	1 42,514	14,029	+ 460.1	${ }^{1} 262.7$	- 264.7	${ }_{4} 279.2$	4281.1	${ }^{3} 275.0$	4240.8	4252.2	- 243.4	1248.0	4190.0	${ }^{3} 178.2$	${ }^{2} \mathbf{2 1 0 . 8}$	
RAILROAD EQUIPMENT																
Freight cars (all rallroads and private car lines) Shipments																
Equipment manulacturers............................		54,	4, 4,912	$\stackrel{4}{4,766}$	4, 4,377	$\xrightarrow{4,647} 4$	$\xrightarrow{3,727}$	$\xrightarrow{4,464}$	4,797	6, 6	5,9	5,2	5,8		5,112	
New orders --.-.-..........................-do	147,915	1105,765	5,48	13,994	6,551	11,664	5,582	5,461	8 8,142	13, 535	9,73	11,79	11,246	6,731	10,514	
Equipment manufacturer	1 42, 343	1102, 136	5. 433	13, 894	6,121	10,964	5,282	5,461	7,442	13,410	9,436	11,745	8,921	6,231	10,345	
Unflled orders, end of period	21,244	67,199	26,535	36,527	38,027	44,469	46,097	47,067	50.781	57, 313	${ }^{60,799}$	67, 198	72,622	75, 2228	79, 725	
Freight cars (revenue), class 1 railroads (AAR):	17,666	65, 380	24, 140	34, 267	35, 624	41,600	43, 189	44, 408	47,714	55, 078	58,606	65, 38	68,689	70,922	75,	
Number owned, end of period..............thous.Held for repairs, \% of total owned	1,411 5.8	1,395 6.3	$1,408$	$\begin{aligned} & 1,407 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 1,403 \\ & 58 \end{aligned}$	1,402   5.8   8	1,401 6.0	1,396 6.1	1,395 6.2	1,393 6.2	1,395 6.3	$\xrightarrow{1,395}$	1,398 6.3	394   6.4  	394 6.2	
Capacity (carrying), total, end of mo..mil.	98.0	98.19	98.20	98.41	98.12	98.07	98.12	97.89	97.94	97.95	98.19	98.19	98.61	98.44	98. 65	
Average per car.........................tons..	69.53	70.38	69.74	69.83	69.93	69.97	70. 06	70.12	70.20	70.31	70.39	70.38	70.56	70.61	70.76	
* Revised. ${ }^{1}$ Annual total includes revisions not distributed by months. ${ }^{3}$ Estimate   $\%$ Total includes backlog for nonrelated products and services and basic research. of production, not factory sales. ${ }^{3}$ Excludes 2 States. $\&$ Excludes 1 State. $\ddagger$ Revisions appear in Census report, Men's and Women's Selected Monthly Apparel Cuttings, 1971-72   $\triangle$ Domestics include U.S.-type cars produced in the United States and Canada; imports (MA-23A Supplement), Sept. 1973. o'Effective 1973, data reflect new benchmarks and cover foreign-type cars and captive imports, and exclude domestics produced in Canada. revised sampling; shirts include knits (from knitting mills) not included in data prior to 1973.   EEffective Sept. 1973 SURVEY, data include imports of separate chassis and bodies.   -New series. Data cover all types of men's jeans, but exclude dungarees, overalls, and   $\oplus$ Effective Feb. 1974 SURvEY, excludes shipments of dollies and converter gear. work pants; no data available prior to 1973.   Courtesy of R. L. Polk \& Co.; republication prohibited.   §Eycludes railroad-owned privaterefrigerator cars and private line cars.																


SECTIONS	
General:	
Butinese indicators.	1-7
Commodity prices.	
Domestic trade...	11-13
Labor force, employment, and carnings	13-17
Finance.	
Foreign trade of the United States	22-24
Transportation and communication	24-25
Industry :	
Chemicals and allied products.	6
Electric power and gas	26
Food and kindred producti	27-30
Leather and products.	30
Stone, clay, and glass products   Textile products.   Transportation equipment	

INDIVIDUAL SERIES



Gas, output, prices, sales, revenues . . . . . . . . . . . 5, 9, 26	
Gasolin	35
Glass and products	38
Glycerin	26
Gold.	19
Grains and products	8, 9, 22, 27, 28
Grocery stores	12,13
Gross national product	1
Gross national product, price deflators	2
Gross private domestic investment	1
Gypsum and products.	9,38
Hardware stores.	12
Heating equipment	9,34
Hides and skins.	9,30
Highways and roads	10, 11
Hogs.	28
Home electronic equipment	
Home Loan banks, outstanding advances.	1
Home mortgages.	11
Hosiery .	
Hotels and motor-hotels	25
Hours, average weekl	15
Housefurnishings.	1, 4, 8, 11, 12
Household appliances, radios, and telev	$\begin{aligned} & \text { on sets. } 4 \text {, } \\ & 8,9,12,34 \end{aligned}$
Housing starts and permits.	
Imports (see also individual commodities). . . 1, 3, 23, 24	
Income, personal	
Income and employment tax receipts.............. 19 Industrial production indexes:	
By industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,5	
Installment credit. . . . . . . . . . . . . . . . . . . . . . . . . . 13, 18	
Instrumente and related products. . . . . . . . . . 4, 6, 14, 15	
Insurance, life.	
Interest and money rates...................... 18	
Inventories, manufacturers' and trade....... 5-7, 11, 12 Inventory-sales ratios.	
Iron and steel. . . . . . . . . . . . . . . . . . 4,9,1	11, 20, 23, 31, 32


Labor advertising index, stoppages, turn	16
Labor force.	13
Lamb and mutton	28
Lead	33
Leather and products. . . . . . . . . . . . . . . . . 4,9,	30
Life insurance.	19
Liventock.	28
Loans, real estate, agricultural, bank, brokers' (see also Consumer credit).	$18,20$
Lubricants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 35,	35, 36
Lumber and products. . . . . . . . 4, 9, 11, 12, 14, 15, 20 ,	20,31
Machine tools.	
Machinery. . . . . . . . . . . . . 4, 6, 7, 9, 14, 15, 20, 23, 24,	24,34
Mail order houses, sales	
Man-hours, aggregate, and indexes.	
Manmade fibers and manufactures. . . . . . . . . . . . 9,	9,39
Manufacturers' sales (or shipments), inventories, orders.	
Manufacturing employment, unemployment, production workers, hours, man-hours, carnings. . . 14-	$14-16$
Manufacturing production indexes. . . . . . . . . . . . 4	4,5
Margarine.	
Meat animals and meate. . . . . . . . . . 3, 8, 9, 22, 23, 28,	28, 29
Medical and personal care	
Metals. . . . . . . . . . . . . . . . 4-7, 9, 14, 15, 20, 22, 23, 31	31-33
Milk.	
Mining and minerals. . . . . . . . . . . . . . . 2, 4, 5, 9, 14-16,	16,20
Monetary statistics. . . . . . . . . . . . . . . . . . . . . . . . . . 19,	19,20
Money supply.	
Mortgage applications, loans, rates . . . . . . .11, 17, 18,	18,19
Motor carrie	
Motor vehicles . . . . . . . . . . . . . . . 1, 4, 6, 8, 9, 11, 20, 23,	23,40
Motore and ge	



UNITED STATES
Government Printing Office E..BLC DOCUMENTS DEPARTMEN WASHINGTON. D.C. 20402

Official Business


First-Class Mail


## It's Here! <br> The 1973 edition of the Handbook of Labor Statistics

An historical reference volume of the major statistical series of the U.S. Department of Labor's Bureau of Labor Statistics. Featuring:

- Historical tables (176) from beginning - A table of sources of additional information: of the series through 1972;
- Last 2 years of data shown monthly for many tables;
- An index:
- Data for foreign countries covering labor force
- Technical notes covering each series; productivity, earnings, prices, and work stoppages.


## Order Now! 11 BLS Bulletin $1790 \quad$ Price: $\$ 3.75$

Please make check or money order payable to the Superintendent of Documents and mail to any of the following regional addresses:
 Boston, Mass. 02203

300 S. Wacker Dr. 1515 Sroadway, Suite 3400
P.O. Box 13309

371 Peachtree St., NE.
$\qquad$ Philadelphia, Pa. 19101 Atlenta Ge 30309

$$
\begin{aligned}
& \text { Nox Commerce St., Rm. } 687450 \text { Golden Gate Ave, Box } \\
& \text { Dallas, Tex. } 75202
\end{aligned}
$$

or to the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.


## SURVEY OF CURRENT BUSINESS



Local Area Personal Income

## SURVEY OF CURRENT BUSINESS

## CONTENTS

# Local Area Personal Income-Concepts, Uses, and Methodology 

Table 1. Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years, 1950-72

## Table 2. Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972

Appendix B.-Classification of SMSA's

CURRENT BUSINESS STATISTICS


General S1-S24

Industry $\mathbf{S 2 4 - S 4 0}$

Subject Index (Inside Back Cover)

## U.S. Department of Commerce

Frederick B. Dent / Secretary<br>Sidney L. Jones / Assistant Secretary for Economic Affairs<br>Edward D. Failor / Administrator, SESA

Bureau of Economic Analysis
George Jaszi / Director
Morris R. Goldman / Deputy Director
Leo V. Barry, Jr. / Statistics Editor
Billy Jo Hurley / Graphics

Staff Contributors to This Issue


Staf Contributors to This Issue

Regional Economic Measurement Division

Annual subscription, including weekly statistical supplement: $\$ 34.45$ domestic, $\$ 43.10$ foreign. Single copy $\$ 2.25$. Order from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, or any Commerce Field Office. Make check payable to Superintendent of Documents.
Annual subscription in microfiche, excluding weekly supplement: $\$ 9$ domestic, $\$ 12$ foreign. Single copy $\$ 1.45$. Order from National Technical Information Service, Springfield, Va. 22151.

Address change: Send to Superintendent of Documents or NTIS, with copy of mailing label. For exchange or official subscriptions, send to BEA.
Editorial correspondence: Send to Bureau of Economic Analysis, U.S. Department of Commerce, Washington, D.C. 20230.
 printing this periodical has been approved by the Director of the Office of Management and Budget through September 1, 1975.

## U.S. DEPARTMENT OF COMMERCE DISTRICT OFFICES

	Albuquerque, N. Mex, 87101   316 L.S. Courthouse 843-2386.
	$\begin{aligned} & \text { Anchoraqe, Alaska 99n01 } \\ & 632 \text { Sixth Ave. } 272-6531 . \end{aligned}$
	Atlanta, Ga. 30309   1401 Peachtre St. NE. 526-6000.
	Haltinore, Md. 21202   415 U.S. Customhurese 962-3560.
	$\begin{aligned} & \text { Bgston, Mass. } \quad 02116 \\ & 441 \text { Stuart St. } \quad 223-2312 . \end{aligned}$
	$\begin{aligned} & \text { Buffalo, N.Y. } 14202 \\ & \text { lll W. Huron St. } 842-3208 . \end{aligned}$
	$\begin{array}{cc} \text { Charleston, s.C. } & 29403 \\ 334 \text { Meeting St. } & 57-1171 . \end{array}$
	Charleston, W. Va. 25301 500 Quarrier St. 343-6181.

Cheyenne, Wyo. 82001
2120 Capitol Ave. $\quad 788-2220$.
Chicago, 111. 60603
Room I 406 Mid-Continental Plaza Bld $\%$. 353-4400,

Cleveland, Ohio 44111
666 Euclid Ave. 522-4750.
Dallas, Tex. 75202 1100 Commerce St. $749-3287$.
Denver, Colo. 80202 Denver, Colo. 80202
19th \& Stout Sts. $837-3246$.

Des Moines, lowa 50309 609 Federal Bidg. 284-4222. Detroit, Mich. 48226 445 Federal Bldg. 226-6088. Greensboro, N.C. 27402 258 Federal Bhig. $\quad 275-1011 \mathrm{I}$.

Harlford, Conn. 06103 450 Main St. $244-3530$.

Honolulu, Hawaii 96813 286 Alexander Young 13/dg. 546-8694.

Housion, Tex. 77002 1017 Old Federal B11g. 226-4231.

Jacksonville, Fla, 32207
1080 Woodeock Dr. $\quad 791-2796$
Kansas City, Mo. 64106 Kansas City Mo,
601 East 12 th St.

Los Angeles, Calif 90024

Memphis, Tenn. 38103 147 Jefferson Aye. 38103 -3214. Miami. Fla. 33130 25 West Flagler St

Milwaukee, Wis. 53203 238 W. Wisconsin Ave. $224-3473$.
Minneapolis, Minn. 55101 306 Federal Bldg. $\quad$ 725-2133.

Newark, N.J. 07102
24 Commerce St. 645-6214
New Orleans, La. 70130 610 South St. $527-6546$.
New York, N.Y. 10007 26 Federal Plaza 264-0634.
Philadelphia, Pa. 19107 1015 Chestaut St. $\quad 597-2850$.

Phoenix, Ariz. 8500.4 112 N. Ceutral $261-3285$.

Pittsburgh, Pa. 15222 1000 Linerty Ave. 611-2850.
Portland, Ores. 97205
921 S.N. Washington St. 221-300i.

Reno, Nov. 89502
300 Booth St. $\quad \mathbf{~ 8 4 4 - 5 2 0 3 . ~}$
Richmond, Va. 232.40 Richmond, Va. Blas.40
2105 Federal Bldg. $762-2246$. St. Louis, Mo. 63103 2511 Federai Bldg. 622-4243.

Salt I, ake City, Utah B4111
125 South State St. $\quad \mathbf{5 2 4 - 5 1 1 6 .}$
San Francisco, Calif. $\quad 9.4102$
450 Golden Gate Ave.
$\mathbf{5 5 6}$
San Juan, Puerto Rico 00902 San Juan, Puerto Rico ore
100 P.O. Bldg. $\quad 723-4640$.

Savannal, Ga. $\quad 31402$ and P.O. Bldg. 232-4321.


## Local Area Personal Income

SOINCE 1967, the May issue of the Survey has presented BEA's annual estimates of personal income in standard metropolitan statistical areas (SMSA's). This issue continues the SMSA series and, for the first time, covers the 2,472 counties that lie outside of SMSA's. Estimates of total personal income are shown for 1950 , 1959, 1965, 1969, and 1972; estimates of per capita income are shown for 1950 and 1972; and industrial sources and types of income are shown for 1972.

Each of these estimates is available for $1929,1940,1950,1959,1962$, and 1965-1972 for the 2,725 SMSA's and
non-SMSA counties-hereafter referred to as local areas. Space considerations preclude full publication in the Survey. However, for those who wish additional data, Appendix A provides a list of agencies to which BEA supplies annually estimates for the local areas of the State in which the agency is located.

This article presents information which should be helpful to the users of these local area income series.

## Personal income defined

Personal income is the current income received by residents of an area from all sources. It is measured before

## Acknowledgments

$$
\begin{array}{cll}
\begin{aligned}
\text { The regional economic measurement }
\end{aligned} & \text { farm Proprietors Income, Other Labor } \\
\text { program is under the general supervision } \\
\text { Income, Property Income, Transfer Pay- } \\
\text { of Robert E. Graham, Jr., Associate Direc- } \\
\text { tor for Regional Economics. The personal } & \text { Insurance: Vivian G. Conklin, Wallace K. } \\
\text { income estimates were prepared under the } & \text { Bailey, Jr., Joan Bolyard, Robert Brown, } \\
\text { direction of Edwin J. Coleman, Chief of } & \text { Fredric W. Gatlin, Raymond K. Leach, } \\
\text { the Regional Economic Measurement Di- } & \text { Judith Meckley, Susan R. Mullaney and } \\
\text { vision, assisted principally by Kenneth P. } & \text { Katharine Richardson. } \\
\text { Berkman, Chief of the Government, } & \text { The tables in this issue as well as the } \\
\text { Proprietary and Investment Income } & \text { materials distributed to the agencies in } \\
\text { Branch and Elizabeth H. Queen, Chief of } & \text { each State shown in Appendix A were } \\
\text { the Private Wage and Income Branch. } & \text { prepared under the direction of Linnea } \\
\text { Important contributions in specific areas } & \text { Hazen, Acting Chief of the Regional } \\
\text { were made by the following persons in the } & \text { Economic Information System Branch. } \\
\text { Regional Economic Measurement Division. } & \text { Specific contributions in this area were } \\
\text { Private Nonfarm Wage and Salary } & \text { made by Hazel E. Turner, Louise T. } \\
\text { Income: Michael P. Carroll, Truetella } & \text { Johnson, Mary C. Williams, Eunice P. } \\
\text { Fuller, Esther V. Harrell, Duhurst R. } & \text { James, Paul Levit, Ronald Reel, and } \\
\text { Hood, Mildred L. Hynson, Myles Levin, } & \text { Madge Watson. } \\
\text { AlanJ. Millican, Evelyn Newman, William } & \text { The extensive amount of data processing } \\
\text { E. Reid, Jr., Victor Sahadachny and } & \text { support required during all phases of the } \\
\text { John N. Wells. } & \text { local area personal income project was } \\
\text { Farm Income: Q. Francis Dallavalle and provided by the Computer System and } \\
\text { Gordon H. Lester, Jr. } & \text { Services Division's Operation Branch under } \\
\text { Government Wages and Salaries, Non- the direction of Robert E. Shuck. }
\end{array}
$$

deduction of income and other personal taxes, but after deduction of personal contributions to social security, government retirement, and other social insurance programs. It consists of wages and salaries (in cash and in kind and including tips and bonuses as well as contractual compensation), various types of supplementary earnings termed "other labor income" (the largest item being employer contributions to private pension, welfare, and health funds), the net incomes of owners of unincorporated businesses (farm and nonfarm, including the incomes of independent professionals), net rental income, dividends, interest, and government and business transfer payments (consisting in general of disbursements to persons for which no services are rendered currently, such as unemployment benefits, social security payments, veterans' benefits, welfare and relief payments, and consumer bad debts).

Local area personal income conforms to the U.S. personal income series included in BEA's national income and product accounts with one exception. Income paid by the Federal Government to its civilian and military personnel stationed temporarily abroad is included in national personal income but excluded from local area personal income.

## Place-of-work or place-of-residence

From the foregoing definition, it is evident that personal income is a measure of income received and not of income produced. To measure personal income in local areas, a choice regarding the geographic location of the income recipient must be made. Should personal income be measured according
to where the recipient performed the work for which the income was received or according to where the recipient lived?

For property income and transfer payments, which account for about 25 percent of personal income on the average, place-of-residence is the only concept appropriate for measuring personal income. Property income could be measured in terms of place-of-work by allocating these incomes to the geographic areas in which the businesses that generated them are located. However, numerous conceptual and statistical difficulties stand in the way of applying this criterion. Also, such a criterion would yield a result more suited for inclusion in a measure of income produced (area income or gross area product) than for inclusion in a measure of income received (personal income). Income produced would constitute a useful addition to the tools of regional economic analysis, of course, but the concern here is with measurement of personal income and not of income produced. Similarly, transfer payments cannot be allocated according to place-of-work because, by definition, transfers consist of payments to persons for which no services (work) are rendered currently.

For labor income (wages and salaries, proprietors' income, and other labor income), place-of-work or place-ofresidence of the income recipient can be used, as either would constitute an appropriate component of income received, or personal income. The difference between the place-of-work and place-of-residence measure is the net flow of commuters' earnings. That is, earnings of persons working in an area minus the earnings of those working in the area but living in another area plus the earnings of persons residing in the area but working in another area equal area earnings on a residence basis. The difference between this measure of labor earnings and its place-of-work counterpart is the residence adjustment shown in the fifth from the last column of table 2 .

The fact that only the place-ofresidence criterion can be used for propertyincome and transfer payments
necessitates use of the residence criterion for labor income in order to have an internally consistent measure. Therefore, both total and per capita income wherever used in this report reflect the place of residence of the recipient.

Data considerations require that the labor component of personal income be measured first on a place-of-work basis by industry. The all-industry total for each area is then converted to a place-of-residence basis by means of the residence adjustment previously noted. To the total of earnings by place-ofresidence are added property income and transfer payments to yield total personal income on a residence basis.

Although the measurement of labor earnings by place-of-work and their subsequent conversion to a place-ofresidence basis are necessitated by data considerations, place-of-work earnings constitute a most useful analytical tool in their own right on two counts.

First, analysis of factors responsible for changes in total income focuses mainly on labor earnings, because in most areas they constitute about threefourths of total income. Changes in this component can be understood best by first analyzing changes in industrial composition via the place-of-work series. Place-of-work is preferable to place-of-residence for this purpose because interindustry relationships display greater regularity on a place-ofwork basis. After industrial changes in total labor earnings on a place-of-work basis are understood, these changes are then carried through the residence adjustment to total income in the area.

Thus, the initial cause of a change in total income is derived through analysis of the residence-based aggregates. If the change centers in the labor earnings component rather than in the transfers or property income components, as is usually the case, intensive analysis is then focused on the more detailed place-of-work based earnings component.

Second, since comprehensive measures of production (area income or product) do not exist, labor earnings, by industry and place-of-work, can serve as a proxy for regional output in many industries. The analyst can gauge the suitability of the measure for the industry under analysis by comparing
the earnings component for the U.S. as a whole in a given industry $w^{\text {th }}$ GNP, or national income, in that in dustry. Satisfactorily close movements * between the two, which are quite likely to hold in the long run, would be taken as an indication of the suitability of area earnings by place-of-work as a proxy for output.

## Uses of local area personal income

Since most personal consumption expenditures are made out of personal income, this aggregate is a good measure of the relative size of the consumer market even though at this time adjustments for personal taxes, consumer interest, foreign transfers, and saving which also come out of personal income have not been made for local areas. Consumer markets in the Nation vary greatly in size. Personal income in 1972 ranged from less than $\$ 1$ million in some local areas to more than $\$ 60$ billion in the New York Metropolitan Area, with the 2,725 areas well scattered over this wide range. Among areas, median personal income in 1972 was $\$ 57$ million. Because of differences in size of per capita income, total income is a much more precise measure of the size of consumer markets than is population.

The labor earnings component of personal income serves to identify the type and quantity of industry present in an area and, therefore, is an indirect indicator of industrial markets. For example, data on mining earnings in table 2 indicate that the counties of Cheyenne, Colorado; McDaniel, West Virginia; and Midland, Texas are centers of mining activity. If headquarters of mining companies rather than producing units are the major concern of the analyst, the SMSA's of Pittsburgh, Los Angeles, and Tucson constitute principal markets for mining supplies.

To those accustomed to gauging the importance of farming by the size of cash receipts, farm earnings in a given county may seem low. However, two points must be taken into account. First, farm earnings do not measure receipts from farming but only the net personal income generated in the in-
dustry. That is, farm earnings are the sum of farm wages, supplementary farm labor income and net profits of the farm operator. A large part of total farm receipts are used to pay for supplies and services, such as fertilizer, machinery, and fuel, produced by other industries.

Second, in areas where corporate farms predominate, labor earnings will be comparatively small, for the only portion of corporate farm income included in labor earnings are wages and salaries and other labor income. No part of corporate farm profits is included in labor earnings. Indeed, only a small portion of corporate profits-dividends paid to stock-holders-is included in personal income and dividends are not identified by industry or county of origin.

The largest manufacturing centers, as measured by labor earnings, are the Chicago, New York, Detroit, Philadelphia, and Boston SMSA's, in that order. Largest service industry concentrations are in New York, Los Angeles, Chicago, Boston, and Philadelphia. If a narrower and more specialized service market such as that for hotel, entertainment club, and restaurant supplies is required, Miami and Las Vegas qualify as leading areas. If the market sought covers educational supplies and services, numerous SMSA's would qualify with the Boston area the leading market.

## Use of per capita income

When expressed on a per capita basis, personal income is an indicator of the quality of consumer markets and of economic welfare. Area differences are large.

First, there are the extremes. In about a dozen counties, 1972 per capita income ranged from $\$ 7,000$ to $\$ 11,000$, while in 22 , the range was between $\$ 6,000$ and $\$ 7,000$. At the other end of the scale, there are 48 counties in which per capita incomes were below $\$ 2,000$, or less than half the national average. These 82 counties are generally small and most were affected by unusual conditions such as a bumper crop, a major construction
job (i.e., a defense facility, a nuclear plant, or a dam), or a catastrophe (i.e., floods, tornadoes, or droughts). In many instances, the unusually high (low) level of per capita income is temporary. In some instances, a high per capita income is illusory as when a construction project brings in a large number of high paid workers who live near the site, who are included in the population count, but who send a substantial portion of their wages to their dependents living at their permanent homes in other counties. Also, because population (the denominator) is measured as of one date whereas income (the numerator) is measured as a flow over the calendar year, a significant change in population during the year can cause a distortion in the
per capita figure. The nearer to midyear that the change occurs, the greater the distortion.

The $\$ 4,000$ per capita income range (from $\$ 2,000$ to $\$ 6,000$ ) over which the remaining 2,643 local areas were spread is substantial and indicates that there are wide differences in the level of living in various parts of the Nation.

Perhaps most important, personal income forms a useful statistical framework for analyzing the economic impact of a proposed program, policy, or project on the economy of an area. A special feature of the local area income series in this use is its flexibility. With counties and SMSA's as building blocks, an income structure can be assembled for any multi-county geographic area chosen.

## Methodology

The estimates of local area personal income presented here were not obtained by a survey or questionnaire approach, nor were they derived from personal records of individuals. Instead, they were constructed mainly from business and governmental records which show various types of income disbursed to persons. Obviously, income paid out to persons equals income received by persons. Use of the disbursement rather than the survey approach is much more economical and, in addition, yields a body of information especially useful in local area economic analysis. On the other hand, the disbursement approach has the disadvantage of providing little or no data on the demographic characteristics of the income recipients living in an area.
The following summary description of methodology is designed to assist the user of the series. The description generally relates to the estimates for 1972. For most income items, recent period estimates have greater reliability than those for earlier years because more and better data are available for later periods. There are exceptions, of course.

The local area personal income estimates are the product of a complex
estimating procedure in which county series for about 325 income items were assembled, processed, adjusted, converted into income measures, and then combined into the tables shown in this article. Most of the data used were obtained from records maintained by government agencies for their own purposes, usually to administer a program such as unemployment insurance or social insurance. Some were obtained from private sources such as the American Hospital Association or the American Association of Railroads. None were designed specifically for local area income measurement.

The estimates were made within the framework of the BEA's State estimates of personal income. That is, State totals for each of the 325 income items were allocated to the counties of each State in accordance with their proportionate shares of a related economic series that was available on a county basis. In some cases, the allocating series was the same as that used to derive the State totals, e.g., for most wages and salaries, the county allocating series and the State and national totals were each derived from the same basic source material. However, estimating adjustments cause minor differences in the State and local area totals and require
the county series to be used as an allocator. Care was taken to make the allocating series as similar as possible to the series that was allocated.

The allocation procedure is so central to the measurement of local area income estimates that an illustration of it in some detail seems worthwhile. In a typical State, about two-thirds of total payrolls and nearly 90 percent of private payrolls come under the State's unemployment insurance (UI) program, which requires every covered employer to report to the State's employment security commission the wages and salaries paid its employees during the preceding quarter. These reports were tabulated by counties and summed according to industries. The quarterly tabulations, in which individual employer reports lose their identity, were furnished BEA, which summed them to an annual basis by industry. Payrolls of employers with too few employees to be covered by the UI program were obtained from reports of the Social Security Administration and added to the UI data. ${ }^{1}$ Other elements of payrolls present in the industry but excluded from UI coverage, such as tips, pay-in-kind, or even an entire segment of an industry, were estimated by counties and added to the UI-SSA series. The resulting county figures are termed "the allocating series." They were summed to a State total which differed from the series to be allocated by one to five percent because of certain adjustments which had been made to the latter but which could not be made to the allocating series because of a lack of data. The total from the State series was divided by the sum-of-the-counties total and the resulting ratio applied to "the allocating series" county-by-county. The county estimates so adjusted necessarily summed to the independently derived State control total.

## Wages and salaries

The measurement of UI-based wages and salaries was covered in the illustration of the allocation procedure and

[^21]will not be repeated. The following paragraphs touch briefly on the measurement of payrolls not covered by UI and on nonwage income components.

State totals of wages and salaries of railroad employees and workers in private households were allocated to counties in proportion to the product of the number of such employees and their total income as reported in the 1960 Decennial Census of Population. The distribution of farm wages was derived from the 1967 Census of Agriculture. Wages and salaries in the "Rest of the World" were allocated according to the distribution of employees in the United Nations and the various foreign embassies and consuls. In most instances, the State total was assigned to a single county.

Federal civilian payrolls were based on UI data in 15 States and on Civil Service Commission employment data for the remaining States. In the latter, salary differentials were introduced by weighting each agency's county employment by its average salary in that State as calculated from UI data.

Military payrolls were estimated in three components. "Cash pay" and "pay-in-kind" were based on a distribution of military strength derived from Defense Department data and the 1970 Decennial Census of Population. "Allowances and allotments" were allocated by a combination of military strength and civilian population with the former weighted twice as heavily as the latter. Civilian population was included in order to take account of the substantial volume of allotments of pay which military personnel remit to their dependents. The two-to-one weighting system was derived from actual disbursements on a State basis. Military "allowances and allotments" form the only component of wages and salaries which is credited directly to a recipient other than the employee.

A benchmark distribution of local government payrolls was derived from the 1967 Census of Governments. This benchmark was extended to 1972 by special Census reports covering about two-thirds the payroll total with the remainder modified by changes in population. State government payrolls were allocated by the 1967 Census of

Government's distribution of full-time State government employment by county.

## Other labor income

Employer contributions to private pension, health, and welfare plans, which account for 85 percent of other labor income, were distributed by wages and salaries for pension plans and by employment for health and welfare plans. Each allocation was carried out in considerable industrial detail in order to achieve proper weighting. The remaining items of other labor income were allocated by payrolls, employment, or population.

## Proprietors' income

Nonfarm proprietors' income was based essentially on a 1962 county distribution of the all-industry State estimate derived from two sources. About two-thirds of the aggregate was allocated by reported IRS data and the remaining one-third by the product of the number of nonfarm proprietors' and average wages. This series was disaggregated industrially and extended to 1972 and intervening years by social security data on the number of small establishments by industry and by county. In each instance, the preliminary county distribution was adjusted to equal the independently, and more accurately, measured State control total.

Data on nonfarm proprietors' income by county by detailed industry were provided by the Internal Revenue Service for 1968 and 1969 and will be maintained annually. When these data are incorporated into the local area income series, the nonfarm proprietors' income component will be more reliably based, although it may not be too different from the estimate now a part of the series.

Farm proprietors' income was based mainly on the quinquennial censuses of agriculture. County distributions of about six types of gross income and about 40 items of farm production expenses were used to allocate State totals of the corresponding series. These State totals were provided by the U.S. Department of Agriculture.

Subtraction of total production expenses from total gross farm income county by county yielded farm income. Estimates of corporate farm income were subtracted from total farm income to obtain farm proprietors' income. Estimates for noncensal years were prepared by modifying the county distribution of each income and expense item by information obtained from the individual States wherever possible. Other distributions were held constant or moved forward by a related series for which data were available.

## Property income

Dividends and monetary interest were allocated to local areas by special tabulations provided by the Internal Revenue Service. In the absence of direct data, imputed interest and monetary rental income of persons were allocated by the estimates of dividends and monetary interest.

Imputed rental income of owneroccupied houses was derived by allocating State totals of this item to counties by the value of owner-occupied homes from the decennial censuses of population and housing. Estimates for noncensal years were derived by straightline interpolation of the relative distributions.

## Transfer payments

Total transfer payments were measured as the sum of 45 separately estimated series. Directly reported data were used to measure about half of all transfers, although the proportion varied among local areas. Good indirect indicators, such as veterans population
to allocate selected components of veterans' benefits, were available for large segments of the remaining transfers.

## Personal contributions for social insurance

Personal contributions for social insurance-a negative component of personal income-were allocated to counties by wages and salaries and proprietors' income in the appropriate industry with only minor exceptions.

## Per capita income

Per capita income was derived by dividing total personal income by total population. County population estimates for decennial years were taken from the decennial censuses and adjusted proportionately to the Census Bureau's midyear State estimates of population. For noncensal years, the local area population figures were obtained from the Census Bureau through that agency's cooperative program with the various States.

The Census Bureau includes college students in the population of the county in which the school they attend is located. The income received by the parents of many, perhaps most, of these students is allocated to a different county. This mismatch of income and population tends to understate the per capita income of counties in which colleges are located by what appear to be amounts ranging from 1 to about 8 percent. At present no data are available with which to adjust for this mismatch.

## Classification of SMSA's

The classification of SMSA's in this report conforms to that of the Office of Management and Budget as announced on February 8, 1974, with the exceptions noted below.

In New England where SMSA's are defined officially in terms of cities and towns, satisfactory data for measuring local area income are generally available on a county basis only. Consequently, the New England metropolitan areas which appear in the table are county approximations of the official SMSA's.

In Virginia the Richmond and Peters-burg-Hopewell metropolitan areas which appear in the table differ from the SMSA's officially defined by the Office of Management and Budget because the independent city of Colonial Heights is here included in the Richmond metropolitan area, whereas it is officially part of the PetersburgHopewell SMSA.

In Vermont and Wyoming-States without official SMSA's-Burlington and Cheyenne, respectively, are treated as SMSA's. Because the U.S. national income accounts do not cover territories and possessions, the four SMSA's in Puerto Rico are omitted from the series.

Boundaries of SMSA's are changed from time to time. In this article, however, the designated geographic boundaries of each SMSA are held constant over the entire period back to 1929. The county content of each SMSA is listed in Appendix B.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$

Line	Area title	Total personal income by place of residence							Per capita income by place of residence					
		Millions of dollars					Average annual rates of growth		Dollars		Percent of the national average			
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972	
	United States, total ${ }^{2}$	225, 856	382, 840	535, 221	746,449	935, 350	7.81	6. 67	1,493	4,492				
	Sum of non-SMSA Counties in United States.	53, 622	80,595	113, 113	155,486	200,485	8.84	6. 18	1,064	3,586	71	80		
	New England Region: ${ }^{3}$ Maine:   SMSA's:   Lewiston-Auburn $\qquad$													
4 5		112	159	199	${ }_{759}^{285}$	${ }_{918} 33$	5.95 7.69	5.16	1,333	3,666	89	82	1,206	
	Non-SMSA Counties:													
	Aroostook.	89 24	$\begin{array}{r}138 \\ 33 \\ \hline\end{array}$	223 48	233 63	291 76	7.69 6.45	5. 53 5.38	928 $\mathbf{1}, 139$	3,036	62 76	${ }_{73}^{68}$	1,972 1,679	
	Hancock	32	52	70	99	129	9.22	6.54	, 990	3,497	66	78	1,401	
	Kennebec.	100	150	211	301	382	8.27	6. 28	1,191	3,889	80	87	, 939	
10	Knox--	32	47	62	84	105	7.72	5.55	1,118	3,408	75	76	1,529	
	Lincoin	17	30	44	${ }^{68}$	$\begin{array}{r}83 \\ 145 \\ \hline\end{array}$	6.87 4.79	7.47 4.77	+190	-3,824	64	85	1,011	
12   13   15	Penobscot.	130	220	302	354	449	8.79 8.25	5. 80	1,194	${ }_{3,461}^{3,156}$	80	77	1,454	
1415	Piscataquis.	20	26	32	44	52	5. 73	4. 44	1,046	3,094	70	69	1,909	
	Somerset..-	46	64	85	116	138	5.96	5.12	1,151	3,234	77	72	1,727	
1718	Waldo--	22	36	43	$6_{2}$	73	5. 59	5. 60	1,027	2,954	69	66	2,068	
	Washington.	31 133	42 206	58 263	$\begin{array}{r}71 \\ \hline 73\end{array}$	90 443	8.22 5.90	4.96 5.62	1,873 1,419	2,880 3,811	${ }_{95}^{58}$	64 85	2,154 1,031	
19	New Hampshire: ${ }^{1}$   SMSA's:   Manchester-Nas	242	390	553	828	1,027	7.44	6.79	1,548				465	
	Non-SMSA Counties:									4,323	104	96		
	Belknap..	32 15	59 28	80 41	111	147 82	9.82 10.97	7.18   8.03   18	${ }^{1,187}$	4,347 4,233	80 62	97	445 560	
	Cheshire.	49	89	124	177	221	7.68	7.09	1,278	4,014	86	89	785	
	Coos...-	43	64	73	98	123	7.87	4.89	1,199	3,621	80	81	1,263	
	Grafton.	49	84	121	174	226	9.11	7.20	1,034	3,964	69	88	843	
	Merrimack	77	131	190	274	359	9.42	7.25	1,232	4,244	83	94	543	
	Strafford.	64	106	149	212	${ }^{270}$	88.39	${ }_{6}^{6.76}$	1,242	3,756 $\mathbf{3}, 779$	83	84	1,085	
	Sullivan.	32	45	67	94	121	8.78	6. 23	1,228	3,779	82	84	1,059	
	Vermont;													
28	Burlington ${ }^{\text {3 }}$	73	137	195	339	415	6.98	8.22	1,170	3,924	78	87	900	
29	Non-SMSA Counties:	19					8.74				64	82		
30	Bennington.	29	53	73	104	126	6. 60	6.90	1,209	4, 344	81	97	, 447	
31	Caledonia	25	${ }^{36}$	47	68	88	8.97	5.89	1,051	3,673	70	82	1,198	
32	Essex		10	11	15	20	${ }^{10.06}$	4.89	1,191	3,450	80	77	1,469	
33	Franklin	31	45	59	88	110	7.72	5.93	1,039	3,409	70	76	1,528	
34	Grand Isle	3	4	7	10	11	3. 23 8.10	${ }_{6}^{6.08}$	${ }_{961}^{950}$	2,966	64	${ }^{66}$	$\xrightarrow{2,047}$	
${ }_{36}$	Orange..	15	25	34	52	66	8.27	6.97	899	${ }_{3,611}$	60	80	1,272	
37	Orleans.	18	28	39	54	68	7.99	6.23	852	3,331	57	74	1,604	
38	Rutland.	55	82	113	164	202	7.19	6. 09	1,196	3,679	80	82	1,190	
	Washington.	53	77	102	151	193	8.52	6. 05	1,242	3,948	83	88		
$\begin{aligned} & 40 \\ & 41 \end{aligned}$	Windham...	37 59	55 79	74 121	111 160	141 189	8.30 5.71	6.27 5.43	1,290 1,450	4,089 4,115	86 97	${ }_{92}^{91}$	698 668	
	Massachusetts:													
	Boston-Lowell-Brockton-Lawrence-Haverhill, Mass.-N.H. ${ }^{5}$ New Bedford-Fall River.	5,144	8,415	11,3891,062	16,0211,482	$\begin{array}{r}19,783 \\ 1,854 \\ \hline\end{array}$	7.287.75	6.315.30	1,642	5,055			130	
43		214							1,562	4,055	110 105	${ }^{113}$	736	
44	Pittsfield .............-		${ }^{308}$	1,413	1,479	705	6. 78	5.57	1, 1,6810	4, 668 4,369 4	108113	10419	242	
45 46	Springfield-Chicopee-Holyoke..--	877	1,299	1,765	2,401	2,911	6.63	5. 80	1,606	4,516				
	Non-SMSA Counties:												341	
47	Barnstable.	66779	$\begin{array}{r} 159 \\ 12 \\ 109 \\ 9 \end{array}$	$\begin{array}{r} 250 \\ 15 \\ 150 \\ 12 \end{array}$	$\begin{array}{r} 386 \\ 23 \\ 206 \\ 19 \end{array}$	$\begin{array}{r\|} 533 \\ 31 \\ 248 \\ 23 \end{array}$	$\begin{gathered} 11.36 \\ 10.46 \\ 6.38 \\ 6.58 \end{gathered}$	$\begin{aligned} & 9.96 \\ & 7.00 \\ & 5.34 \\ & 6.30 \end{aligned}$	1,402	5,066	$\begin{array}{r} 94 \\ 85 \\ 100 \\ 119 \end{array}$	113		
	Dukes...								1,271	4,759		110692130	21266244	
49	Franklin.								1,497	${ }^{4}, 127$				
50	Nantucket.								1,777	5,836				
51	Rhode Island:   SMSA's:   Providence-Warwick-Pawtucket, $\qquad$	1,181	1,658	2,264	3,109	3,920	8.03	5.60	1,629	4,494	109	100	359	
5	Non-SMSA Counties: Newport	90	165	223	347	412	5.89	7.16	1,474	4,306	99	96	482	
	Connecticut:   SMSA's:													
	SMridgeport-Stanford-Norwalk-Danbury . . . . . . . . . . . . . .	$\begin{array}{r}\text { 936 } \\ \text { 1, } 282 \\ \hline 994 \\ \hline\end{array}$	1,8552,226	2,609   3,209	3,8034,654	4,4095,468	5.055.525	7.306.82						$\begin{array}{r}66 \\ 110 \\ \hline\end{array}$
	Hartford-New Britain-Bristol . .-....								1,848 1,959 1	5,168	${ }_{131}^{124}$	115		
	New Haven-West Haven-Waterbury-Meriden..............		$\begin{array}{r}1,651 \\ \hline 46\end{array}$	2,303643	3,152	3,8081,038	6.506.60	6.306.86	1,8131,659	5,0054,379	111	11197	143425	
	New London-Norwich..........................	${ }_{241}$												
57	Non-SMSA Counties: Litchfield Windham.	161108	$\begin{aligned} & 285 \\ & 142 \end{aligned}$	$\begin{aligned} & 410 \\ & 208 \end{aligned}$	$\begin{aligned} & 602 \\ & 290 \end{aligned}$		$\begin{aligned} & 5.16 \\ & 5.96 \end{aligned}$	$\begin{aligned} & \text { 6. } 91 \\ & 5.42 \end{aligned}$	$\begin{aligned} & 1,622 \\ & 1,742 \end{aligned}$		$\begin{aligned} & 109 \\ & 117 \end{aligned}$		7 194   800	
58						$\begin{gathered} 700 \\ 345 \end{gathered}$				$\begin{aligned} & 4,802 \\ & 4,001 \end{aligned}$		107 89		

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{11}$-Con.


[^22]Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-721-Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence				
		Millions of dollars					Average annual rates of growth		Dollars		Percent of the national average		
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972
	Mideast Region-Continued   Pennsylvanis:   Non-SMSA Counties-Continued												
134 135	Crawford.	97	142	187	249	316	8.27	5.51	1,226	3,790	82	84	1,049
136	Fayette.	204	251	301	129	512	7.48 9.31	4.99 4.27	1,473	3,901 3,246	79	87 72	1926 1,716
137	Forest	5	7	9	12	17	12.31	5. 72	, 985	3,293	66	73	1,653
138	Franklin	104	162	241	331	414	7.74	6. 48	1,371	4,025	92	90	, 768
139	Fulton.-	8	13	18	25	32	8.58	6. 50	729	2,907	49	65	2, 124
140	Greene.......	51	64	78	105	139	9.80	4. 66	1,114	3,725	75	83	1,125
141 142	Huntingdon...	44	54	74	102	120	5.57	4.67	1,064	3,088	71	69	1,916
143	Jefferson.-.	90 55	119 72	$\begin{array}{r}143 \\ 88 \\ \hline\end{array}$	199	${ }_{157}^{267}$	10.29 10.30	5.07 4.88	1,163 1,128	3,290 3,551	78 76	73	1,658 1,339
144	Juniata..	14	24	33	46	51	3.50	6.05	929	2,893	62	64	2,140
145	Lebrenon.	161	223	284	364	447	7.09	4.75	1,534	${ }^{4,131}$	103	92	660
146 147	Lebanon.	117	189	247	341   181	405	5.90	5.81	1,427	3,960	96	88	852
148	Mercer..	181	283	353	439	541	7.21	5. 10	1,618	4,134	108	92	658
149	Miffin...	57	75	103	141	138	-. 71	4.10	1,314	3,084	88	69	1,921
150	Montour	17	26	32	47	51	2.76	5.12	1,091	2,960	73	66	2,054
151	Northumberland.	149	178	232	306	340	3.57	3.82	1,274	3,438	85	77	1,488
${ }_{153}^{152}$	Pike...	10	15	22	38	53	11.73	7.88	1,154	4,073	77	91	716
153	Potter.	15	21	30	41	51	7.55	5.72	913	2,864	61	64	2,171
154	Schuylkill	215	279	358	491	605	7.21	4.82	1,072	3,785	72	84	1,053
155	Snyder..	22	34	52	81	97	6.19	6. 98	940	3,126	63	70	1,875
157	Tioga..	$4{ }^{7}$	60	74	$\begin{array}{r}16 \\ 101 \\ \hline\end{array}$	21 119	9.49 5.62	5.12 508	+981	$\stackrel{3}{3,285}$	66 75	73	1, 666
158	Union.	21	34	50	77	98	8.37	7.25	-904	3,295	61	73	1,649
159	Venango.	83	116	150	194	255	9.54	5.23	1,274	3,977	85	89	, 830
160	Warren.	55	84	123	165	206	7. 68	6. 19	1,284	${ }^{4,173}$	86	93	621
161	Wayne...	28 15	45 24	55 30	86 60	118 67	11.12 3.75	6.76 7.04	980 912	3,716 3,263	66 61	83 73	1,136
Delaware: SMSA's:													
163	Wilmington, Del.-N.J.-Md. ${ }^{5}$	643	1, 142	1,660	2,197	2,739	7.63	6.81	2,114	5,346	142	119	89
164	Non-SMSA Counties:												
165	Sussex.	109	142	207	296	3380	8.68	5.84	1,760	4,555	118	101	${ }_{317}$
Maryland: ${ }^{4}$													
166	Baltimore.	2,469	4,053	5,666	7,812	9,749	7.66	6. 44	1,686	4,588	113	102	295
Non-SMSA Counties:													
168	Calvert.-	11	120	197	264	326	7.42	10.24	1,186	3,885	79	${ }_{93}^{86}$	943
169	Caroline.	24	32	47	69	79	4.61	5.56	1,283	3,823	86	85	1,012
170	Dorchester	29	43	65	95	122	8.70	6.75	1,026	4, 106	69	91	682
171	Frederick.	68	119	195	294	379	8.83	8.12	1,092	4,275	73	95	511
172	Garrett.	14	22	33	46	66	12.79	7.30	655	2,943	44	66	2,078
173	Kent....	13	23	40	57	68	6.06	7.81	934	4,079	63	91	+ 709
174 175 178	Queen Annes	13	21	37	56	71	8.23	8.02	859	3, 641	58	81	1,242
176	Somerset.	16	65 26	89 35	139 54	195 65	11.95 6.37	7.23 6.58	1,438	3,951 3,449	$\stackrel{96}{53}$	88 77	869 1. 470
177	Talbot.		37	62	98	124	8.16	7.75	1,341	5,090	83	113	
178	Washington	111	195	258	367	453	7.27	6. 60	1.405	4,313	94	96	476
179	Wicomico.	55	85	126	196	242	7.28	6.97	1,377	4,292	92	96	492
180	Worcester.	30	38	57	85	106	7.64	5.90	1,291	4,228	86	94	568
181	District of Columbia:   SMSA's:   Washington, D.C.-Ma.-Va. ${ }^{5}$	3,156	5,690	9,176	13,090	17,578	10.33	8.12	2,054	5,862	138	130	43
	Great Lakes Region: Michigan: ${ }^{4}$												
182	Ann Arbor	229	392	636	984	1,226	7.61	7.92	1,689	5,097	113	113	120
183	Battle Creek	244	353	471	657	, 807	7.10	5. 59	1,648	4,447	110	99	385
184	Bay City.	127	205	284	406	496	6. 90	6.39	1,425	4,153	95	92	635
185	Detroit	6, 291	9,990	14, 924	20,093	24,417	6.71	6. 36	1,973	5,439	132	121	78
186 187	Frint-1....-	552	1,034	1,629 1,406	2, 112	2, 661	8.01	7.41	1,731	5, 105	116	114	${ }^{118}$
188	Jackson......	625 175	1,009 280	1,406 389	2,000	2,484	7.49 8	6. 47	1,716	4,529	115	101	${ }_{2} 31$
189	Kalamazoo-Portage.	261	456	639	946	1,160	7.03	7.42	1, 1,564	4,763 4,406	105	108	410
190	Lansing-East Lansing	408	727	1,087	1,592	2,036	8.55	7. 58	1,436	4,659	96	104	247
191	Muskegon-Muskegon Heights	213	316	425	591	697	5.65	5.64	1,540	3,891	103	87	938
192	Saginaw.	245	406	607	823	1,094	9.95	7.04	1,586	4,830	106	108	184
193	Non-SMSA Counties:	4	8	13	18	23							
194	Alger.	10	12	15	19	24	88.10	4. 06	988	$\stackrel{2}{2,836}$	66	${ }_{63}$	2,214   2,   199
195	Allegan..	55	93	130	192	245	8.46	7.03	1,144	- ${ }^{2}, 8,509$	77	78	1,385
196	Alpena.-	24	46	64	89	117	9.55	7.47	1,057	3, 624	71	81	1,256
197	Antrim.	8	13	22	35	46	9.54	8.28	1,783	3,271	52	73	1,681
198	Arenac	8	12	18	28	38	10.72	7.34	841	3,198	56	71	1,778
199	Baraga.	8	8	13	19	27	12.43	5. 68	967	3,479	65	77	1,428
200	Benzie-...	9 194	13 330	19 451	$\begin{array}{r}26 \\ 629 \\ \hline\end{array}$	$\begin{array}{r}34 \\ 798 \\ \hline 8\end{array}$	9.35 8.26	6. 63	1,027	3,784 4 4	69 112	$\begin{array}{r}84 \\ 106 \\ \hline\end{array}$	1, 055
202	Branch.	194	${ }^{36}$	461 83	${ }_{112}^{629}$	798 145	8. 8.99	6.64 6.82	1,671 1,105	4,747 3,706	112 74	106 83	1,18 1,151

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$ - Con.


[^23]Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$ - Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence				
		Millions of dollars					Average annual rates of growth		Dollars		Percent of the national average		
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972
	Great Lakes Region-ContinuedOhio:Non-SMSA Counties-Continued												
285 286	Hocking.............................................	18	27 29	${ }_{36}^{37}$	56 52	68 67	${ }_{8.82}^{6.69}$	6.23 6.16	${ }_{941}^{941}$	3,160	${ }_{63}^{63}$	70	1,823
287	Huron...	60	101	133	183	224	6.97	6.17	1,510	$\xrightarrow{4,461}$	${ }^{63}$	$\stackrel{9}{99}$	, 206
288	Jackson.	24	40	47	67	81	6.53	5.68	, 872	2,941	58	65	2,081
289	Knox...	51	69	98	133	155	5. 24	5. 18	1,432	3,641	96	81	1,241
290 291	Licking.	94   38	$\begin{array}{r}185 \\ 59 \\ \hline\end{array}$	$\begin{array}{r}270 \\ 78 \\ \hline\end{array}$	361 114	$\begin{array}{r}438 \\ 148 \\ \hline\end{array}$	6. 66 9.09 9.0	7.25 6.37	1,323 1,201 1,21	3,964 4,090	89   80	88 98	$\begin{array}{r}1245 \\ 899 \\ 69 \\ \hline\end{array}$
292	Marion.	71	112	157	223	280	7.88	6.44	1,411	4,188	95	93	${ }_{604}^{697}$
293   294	Meigs...	16 39	${ }_{60}^{23}$	30 84	42 117	$\begin{array}{r}54 \\ 147 \\ \hline\end{array}$	8. 74 7 7	5.68	+ 671	2,693 4,071	45	${ }_{91}^{60}$	2,336
${ }_{296}^{295}$	Morgan.-	119	${ }_{26}^{26}$	32 24	${ }_{34}^{52}$	${ }_{4}^{55}$	1.89 11.40	8. 6.82	557 880	3,505   3,496	37 59	78	1,390 1,404
297	Morrow-	18	27	45	60	74	7.24	6.64	1,055	3,207	71	78	1,764
298	Muskingum	101	148	174	229	290	8.19	4.91	1,347	3,639	90	81	1,243
299	Noble-....	8	14	16	24	30	7.72	6. 19	, 710	2,900	48	65	2, 133
300 301	Paulding	17 29	27 40	42	60	88	10.06	7.29 495	1,146	4,049 3	77 67	${ }_{6}^{90}$	, 748
302	Pike......	9	28	30	46	58	8.03	8.84	614	2,990	41	67	1,19 2,017
303	Ross..	61	93	134	180	${ }_{212}^{212}$	5.61	5.83	1,116	3,490	75	78	1,409
304	Sandusky	75	112	144	201	259	8.82	5.79	1,626	4,219	109	94	579
305	Scioto-.	89	131	155	211	238	4. 10	4.57	1,072	3,057	72	68	1,949
306   307	Seneca.	74   44	106 69	157 93	217	285 160	9.51 5.83	6.32	1,395	4,663 4 4	93 102	$\stackrel{104}{104}$	246
308	Tuscarawas.	87	135	190	252	301	6. 10	5.80	1,227	3,857	82	86	$\stackrel{374}{ }$
309	Union.-	25	39	54	79	102	8.89	6. 60	1,201	4,003	80	89	797
310	Vinton. -	7	10	13	19	25	9.58	5. 96	1398	2,613	43	58	2, 404
311 312	Wayne...	81	146	${ }^{209}$	${ }_{120}^{295}$	372   156	8. 04	7.17 7.03	1,376	4,134	92	${ }^{92}$	657   340
313	Wyandot.	$\stackrel{35}{35}$	38	51	68	${ }_{93}$	11. 00	6.15	1,266	$\stackrel{4}{4,096}$	85	91	689
	Indiana: ${ }^{4}$   SMSA's:												
${ }^{314}$	Evansville Ind.-Ky.	165	273	395	503	${ }^{618}$	7.10	6. 19	1,571	${ }^{4,378}$	105	97	${ }^{426}$
${ }_{316} 31$	Evansvile, Ind.-Ky.	357 421	495	1,012	1,394	- 1,784	7.13 8.37	5. 6.76	1,348 1,661	4,268 4,764	111	106	523 208
317	Gary-Hammond-East Chicago	723	1,355	1, 833	2,404	2,848	5.81	6.43	1,757	4,422	118	98	404
318	Indianapolis.-	1,347	2, 351	3,292	4, 470	5,440	6. 76	6.55	1,837	4,823	123	107	187
319 320	Lafayette-West Lafayette.	106	180 224	268 340	${ }_{446}^{372}$	${ }_{522}^{462}$	7.49 5.38	6.   5.   56	1,406 1,636	$\begin{array}{r}\text { 4, } 133 \\ \mathbf{3 , 9 7 2} \\ \hline\end{array}$	$\begin{array}{r}94 \\ 110 \\ \hline\end{array}$	${ }_{88}^{92}$	659 835
321	South Bend.	481	705	785	1,035	1,258	6.72	4.47	2,035	4,467	136	99	371
32	Terre Haute.	213	296	404	549	665	6.60	5.31	1,225	3,731	82	83	1,115
323 324 324	Bartholomew.....	66	110	171	229	277	6.55	6. 74	1,802	4,741	121	106	219
324 325	Benton--	14 16	16 25	34 40	$\begin{array}{r}42 \\ 50 \\ \hline\end{array}$	$\begin{array}{r}51 \\ 64 \\ \hline\end{array}$	6.69 8.58 8.	6. 05	1,249 1,163	4,402 3,985	$\begin{array}{r}84 \\ 78 \\ \hline\end{array}$	98 89	412
326	Brown...	4	${ }_{9}$	17	24	$\stackrel{64}{30}$	8.78 7	6.59	1,644	3,218	43	72	1,752
${ }^{327}$	Carroll.	21	29	47	60	78	9.14	6. 15	1,275	4,206	85	94	591
328	Cass....	50	74	109	149	185	7.48	6. 13	1,282	4,615	86	103	276
${ }^{329}$	Clinton-	41	55	82	109	138	8. 18	5.67	1,356	4,502	91	100	350
${ }^{330}$	Crawford	5	10	12	18	22	6. 92	6. 97	577	2,839	39	63	2, 193
${ }_{332}^{331}$	Daviess.	$\stackrel{27}{27}$	$\stackrel{40}{32}$	58 54	${ }_{73}^{86}$	${ }_{93}^{102}$	5.85 8.41	6. 23 7 7	$\begin{array}{r}1987 \\ 1,140 \\ \hline\end{array}$	3,836 3,905	${ }_{76}^{66}$	85 87	${ }_{921}^{999}$
332	Decatur.	21	32	54	73	93	8.41	7.00	1,140	3,905	76	87	921
${ }_{3}^{333}$	Dubois.		43	70	103	126	6.95	6. 74	1,242	${ }^{3,992}$	83	89	810
${ }^{335}$	Fayette-		4132	365 65	93	118	8.57 8.26 8	5.68	1,498	$\xrightarrow{4,424}$	100	${ }_{98}$	400
336	Fountain.			51	6044	73	6.76	6.06	1,096	3,994	73	89	807
${ }^{337}$	Franklin		1928	${ }_{46} 31$		55	7.72	6.78	${ }^{804}$	3,213	54	72	1,758
338	Fulton---			$\begin{array}{r}46 \\ 227 \\ \hline\end{array}$	59	77	9. 28	6. 57	1,133	4,324	76	96	464
339   340	Grant..		157		299	376	7.92	7.29	1,269	4,445	85	99	${ }_{603}^{387}$
341	Harrison.		$\begin{array}{r}37 \\ 26 \\ \hline 8\end{array}$	$\begin{aligned} & 57 \\ & 38 \end{aligned}$	74 56 5	70	8.15	7.59	783	3,206	52	71	1,765
342	Henry...-.		88	138	185	234		5.99	1,418	4,417	95	98	406
	Howard.	88		267	341	458	10.33	7.79	1,602	5,358	107	119	87
344 345	Huntington.	42	61494	93 83 83	122	150 137	7.13	5.96	1,314	4,242	88	94	548
3446	Jasper..-...-	28		53	114	$\begin{array}{r}137 \\ 86 \\ \hline\end{array}$	6.32 6.10	7.48 6.85	1,990 1,178	4,109 4,068	66 79	${ }_{91}^{91}$	680 721
347	Jay.	29	33		76	97	8.47	5.64	1,236	3,954	83	88	861
348	Jefferson..	16	31   22	55	79	99	7.81	8.64	723	3,583	48	80	1,295
349 349	Jennings..	11		98	49127	${ }^{64}$	${ }^{9.31}$	8.33	726	3,157	49	80	1,828
350   351	Knox.-..	47	69			154 223	6. 64 7.60	5.54 7.88	1,071	- 3,654	${ }_{8}^{72}$	81 100	1,225
352	Lagrange----	15	74 24	${ }_{43}^{121}$	179 67	90 9	10.34	8.48	-956	4, 4	64	100 95	338 538
	La Porte...	123		277	375	449	6.19	6. 06	1,592	4,252	107	95	535
${ }_{3}^{354}$	Lawrence..	40	$\begin{aligned} & 62 \\ & 62 \end{aligned}$	$\begin{array}{r}87 \\ \hline 25\end{array}$	121	$\begin{array}{r}151 \\ 52 \\ \hline\end{array}$	7.66	6. 22	1,160	3,819   4   189	78	$\begin{array}{r}85 \\ 102 \\ \hline\end{array}$	1,020
356	Miami	38	78	107	143	180	7.97	7.33	1,320	4,508	88	100	345
357	Monroe.	51	92626	16995	230	307	10.10	8.50	1,008	3,469	68	77	1,442
${ }^{358}$	Montgomery.	40			121	149	7.19	6. 16	1,368	4,358	92	97	435
359   360	Nowton.	13 32	21	33	110	49 137	7.12	6.22 6.83	1,202	4,040 4,361	81 84	${ }_{97}^{90}$	755 435
361	Ohio.	4	47 5 5	83 8		16	10.06	6.50	${ }^{1} 830$	3,543	56	79	1,347
362	Orange.	14	5 36	86 36	12 48	56	5.27	6.50	826	3,233	55	72	1,729

## See footnotes at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1 \text { - Con }}$ Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence				
		Millions of dollars					Average annual rates of growth		Dollars		Percent of the national average		$\begin{gathered} \text { Rank } \\ \text { in } \\ \text { United } \\ \text { States } \end{gathered}$
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972
	Great Lakes Region-Continued Indiana:   Non-SMSA Counties-Continued												
$\begin{aligned} & 363 \\ & 364 \end{aligned}$	Owen-...........	17	14 21	23 32	31 41	40	8.87	7.02	${ }^{730}$	3, 097	49	69	1,906
365	Perry-.	22	25	43	52	63	6.60	4.90	1,252	3,349 3,349	84	75	1,586
${ }_{3}^{366}$	Pike.-	10	18	25	38	49	8.84	7.49	-688	3,980	46	89	, 820
367	Pulaski..	13	18	31	40	50	7.72	${ }^{6.31}$	1,047	3,913	70	87	910
368   369	Putnam-	${ }_{35}^{22}$	41 57	62 82	85 108 10	103 132 1	6.61 6.92	7.27 6	$\begin{array}{r}1.940 \\ 1.288 \\ \hline\end{array}$	3,726   4   4	63 86	83	1,122
370	Ripley...	${ }_{20}$	33	52	70	86	${ }_{7} .10$	6.85	1,031	4,954 3	69	88	$\begin{array}{r}362 \\ 862 \\ \hline\end{array}$
${ }_{371} 7$	Rush.	26	33	51	68	82	6.44	5.36	1,316	3,936	88	88	893
372	Scott.	10	19	32	49	58	5.78	8.32	, 818	3,341	55	74	1,595
373	Spencer.	12	19	32	46	58	8.03	7.42	764	3,269	51	73	1,686
374   375	Starke..	15	25   24	38 46	${ }_{65}^{55}$	64 83	5. 518	${ }^{6.82}$	982	3, 147	${ }_{6}^{66}$	70 87	1,843
376	Switzerland	${ }_{6} 6$	$\stackrel{24}{9}$	12	16	${ }_{21}^{83}$	9.49	5.86	767	$\stackrel{3}{3,276}$	51	${ }_{73}$	1,677
377	Tipton.-	18	28	47	59	73	7.35	6.57	1,171	4,603	78	102	283
${ }_{3}^{378}$	Whion-.	$\begin{array}{r}7 \\ 3 \\ \hline\end{array}$	$\begin{array}{r}9 \\ \hline\end{array}$	18	$\begin{array}{r}25 \\ 123 \\ \hline\end{array}$	$\begin{array}{r}30 \\ 148 \\ \hline\end{array}$	6. 276	6.84	1,125	4. 279	75	95	503
379   380   88	Wabash.	39 10	56 14	$\stackrel{91}{24}$	$\begin{array}{r}123 \\ 28 \\ \hline\end{array}$	$\begin{array}{r}148 \\ 34 \\ \hline\end{array}$	6.36 6.69	6.25 5.72	1,344   1,148	$\begin{array}{r}4,143 \\ 3 \\ 3 \\ \hline 194 \\ \hline\end{array}$	90 77	$\stackrel{92}{88}$	${ }_{844}^{646}$
381	Washington	15	25	37	52	64	7.17	6.82	+148	$\stackrel{3}{3,317}$	60	74	844 1,626
382	Wayne.....	115	152	224	292	340	5.20	5.05	1,666	4,310	112	96	, 480
$\begin{gathered} 384 \\ 383 \end{gathered}$	White...	24	33	60	76	92	6.58	6.30	1,339	4,223	90	94	572
	Whitley-	25	42	59	82	104	8.24	6.69	1,335	4,333	89	96	456
	$\begin{aligned} & \text { nlinois: }{ }^{4} \text { SMSA's: } \end{aligned}$												
385 386 388	Bloomington-Normal	112	177	${ }_{261} 26$	${ }_{571}^{372}$	498	10. 21	7.02	1.463	4, 526	98	101	334
386 387	Champaign-Urbana-Ranto	$\begin{array}{r}162 \\ 10,819 \\ \hline\end{array}$	17,967 ${ }^{265}$	- $\begin{array}{r}384 \\ \mathbf{2 4} 260 \\ \hline 1\end{array}$	551 32.587	-694	7.99 6.47	6.84   6.04   8.8	1,523	${ }_{5}^{4,322}$	102	${ }^{96}$	467
388	Davenport-Rock Island-Moline, Iowa -III. 5	- 512	${ }^{789}$	1,040 1	1,434	1,770	7. 27	5.80	1, 829	- 4,897	122	129	162
389	Decatur	163	269	361	491	619	8.03	6. 25	1,639	5,044	110	112	133
390	Peoria-	512	779	1,046	1,350	1,711	8.22	5.64	1,879	4,855	126	108	175
${ }^{391}$	Rockford	350	578	803	1,120	1,354	6.53	6.34	2,061	5, 052	138	112	131
392	Springfield	228	347	509	693	907	9.38	6. 48	1, 610	5,193	108	116	107
	Non-SMSA Counties:												
${ }_{394}$	Adamander.	18	130 21	188 25	255 31	$\begin{array}{r}334 \\ 39 \\ \hline\end{array}$	9.41 7.95	6.53   3.58	1,272 899	4,747 3,211	85 60	106 71	${ }_{1,761}^{217}$
395	Bond.	14	22	30	39	50	8.63	5.96	978	3,475	66	77	1, 133
396	Brown..	8	9	12	15	23	15.31	4.92	1,141	3,992	76	89	809
397	Bureau.	50	65	101	143	177	7.37	5.91	1,334	4, 834	89	108	180
398	Calhoun.	6	8	11	15	18	6.27	5.12	, 877	3, 375	59	75	1,555
399	Carroll	30	37	57	74	92	7.53	5. 23	1,582	4,752	106	106	214
400	Cass.-.	22	27	38	50	66	9.70	5.12	1,454	4, 590	97	102	291
401	Christian	67	65	94	128	164	8.61	4.15	1,714	4, 433	115	99	395
40	Clark.	21	27	43	51	60	5.57	4.89	1,195	3,628	80	81	1,251
403 Clay...		15		30	38	47	7.34	5.33	844	3, 201	57	71	
404 405	Coles Crawford	57   28   1	${ }_{91}^{22}$	$\begin{array}{r}112 \\ 51 \\ \hline 1\end{array}$	151 67	$\begin{array}{r}195 \\ 85 \\ \hline\end{array}$	8.90 8.26	5.75 5.18 5.18	1,414 1,340	3,977	95 90	89 96	828 490
406	Cumberland.	10	$\begin{gathered} 38 \\ 14 \end{gathered}$	18	23	${ }_{30}$	8.26 9.26	5.12	${ }^{1}$	4,293 3,049	${ }_{61}^{90}$	96 68	1,954 1
407	De Kalb.		14 119	184	245	306	7.69	7.08	1,666	4, 278	112	95	505
408	De Witt.	22	28	43	56	73	9.24	5. 60	1,283	4,377	86	97	428
409	Douglas.	22	36	54	67	84	7.83	6. 28	1,313	4,436	88	99	390
410 411	Edwar	32 8 8	39	58 15	74 19	${ }_{27}^{92}$	$\begin{array}{r}7.53 \\ 12.43 \\ \hline 1\end{array}$	4.92 5 5 0.68	1,365	4,357 3 3 3	91 60	97 86	439 981
412	Effingham.	$\stackrel{8}{4}$	11	48	70	100	12.62	¢. ${ }_{\text {5. }} \mathbf{6}$	1894 1,098	3,852 3,905	60 74	86 87	${ }_{920}^{981}$
413	Fayette.	24			51	66	8.97	4.71	959	3,194	64	71	1,783
${ }_{415}^{414}$	Frord	${ }_{29}^{22}$	30	46	62	78	7.95	5. 92	1,368	5,237	92	117	103
416	${ }_{\text {Fulton }}$	59 60		113	103 135	131 187 18	8. 11.45	$\begin{array}{r}3.69 \\ 5 \\ 5 \\ \hline\end{array}$	1, $\begin{aligned} & 1,378 \\ & 1\end{aligned}$	3,226	${ }_{92}^{81}$	${ }_{98}^{72}$	1,741
417	Gallatin-	7	83 9	14	${ }_{21}$	180 30	12.62	6. 84	${ }^{1}$	- 4 4,175	49	${ }_{93}^{98}$	${ }_{616}$
418	Greene-	22	$\begin{array}{r}9 \\ 30 \\ \hline\end{array}$	44	51	67	9.52	5.19	1,146	3,981	77	${ }_{89}$	825
419	Grundy	28	30 42 4	63	105	128	6.82	7.15	1,457	4,633	98	103	270
420 421	Hamilton.	8 30	11	16 57	${ }_{71}^{18}$	$\begin{array}{r}27 \\ 103 \\ \hline\end{array}$	14.47 13.20	5.68 5.77	1.631 1.141	$\begin{array}{r}3,146 \\ 4 \\ 4 \\ \hline\end{array}$	76	101	1,846
42	Hardin.-	5	38	9	10	16	16.96	5. 43	${ }^{1} 715$	3, 140	48	70	1,856
423	Henderson.-	12	14	22	28	36	8.74	5.12	1,379	4,273	92	95	514
+424	Iroquois.	41	${ }_{6} 67$	96	116	156	10.38	6.26	1,250	4,493	84	100	361
426	Jackson.	41 12	15	103 21	$\begin{array}{r}146 \\ 30 \\ \hline\end{array}$	$\begin{array}{r}198 \\ 38 \\ \hline\end{array}$	10.69 8.20	7.42   5.38	1,074	$\begin{array}{r}3,480 \\ 3,434 \\ \hline\end{array}$	72 63	77	1,424
427	Jefferson.	43	57	66	92	131	12.50	5.19	1,204	- 4 4,008	81	89	${ }^{1}, 793$
4	Jersey --..	${ }_{26}^{17}$	${ }_{29}^{29}$	40	54	87	7.45	6. 43	1,108	3,422	${ }_{8}^{74}$	${ }_{87}^{76}$	1,508
439 430	Jo Daviess	26 5 5	32	49	67 16	${ }_{22} 8$	9.10	5.64   6.97	1, ${ }^{227}$	$\stackrel{3}{3,906}$	82	87	-917
431	Kankakee-	96	178	257	350	454	${ }_{9.06}^{1.20}$	${ }_{7}^{6.32}$	1,299	- 4,563	${ }_{87} 8$	${ }^{64}$	2, 310
432	Kendall....	20	47	77	122	159	9. 23	9.88	1,647	5,650	110	126	56
433	Knox	80	132	166	222	296	10. 06	6. 13	1,463	4,929	98	110	155
434   435	Law Salle--	$\stackrel{164}{21}$	253	$\begin{array}{r}326 \\ 41 \\ \hline\end{array}$	$\begin{array}{r}426 \\ 53 \\ \hline\end{array}$	515	6. 63	5.34	1.621	$\begin{array}{r}4,645 \\ \hline\end{array}$	109	103   84	$\begin{array}{r}262 \\ 1.052 \\ \hline\end{array}$
436	Lee..	44	75	105	136	165	\%.66	$\stackrel{5}{6.19}$	1,214	- 4.43	81	${ }_{99}$	1,052
437	Livingston.	49	70	104	142	190	10.19	6.35	1,280	4,433 4,533	86	101	330
438	Logan..	36	54	81	116	155	10.14	6.86	1,176	4,638	79	103	269
439	McDonough	34	52	70	95	130	11.02	6. 29	1,194	3,408	80	76	1,530
4440	Macoupin--	55	$\begin{aligned} & 73 \\ & 81 \\ & 20 \end{aligned}$	103 89	1133	180	10.61	5. 54	1,232	4,022   3   820	83 84	${ }_{85}^{90}$	, 773
442	Marshail.	${ }_{17}^{52}$		${ }_{35}^{89}$	${ }_{48}^{19}$	${ }_{61} 182$	8.50 8.32	5.00 5 5.98	1,269	3,820 4,391	84 85	${ }_{98}^{85}$	${ }_{1,420}$

[^24]Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$-Con.


Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$ - Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence				
		Millions of dollars					Average annual rates of growth		Dollars		Percent of the national average		$\begin{gathered} \text { Rank } \\ \text { in } \\ \text { United } \\ \text { States } \end{gathered}$
		1950	1959	1985	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972
	Great Lakes Region-Continued Wisconsin: Non-SMSACounties-Continued												
520   520	Price ${ }_{\text {R }}$	14 18	$\stackrel{24}{24}$	${ }_{31}^{27}$	${ }_{44}^{36}$	47   53	9.29 6.40	5. 66	${ }_{823}^{868}$	3,118   3   3   251	58 62	69 72	1,882
522	Rock.	152	252	368	475	565	5.95	6.15	1,632	3,181 4,282	109	95	+ 497
${ }_{5}^{523}$	Rusk.	13	19	24	29	38	9.43	5.00	, 793	2,583	53	58	2,431
524	Sauk--1	39	60	79	144	157	${ }_{8}^{2.92}$	6. 53	1,015	3,982	68	89	824
${ }_{526}$	Shawano and Menominee	32	${ }_{46}^{12}$	${ }_{61}^{17}$	${ }_{82}^{22}$	105	8.37 8.59	6.50 5.55	${ }_{903}^{689}$	2,754 $\mathbf{2}, 890$	46 60	61   64	$\begin{array}{r}2,282 \\ \mathbf{2}, 144 \\ \hline\end{array}$
527	Sheboygan......	125	185	253	347	426	7.08	5.73	1,543	4, 338	103	97	${ }^{2} 154$
528 529	Taylor....	14	20	27	37	52	12.01	6. 15	753	2,920	50	65	2,110
529	Trempealeau	22	34	45	62	78	7.95	5.92	914	3,265	61	73	1,692
530	Vernon.	26	32	44	60	77	8.67	5.06	918	3,143	61	70	1,849
532	Walworth.	57	107	152	204	- 261	9.56 8.56	6.76 7.16	1,381	3,143 4,019	61 92	74 89	$\begin{array}{r}1,633 \\ \hline 755\end{array}$
533	Washburn.	9	14	19	26	35	10.42	6.37	, 777	3,085	52	69	1,920
$\begin{array}{r}534 \\ 535 \\ \hline\end{array}$	Waupaca	38	${ }^{60}$	82	113	138	6.89	6.04	,1,087	3,550	73	79	1,341
536	wood.....	66	111	151	211	- 266	6.27 8.03	7.39 6.54	1,740 1,298	3,100 3,960	50 87	69 88	1,903
	Plains Region: Minnesota: SMSA's:												
537	Duluth-Superior, Minn.-Wis. ${ }^{\text {s }}$	362	533	660	841	1,061	8.05	5.01	1,424	3,975	95	88	833
${ }_{539}^{538}$	Minneapolis-St. Paul, Minn.-Wis.	2, 217	3, ${ }^{138}$	5,585	8, 263	10, 038	6. 70	7.11	1,762	5,030	118	112	${ }_{274}^{135}$
540	St. Cloud..-	${ }_{97}$	157	${ }_{220}^{221}$	341	${ }_{437}^{402}$	8.13 8.62	8.06 7.08	1,989	4,621 3,086	102 66	103 69	1,918
Non-SMSA Counties:													
542	Aitcin	10	14	16	${ }_{52}^{22}$	29	9.65	${ }^{4.96}$	715	2,456	48	55	${ }^{2,525}$
543	Beltrami	20	26	32	47	64	10.84	5.43	8800	2,745 2,230	55 54	61 50	2,295 2,617
544	Big Stone	10	10	16	20	26	9.14	4.44	1,054	3,179	71	71	1,801
545	Blue Earth.	52	79	116	161	201	7.68	6. 34	1,359	3,622	91	81	1,260
546	Brown...	30	45	64	89	112	7.96	6.17	1,169	3,688	78	82	1,173
547	Carlton--	30	49	61	78	94	6.42	5.33	1,220	3,245	82	72	1,719
548 549 5	Chass......	12 20	19 23	${ }_{32}^{26}$	${ }_{41}^{37}$	50   54	10.56	6.70	+1,1961	2,722 3 3	42 80	61 78	2,316 1,378
550	Clearwater	${ }_{6}$	${ }_{9}$	10	15	21	11.87	4.86	1,590	$\stackrel{\text { 2, }}{2} \mathbf{4 1 8}$	40	54	2,544
${ }_{551}^{551}$	Cook......	3	4	6	8	11	11. 20	6. 08	958	3,126	64	70	1,874
552	Cottonwood	19	22	${ }^{36}$	45	60	10.06	5. 37	1,228	4,009	82	89	. 792
554	Dodge.....	14 14 14	19	${ }_{26}$	$\stackrel{95}{36}$	119	7.80	5.86 5 5	-1,086	$\stackrel{3}{3,141}$	73	70	${ }_{1}^{1,854}$
555	Douglas.	20	29	38	56	78	11.68	6. 38	1,949	3, 357	64	75	1,573
556	Faribault	27	37	54	64	80	7.72	5.06	1,121	3,798	75	85	1,036
557	Fillmore	27	37	45	64	83	9. 05	5.24	1,089	3,711	73	83	1,141
558 559	Freeborn.	48	70 63	92	120	151	7. 93	5.35	1,390	3,783 3 3	83	84	1,056
560	Grant...	11	11	15	19	${ }_{24}$	8.10	3. 61	1,123	3,317	75	74	1,625
561	Houston	16	22	31	49	63	8.74	6.43	1,114	3, 554	75	79	1,333
${ }_{563}^{562}$	Hubbard.	8	11	15	20	27	10.52	5.68	712	2,364	48	53	2, 567
563 564	Isanti.	11	18	29	44	58	9.65	7.85	886	${ }^{2}, 661$	59	59	2, 360
565	Jackson...	20	${ }_{21}$	${ }_{37}$	${ }_{43}^{94}$	18 57	9.85	5. 04 4.88	1, 1,232	3,099 3,909	79 83	87	-913
566	Kanabec	8	11	15	25	32	8.58	6.50	862	2,935	58	65	2,089
567	Kandiyohi.	${ }^{33}$	45	${ }^{63}$	87	110	8.13	5.63	1,140	3,460	76	77	1,455
568 569	Kittson-.....	${ }_{23}^{12}$	11   34	${ }_{38}^{16}$	${ }_{46}^{16}$	23 59	12.86	${ }_{4} 3.00$	1,270	${ }^{3,213}$	85	72	1,756
570	Lac qui Parle..	16	17	23	29	40	11.31	4. 25	1,101	3,589	74	80	1, 290
571	Lake.	11	23	32	39	44	4.10	6.50	1,372	3,226	92	72	1,740
572	Lake of the Woods..		6	6	8	11	11. 20	4.71	803	2,627	54	58	2,393
573	Le sueur.	20	28	47	64	82	8.61	6. 62	1,022	3,650	68	81	1,230
574 575 5	Lincoln.	12	11	${ }_{5}^{16}$	19	26	11.02	3. 58	1,137	3, 270	76	73	1,683
576	McLeod.	26	38	60	${ }_{90}$	114	8.20	5.   6.95   18	1,175	3,990   3	79	89 89	1, 814
577	Mahnomen.	6	7	10	13	18	11.46	5.12	807	3,211	54	71	1,760
578	Marshall...	15	17	24	26	37	12.48	4. 19	953	2,717	64	60	2,324
579	Martin....	${ }^{33}$	45	64	79	101	8.53	5. 22	1,292	4,024	87	90	, 769
580	Meeker	20	26	38	53	70	9.72	5.86	1,059	3,719	71	83	1,132
588	Mille Lacs..	12			38	51	10.31	6. 80	781	3, 113	52	69	1,888
$\stackrel{582}{583}$	Morrison.	20 68	$\begin{array}{r}30 \\ 102 \\ \hline\end{array}$	$\begin{array}{r}36 \\ 125 \\ \hline\end{array}$	$\begin{array}{r}61 \\ 157 \\ \hline 18\end{array}$	$\begin{array}{r}75 \\ 193 \\ \hline\end{array}$	7.13	6. 19	$\begin{array}{r}760 \\ \hline 1599\end{array}$	2,705	51	${ }_{96}^{60}$	2, 370
584	Murray.	17	19	25	33	${ }_{4}$	12.51	4.73	1,152	-	107	86	${ }_{976}$
585	Nicollet.	21	33	48	66	86	9.22	6.62	${ }^{1} 1992$	${ }_{3,471}^{3.45}$	66	77	1,438
${ }_{587}^{586}$	Nobles-	26	32	51	${ }_{66}^{66}$	89	10. 48	5. 75	1,131	3,740	76	83	1,101
587	Norman-	13	13	19	22	31	12.11	4. 03	1,014	3.129	68	70	1,870
588	Otter Tail.-	48	63	81	112	152	10.72	5. 38	935	3,192	63	71	1,786
589	Pennington..	12	17	22	35	55	16. 26	7.17	890	3,875	60	86	$\begin{array}{r}1956 \\ \hline 2.156\end{array}$
590	Pine........	13	18	24	38	52	11.02	6. 50	730	2,878	49	64	2,156
591	Pipestone...	16	21		35	45	8.74	4.81	1,169	3,696			1,167
$\stackrel{592}{593}$	Poik...--	39	50	68	79	106	10. 30	4. 65	1,068	2,956	72	${ }^{66}$	2,062
594	Red Lake	$1 \begin{array}{r}14 \\ 5\end{array}$	16 5	21 9	28 10	37 15	9.74	4. 5.12	1,056	$\begin{array}{r}3,277 \\ 2 \\ 268 \\ \hline\end{array}$	${ }_{46}^{71}$	73 60	1,675 2,345
595	Redwood.	24	26	42	56	75	10.23	5.32	1,086	3,764	73	84	1,073
${ }_{597}^{596}$	Renville..	29	29	47	${ }^{63}$	80	8.29	4.72	1,206	3,844	81	86	
$\begin{array}{r}597 \\ 598 \\ \hline\end{array}$	Rice.	34	56	82	119 38	149	7.78	6. 95	-929	3,438	$\stackrel{62}{83}$	77	1,487 462
599		114	14	16	${ }_{25}$	${ }_{36}^{50}$	$\begin{array}{r}\text { 9. } \\ 12.58 \\ \hline 12.92 \\ \hline\end{array}$	5.96 5.54	1, ${ }_{782}$	$\begin{array}{r}4,324 \\ 3,037 \\ \hline\end{array}$	83   52   5	96 68	1,462 1,971
600	Sibley.	18	24	35	42	57	10. 72	5. 38	1,114	3,567	75	79	1,318

[^25]Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1-C o n .}$


See footnotes at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1-}$ Con.

Line	Area title	Total personal income by place of residence						Per capita income by place of residence				
		Millions of dollars				Average annual rates of growth		Dollars		Percent of the national average		
		1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972
678 679												
680	Mitchell.	22	31	43	53	7. 72	4.77	1,371	4,008 4,093	92	9	510 696
681	Monona..	22	30	37	50	10.56	4.02	1,293	4,112	87	92	675
682	Monroe.-	12	18	23	33	12.79	5. 12	1,899	3,498	60	78	1,399
683	Montgomery	23	37	47	58	7.26	4.96	1,262	4,238	85	94	1,552
684	Muscatine.	64	97	136	168	7.30	6. 28	1,358	4,416	91	98	407
685 686	O'Brien..	26	47 23	60 28	72	6. 27	4.56	1,432	4, 036	96	90	758
687	Page....	36	49	65	81 81	10.61 7.61	4.32 3.89	1,454	4,573 4,298	101 97	102 96	303 487
688	Palo Alto.	21	35	41	55	10.29	4.47	1,315	3,940	88	88	887
689 690	Plymouth	38	57	74	93	7.92	4.54	1,487	3,739	100	83	1,102
690 691	Pocahontas.	23	36	44	57	9.01	4. 21	1,475	4,654	99	104	252
692	Pinggold.	11	48	18	88	11.78	5.70 3.80	1,331	4,645	89	103	263
693	Sac......	27	43	54	66	11.57 6.92	3. 80 4.32	1,158 1,500	3, $\mathbf{4 , 1 7 4}$	78 100	85 93	996 620
694	Shelby	27	41	51	68	10.06	5.05	1,440	4,266	96	95	521
695	Sioux	38	65	85	104	6.96	4.56	1,460	3,681	98	82	1,184
${ }_{697}^{696}$	Story.	80	138	191	249	9.24	7.38	1,181	3,818	79	85	1,022
697	Tama	32	53	69	89	8.85	4.91	1,412	4,352	95	97	444
698	Taylor..	14	20	26	34	9.35	3.79	1,204	3,842	81	86	991
699 700	Union V ----	21	33	41	52	8.24	4.94	1,138	3,817	76	85	1,024
701	Wapello...	56	121	151	-32	10.06 5.83	4.56 6.17	1,050 1,012	3, 663   4,222	70 68	82 94	1,212
702	Washington.	34	52	68	85	7.72	5.01	1,456	4,452	98	99	382
703	Wayne-...	13	21	24	33	11. 20	4.32	1,076	3,881	72	86	949
704	Webster	81	131	169	198	5. 42	5.42	1,395	4,059	93	90	731
705	Winnebago	21	32	51	75	13. 72	6. 44	1,384	5,658	93	126	55
706 707	Winneshiek	31 14	45 24	60 29	72 40	6. 27	4.56 4.25	1,229	3,267	8	${ }_{98}^{73}$	1,688
708	Wright.	31	54	61	80	9.46	4.89	1,421	4,641	95	103	267
	Miseouri: SMSA's:											
709	Columbia	102	162	232	310	10.14	8.45	1,068	3,643	72	81	1,238
710	Kansas City, Mo.-Kans. ${ }^{\text {b }}$	2,611	3,646	5,069	6, 396	8.06	7.05	1,647	4,906	110	109	1,160
711	St. Joseph	${ }^{220}$	. 258	347	${ }^{4} 426$	7.08	4.52	1,480	4,244	99	94	545
712 713	St. Louis, Mo. ${ }^{\text {-111. }}{ }^{5}$	5,242	7,134	9,540	11,562	6.62	6.02	1,781	4,818	119	107	190
713	Springfield.	261	337	500	679	10.74	6.95	1,317	3,825	88	85	1,010
	Non-SMSA Counties:											
714	Adair.................	26	39	51	66	8.97	6.08	915	2,892	61	64	2,142
715	Atchison.	16	29	33	44	10.06	5. 70	1,187	4,574	80	102	302
716	Audrain.	47	65	81	109	10.40	5.16	1,521	4,181	102	93	613
717	Barry-..	29	37	51	65	8.42	5.75	875	3,139	59	70	1,857
718	Barton.	21	22	28	35	7.72	4. 25	1,103	3,254	74	72	1,708
719 720	Bates Bento.	26	35	45	56	7.56	4.34	1,239	3,616	83	80	1,268
720	Benton--	14	18	22	29	9.65	6.03	845	2,741	57	61	2,303
722	Butler-	45	59	74	103	10.06	4. 89 5.31	878	2,267 2,883	42 59	50 64	$\stackrel{2}{2,149}$
723	Caldwell.	15	20	24	31	8.91	4,41	1,223	3,465	82	77	1,447
724	Callaway.	33	45	67	97	13.13	7.20	883	3,572	59	80	1,311
725	Camden-.-....-	13	23	32	45	12.03	10. 50	${ }^{688}$	3, 058	46	68	1,947
726	Cape Girardeau.	75	99	136	183	10.40	5.70	1,403	3,543	94	79	1,346
727	Carroll.-.	26	37	41	55	10.29	5.21	1,159	4,286	78	95	493
728	Carter...	3	4	6	9	14.47	7.08	442	2,023	30	45	2, 674
729	Cedar....	12	17	22	26	5.73	5. 50	739	2, 565	49	57	2,447
730 731	Chariton.	19	28	30	44	13.62	4.42	1,111	4,154	74	92	${ }^{633}$
732	Clinton.	${ }_{20}^{12}$	${ }_{31}^{18}$	42	27 54	14.47	4.62	1,109	3,291	74	73	1,656
733	Cole...	68	96	155	196	8.14	7.03	1,250	4,008 4,095	84	91	720
734	Cooper	23	33	45	57	8.20	5.12	1,126	3,861	75	86	970
735	Crawford.	18	20	30	39	9.14	6. 89	1,798	2,552	53	57	2,458
736	Dade-	11	12	16	20	7.72	3. 70	933	2,780	62	62	2,260
737	Dallas	10	12	19	25	9.58	5. 96	625	2,308	42	51	2,592
738 739	Daviess.	14	19	23	31	10.46	4.03	1,182	3,553	79	79	1,335
739	DeKalb.	12	17	22	29	9.65	4. 50	1,317	3,795	88	84	1,042
740	Dent	14	18	23	32	11. 64	6. 50	, 717	2,673	48	60	2,356
741	Douglas	9	10	15	18	6. 27	4. 39	568	1,724	38	38	2,706
742 743	Dunklin...-	47	64	76	105	11.38	4.73	837	2,982	56	66	2,027
743	Gasconade.	17	25	29	39	10.38	4.77	1,097	3,178	73	71	1,803
744	Gentry -	14	21	23	31	10.46	4.03	1,211	3,684	81	82	1,178
745	Grundy -	21	28	33	44	10.06	5.01	1,119	3,795	75	84	1,041
746 747	Harrison.	18	23	28	39	11. 68	4.13	1,154	3,770	77	84	1,070
748	Hickory	31	39	48	65	10.63	5.50	998	3,322	67	74	1,617
749	Holt....	$\begin{array}{r}5 \\ 15 \\ \hline\end{array}$	6	8	12	14.47	5.12	690	2,307	46	51	2,593
750	Howard	15	23	28	33 39	14.47	4.71 5.12	1,216 1,076	4,820 3 3	81	107 79	$\begin{array}{r}189 \\ 1,350 \\ \hline\end{array}$
751	Howell.	25	32	49	60	1.98	6.50	$\begin{array}{r}1,674 \\ \hline 1\end{array}$	$\stackrel{3}{2,451}$	45	55	2,527
752	Iron...	15	12	26	36	11.46	5.99	1,020	3,617	68	81	1,266
753	Jasper...	148	196	242	299	7.30	5. 25	1,218	3,635	82	81	1,245

[^26]Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{\text {I-Ton. }}$


See footnotes at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$-Con.


Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$-Con.


See footnotes at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$ - Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence				
		Millions of dollars					Avarage annual rates of growth		Dollars		Percent of the national average		$\begin{gathered} \text { Rank } \\ \text { in } \\ \text { United } \\ \text { States } \end{gathered}$
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972
	Plains Region-Continued Nebracka:   Non-SMSA Countieg-Continued												
996	Nemaha--	13	14	20	26	34	9.35	4.47	1,146	3,735	77	83	1,109
998	Otoe.....	21	24	41	54	64	5. 83	5. 20	1,207	4,086 4,08	81	91	702
999	Pawnee.	8	7	10	14	20	12. 62	4.25	1,111	4, 452	74	99	381
1000	Perkins..	9	9	11	12	19	16.55	3.45	1,795	5,765	120	128	49
1001	Phelps...	15	20	27	40	52	9. 14	5.81	1, 606	5,390	108	120	83
1002	Pierce..	12	11	17	24	29	6.51	4.09	1,235	3,428	83	76	1,501
1003	Platte.	30	58	69	102	124	6.73	6. 66	1,517	4,556	102	101	314
1004	Polk.	11	15	20	26	25	$-1.30$	3.80	1,406	3,953	94	88	864
1005	Red Willow.	19	25	34	42	53	8.06	4.77	1,470	4,232	98	94	561
1006	Richardson...	22	23	32	43	52	6.54	3.99	1,280	4, 264	86	95	526
1007	Rock.-	5	4	5	5	8	16. 96	2. 16	1,490	3,498	100	78	1,400
1008	Saline .-.	17	20	30 40	45	55 76	6. 92	5. 48	1,195	4,284	80	95	495
1009	Saunders..-	21	25	40	57	76	10.06	6. 02	1,251	4,382	84	98	423
1010	Scotts Bluf	48	63   19	84	119 46	167	11. 96	5. 83	1,418	4,564	95	102	308
1012	Seward..	17	19 17	29 19	$\stackrel{46}{22}$	56 30	6.78 10.89	5.57 3.20	1,267	3,700   4	85 105	82 95	1,162 515
1013	Sherman.	7	7	9	14	17	6. 69	4.12	1,144	3, 868	77	86	962
1014	Sioux	5	5	4	5	6	6. 27	. 83	1,597	3,215	107	72	1,755
1015	Stanton.	8	9	12	19	22	5.01	4.71	1,268	3,510	85	78	1,383
1016	Thayer-	13	14	24	27	40	14.00	5. 24	1,251	5,166	84	115	111
1017	Thomas.-	2	2	3	3	4	10.06	3. 20	1,379	3,745	92	83	1,097
1018	Thurston.	12	8	16	21	26	7.38	3.58	1,340	3,724	90	83	1,126
1019	Valley---.-	80	${ }^{9} 9$	13   32	18	${ }_{61}^{23}$	8.51 5.47	4. 92	1, 113	4,017 4,236	75	89	780 556
1020 1021	Washington.	20 13	${ }_{13}^{21}$	32 20	52 30	61 34	5.47 4.26	5.20 4.47	1,764 1,260	4,236 3,284	118 84	94 73	556 1,668
1022	Webster.	8	9	13	17	21	7.30	4.48	1, 074	4,079	72	91	708
1023	Wheeler.-		2	2	4	5	7.72	4.25	1,063	5,007	71	111	142
1024	York.--	19	28	40	52	63	6. 60	5.60	1,293	4.650	87	104	253
	Kansas: ${ }^{4}$ SMSA's:												
1025	Topeka.	201	356	469	654	837	8.57	6.70	1,545	4,538	103	101	327
1026	Wichita.	471	947	1,120	1,457	1,705	5.38	6.02	1,850	4,541	124	101	324
1027	Non-SMSA Counties:		28	36	43	58	10.49	4. 50	1227	3812			
1028	Anderson.....-	2221	15	22	27	36	10.0610.36	4.74	1,215	4,157	828186	85 93	1,030
1029	Atchison.-		38	50	61	82		5.01	1,288	4,230		94	
1030	Barber	15	59	2089	110	140	2.948.37	2.16	1, 1,427	- 4,598	-96	102	1,363 1,
1031	Barton.--	43											$\begin{array}{r}288 \\ 963 \\ \hline\end{array}$
1032	Bourbon.	21	2423	38	46	61	9.8611.46	4. 97	1,109	3,8684,665	74 97	$\begin{array}{r}86 \\ 104 \\ \hline\end{array}$	
1033	Brown..	21		32	39	54		4.39	1,442		97		245
1034	Chase-......	7	${ }_{11}^{6}$		15		-12.64-9.35	1.632.93	1,3621,209	2,8393,701	918181	82	2,192
1035	Chautauqua.	9		13	58	17							1,159
1036	Cherokee..	33	46	56		69	5.96	3. 41	1,299	3,212	87	72	1,759
1037	Cheyenne.	7	12	1310	15	23	15. 31	5. 56	1,189	5,892	80153	131	38
1038	Clark	${ }^{9}$					-3.8510.06	-5. 01	2,283	2,987			2,021333
1039	Clay.	15	21	10 26	33	-8				4,526	$\begin{array}{r}153 \\ 83 \\ \hline\end{array}$	101	
1040	Cloud.	18	13	3415	41	5429	$\begin{array}{r} 9.61 \\ 11.36 \end{array}$	$\begin{aligned} & 5.12 \\ & 3.71 \end{aligned}$	1,090	4,082	$\begin{aligned} & 73 \\ & 80 \end{aligned}$		705
1041	Coffey-.	13			21							83	1,121
1042	Comanche.	7	${ }_{6}^{5}$	977	12	16	10.06	3. 83	1,194   1,878   1	3,726 5 5,629	126	$\begin{array}{r}125 \\ 89 \\ 78 \\ \hline\end{array}$	
1043	Cowley-..	42			116	139	6. 21	5. 59	1,145	3,976 3	77		$\begin{array}{r}831 \\ 1.386 \\ \hline\end{array}$
1045	Crawford.	46 8	1140	161654	${ }_{21}^{113}$	298585	11.36	6.03	1, 1,297	6,1694,150	8796	13792	31639
1046	Diekinson	${ }_{31}^{8}$			65		9.35	4.69					
1047	Doniphan.	12	72	22	29	41	12.24	5.74	1,163	4,388	78	98	422
1048	Douglas...	43		105	160	209	9.31	7.45	1,250	3,460	84	77	1,457
1049	Edwards..	7	8	13	16	21	9. 49	5. 12	1,249	4,752	84	106	216
1050	Elk.-...	7	6	8	11	14	8.37	3. 20	971	3,840	65	85	994
1051	Ellis...	21	32	48	62	85	11.09	6. 56	1,076	3,310	72	74	1,629
1052	Ellsworth.	11	13	17	20	29	13.18	4. 50	1,241	4,752	83	106	215
1053	Finney	25	32	48			11. 62	5. 94	1,633	4,508	109	100	344
1054	Ford-	28	39	56	83	99	6. 05	5.91	1,439	4, 326	96	96	460
1055	Franklin.	21	31	42	60	85	12.31	6.56	1,066	4,189	71	93	602
1056	Geary.--	42	40	55	86	107	7.55	4. 34	1,927	3,425	129	76	1,506
1057	Gove...	8	8	13	18	25	11.57	5.32	1,678	6,110	112	136	33
1058	Graham.	7	9	12	12	19	16.55	4.64	1,293	3. 968	87	88	841
1059	Grant.-	11	15	20	24	30	7.72	4.67	2, 398	5,014	161	112	138
1060	Gray.	9	9	15	20	30	14.47	5. 63	1,906	6,676	128	149	18
1061	Greeley	4	8	7	11	16	13.30	6. 50	2,189	9.369	147	209	3
1062	Greenwood.	16	16	19	27	33	6.92	3.35	1,159	. 3,735	78	83	1,108
1063	Hamilton.	8	10	7	7	12	19.68	1. 86	$\stackrel{2}{2} 139$	4,301	143	96	485
1064	Harper.	14	18	23	30	40	10.06	4.89	1,374	5,383	92	120	84
1065	Harvey.	27	48	68	93	123	9.77	7.14	1,248	4,521	84	101	339
1066	Haskell.	6	7	13	21	37	20.78	8.62	2,245	9,963	150	222	2
1067	Hodgeman.	6	5	8	11	17	15.62	4.85	1,679	6,278	112	140	25
1068	Jackson..-	13	16	24	28	40	12. 62	5. 24	1,158	3,680	78	$8{ }^{82}$	1,189
1069	Jewell. --	11	11	17	22	28	8.37	4.34	1,168	5,085	78	113	124
1070	Kearny.-	8	9	9	9	17	23.61	3. 49	2,220	5,685	149	127	53
1071	Kingman.	10	14	20	27	36	10.06	5.99	983	4,253	66	95	534
1072	Kiowa...	8	8	11	17	19	3. 78	4. 01	1,606	4,866	108	108	172
1073	1 abette.	36	50	60	92	88	$-1.47$	4. 15	1,210	3.514	81	788	1,375
1074   1075	'e.......-	$\begin{array}{r}7 \\ 48 \\ \hline\end{array}$	8	101	$\begin{array}{r}11 \\ 154 \\ \hline\end{array}$	16 202	13.30	6. 83	$\stackrel{-3}{1,30}$		155 76	133 84	37 1,066
1075 1076	venworth.	48 8	74 9	101 15	154 16	202 20	9.47. 7.	6.75 4.25	1, 1,138	3,776 4,593	76 83	84 102	1,066 290
	efoor end of table.												

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-721mCon.


[^27]Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{11-C o n .}$


[^28]Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$-Con.


See footnotes at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$-Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence				
		Millions of dollars					Average annual rates of growth		Dollars		Percent of the national average		
		1950	1959	1985	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972
	Southeast Region-Continued Kentucky:												
1315	McCreary...	6	7	9	13	19	13.48	5.38	372 593	1,428	25	32	2,716
1316   1317   1	McLean...	6 26	43	17	103	$\begin{array}{r}28 \\ 130 \\ \hline\end{array}$	10.06 8.07	7.25 7.59	593   849	2,939 2,959	40 57	65 66	2,085 2,057
1317   1318	Madison-	$\begin{array}{r}26 \\ 4 \\ \hline\end{array}$	43 6	$\begin{array}{r}65 \\ 8 \\ \hline\end{array}$	103	130 15	8.07 10.89	7.59 6.19	849 316	2,959 1,407	57 21	66 31	2,057 2,718
1319	Marion	16	16	26	36	44	6. 92	4.71	915	2,607	61	58	2,412
1320	Marshall.	9	34	53	64	75	5. 43	10.12	701	3,525	47	78	1,367
1321	Martin...	4	6	7	10	22	30.06	8.06	369	2,138	25	48	2,646
1322	Mason.	19	30	42	51	63	7.30	5. 60	1,016	3,791	68	84	1,046
1323	Meade.	10	22	29	44	51	5. 04	7. 69	1,106	2,940	74	65	2,083
1324	Menifee.	2	2	4	6	8	10.06	6. 50	325	1,862	22	41	2,697
1325	Mercer	12	22	30	43	64	14.17	7.91	818	3,866	55	86	966
1326	Metcalfe.	4	8	11	14	19	10.72	7.34	436	2,313	29	51	2,589
1327	Monroe.	5	10	16	20	25	7.72	7.59	394	2,055	26	46	2, 666
1328	Montgomery.	10	17	24	38	50	9. 58	7.59	745	3,069	50	68	1,936
1329	Morgan	5	8	11	13	19	13. 48	6.26	394	1,858	26	41	2,698
1330	Muhlenberg	19	39	48	75	103	11.15	7.99	586	3,594	39	80 73	1,286
1331 1332	Nelson-..	19 6	29. 8	42 12	59 16	76 20	8.81 7.72	6.50 5.63	962	3,258 3,080	64 51	73 69	1,700 1,925
1333	Ohio..	11	18	28	41	58	12.26	7.85	514	2,964	34	66	2,052
1334	Owen...	7	11	14	20	26	9.14	6.15	740	3,311	50	74	1,628
1335	Owsley	2	3	5	5	8	16. 96	6.50	322	1,448	22	32	2,714
1336	Pendleton.	9	13	17	25	31	7.43	5.78	936	3,040	63	68	1,969
1337	Perry..	42	38	37	49	74	14.73	2.61	902	$\stackrel{2}{2} 741$	48	61 56	$\stackrel{2}{2,302}$
1338	Pike...-	58 3	61 5	79 9	107 12	162	14.83   12.31   1	4. 78 8.20	712 446	2,500 2,203	48 30	56 49	2,501 2,628
1339 1340	Powell	3 21	$\begin{array}{r}5 \\ 35 \\ \hline\end{array}$	9 50	12 75	177	12.31 11.87	8.20 7.59	446   542	2,203 2,778	30 36	49 62	2,628 2,264
1341	Robertson.	2	3	4	5	6	6.27	5.12	767	2,749	51	61	2, 291
1342	Rockcastle	6	8	12	18	23	8.51	6.30	417	1,805	28	40	2,703
1343	Rowan-	7	11	17	28	36	8.74	7.73	538	2,026	36	45	2,673
1344	Russell.	5	9	14	23	26	4.17	7.78	336	2,342	23	52	2,576
1345	Shelby.	16	30	44	60	75	7.72	7.27	899	3,886	60	87	941
1346	Simpson.	8	14	26	36	50	11.57	8.69	672	3,677	45	82	1,194
1347	Spencer.	5	8	11	15	18	6.27	5.99	794	3,369	53	75	1,560
1348 1349	Taylor.	9 7	${ }_{13}^{21}$	33 19	46 25	60 33	9. 26   9.70   18	9.01 7.30	602 572	3,344 3,095	40 38	74 69	1,592
1350	Trigg	5	9	15	21	28	10.06	8.15	548	3,175	37	71	1,805
1351	Trimble.	3	6	9	11	14	8.37	7.25	645	2,668	43	59	2,362
1352	Union.	12	22	31	42	58	11.36	7.42	777	3,683	52	82	1,172
1353	Warren.-	35	66	101	158	196	7. 45	8.15 5.18	821	3, 204	55 54	71 66	$\begin{array}{r}1,769 \\ \hline\end{array}$
1354	Washington	10	13	18	24	31	8.91	5. 28	799	2,954	54	66	2,069
1355	Wayne	5	10	15	19	29	15.14	8.32	317	1,989	21	44	2,678
1356	Webster	9	18	24	35	47	10.33	7.80	603	3, 456	40	77	1,465
1357	Whitley.	15	26	36	50	66	9.70	6.97	478	2,511	32	56	$\stackrel{2,492}{ }$
1358	Wolfe..	3	4	6	7	11	16.26	6. 08	366	1,818	25	40	2,701
	Tennessee: SMSA's												
1359	Chattanooga, Tenn.-Ga. ${ }^{5}$	353	587	834	1,190	1,556	9.35	6. 98	1,190	4, 088	80	91	699
1360	Kingsport-Bristol, Tenn.-Va. ${ }^{\text {- }}$	205	337	471	727	1922	8.24	7.07	987	3, 719	66	83	1,131
1361	Knoxville	445	654	876	1,226	1,592	9. 10		1,279	3.782	86	84	1,058
1362	Memphis, Tenn.-Ark.-Miss. ${ }^{5}$	752	1,259	1,833	2,632	1,534   2	10.32	7. 29	1,279	4, 136	79	92	623 655
1363	Nashville-Davidson...	597	1,076	1,578	2,306	2,960	8. 68	7.55	1,182				655
	Non-SMSA Counties:	22	33	50	74	94		6.82		3,837		85	
1365	Bediord.	6	11	16	26	34	$\begin{aligned} & 8.30 \\ & 9.35 \end{aligned}$	8.20	919	2,773	62 36	62	998 2,268
1366	Bledsoe.	3	5		13	18	11. 46	8.48	405	2,213	27	49	2,623
1367	Bradley	27	54	90	135	189	11.87	9.25	827	3,483	35 39	78	1,416
1368	Campbell.	20	10	13	47	67	12. 54	5. 65	582652	${ }_{2}^{2,378}$	39	${ }_{63} 63$	2,227
1369	Camnon.	6			17			6. 70		$\stackrel{2,813}{ }$	44		
1370	Carroll.	18	25	39	59 110	$\begin{array}{r}74 \\ 153 \\ \hline\end{array}$	7.84	6. 64	660	2,845	44	63	2,187
1371	Carter...	37 6	519	13	110	153 26	11.63	6.66	873 561	3,441   2	58 38	$\begin{array}{r}77 \\ 58 \\ \hline\end{array}$	1,482
1372 1373	Chester....	${ }_{12}^{6}$			19 32	26	11.02	6.89 6.19	561	2,590	38 33	58 49	2,425 2,632
1374	Clay...	4	5	7	11	14	8.37	5.86	459	2,145	31	48	2,644
1375	Cocke.	12	22	3576	51	$\begin{array}{r}68 \\ 120 \\ \hline\end{array}$	10.06	8.20	527	2,618	3547	58	2,398$1 ; 273$
1376	Coffe	16	45		94		8.48	9.59	695	3,611		80	
1377	Crockett.	13	17	25	32	48	14.47	6.12	775	3,301	5234	7355	1,639
1378	Cumberland.	105	16	26	38	53	11.73	7.88	510				2,5192,116
1379	Decatur.		8	14   18	21	34	$\begin{array}{r} 8.74 \\ 12.31 \end{array}$	7.97	5336	2,915	36	65	
1380	De Kalb..	$\begin{array}{r}6 \\ 28 \\ \hline 8\end{array}$	11		24			8.20	551	2,871	37	64	2,116 2,162
1381	Dyer		39	59	82	109	9.95	6.37	825416	3,4822,646	55	78	1,4222.3782,699
1382	Fayette...	12	18 8	32	42	57	10.72	7.34			28	5941	
1383	Fentress..		8	12	19	24	8.10	6.50	404	1,840	27		
1384	Franklin.	1654206685523411	28	44	63	76	6.45	7.34	${ }^{610}$	2,748	41	61	2,293
1385	Gibson...		59	93	145	171	5. 65	5.38	1,119	3,558	75	79	1,326
1386	Giles.		25	33	52	83	16.87	6.68	735	3,737	49	83	1,107
1387	Grainger		11	17	25	37	13.96	8.62	488	2,520	33	56	2,483
1388	Greene. -		48	79	112	156	11.68	8.12	687	3,232	46	72	1,733
1389	Grundy		94651714	147063225	21	26	7.33	7.78	401	2,338	27	52	2,580
1390	Hamblen...				97	142	13.55	8. 63	943	3,486	63	78	1,413
1391	Hancock.				11	16	13.30	6.50	410	2,425	27	54	2, 538
1392	Hardeman.				43	57	9.85	7.78	488	2,612	33	58	2,406
1393	Hardin....				34	45	9.79	7.59	511	2,39	34	53	2,553

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{11}$ Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence					
		Millions of dollars					Average annual rates of growth		Dollars		Percent of the national average		$\left\{\begin{array}{c} \text { Rank } \\ \text { in } \\ \text { United } \\ \text { States } \end{array}\right.$	
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972	
	Southeast Region-Continued North Carolina: Non-SMSA Counties-Continued	1547474238251710336411							820799890	$\begin{aligned} & 3,428 \\ & 2,940 \end{aligned}$	$\begin{aligned} & 55 \\ & 54 \\ & 60 \end{aligned}$	766568	1,502   2,084	
1478			15 66	24 94	$\begin{array}{r}37 \\ 122 \\ \hline\end{array}$	$\begin{array}{r}51 \\ 158 \\ \hline 1\end{array}$	11.29 9.00							
1479	Harnett-		66 54	94 81 81	${ }_{115} 12$	158 156 158	9. 100 10.70	5. 67 6.15		3,0463,365			68 1,958   75 1,566	
1480	Haywood.		${ }_{54}^{61}$	83	1135118	14418463	$\begin{array}{r}18.42 \\ 10.87 \\ \hline 8\end{array}$	6.24 9.50 9.	890 1,004		60 67			
1482	Hertiord..		$\stackrel{34}{23}$	92			8.7410.8910.	6.13   7.08	${ }^{1} 808$	4,188	54 52	93    60 605		
1483	Hoke.-		16 16	24	${ }_{11}^{33}$	45			783 603	2,647	40   33	58   58	2,377   2,401	
1484	Hyde-		5	7		14	8.37	7.25	496	2,617				
${ }_{1486}^{1485}$	Jackson.		$\begin{array}{r}94 \\ 18 \\ \hline\end{array}$	152 30	$\begin{array}{r}207 \\ 43 \\ \hline\end{array}$	$\begin{array}{r}266 \\ 61 \\ \hline\end{array}$	8.72 12.36	6.69	1,131	3, 320	76 39	${ }_{61}^{78}$	+1,371	
1487	Johnston.	497253996268831115		105		217	9.56	7.00	$746 \quad 3,446$		50			
1488	Jones.		${ }_{11}^{67}$	$\begin{array}{r} 16 \\ 16 \\ 62 \end{array}$	$\begin{gathered} 23 \\ 23 \\ 91 \end{gathered}$	$\begin{gathered} 29 \\ 114 \end{gathered}$	$\begin{aligned} & 8.03 \\ & 8.03 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 6.67 \\ & 7.14 \end{aligned}$	$\begin{array}{r}666 \\ 1,064 \\ \hline\end{array}$	3,044   3,596	$\begin{array}{r}45 \\ 71 \\ \hline 8\end{array}$	688080	1,4751,9631,2851,28	
1490	Lenoir		77	$\begin{array}{r}114 \\ 61 \\ \hline\end{array}$	15690	20511818	9.539.459.		+851					
1491	Lincoln.		38					$\begin{aligned} & 7.12 \\ & 6.50 \end{aligned}$	944958	3,4113,205	$\begin{aligned} & 57 \\ & 63 \end{aligned}$	80 76	1,2761,5271,767	
1492	McDowell.		36	52	76	100	9.45   9.58   9.8				64	7162		
${ }_{1}^{1494}$	Macon.-		${ }_{29}^{16}$	${ }_{47}^{22}$	${ }_{65}^{35}$	47   80	10.33 7.17	8.38 5.83 5	503 833 83	2,783   3,277	34   56		2, 257   1,676   1	
1495	Mitcheli.		1626	19	29   52   1	${ }_{68}^{38}$	9.439.35	5.807.11	707 2,823		58	6378	$\begin{aligned} & 2,212 \\ & 1,365 \end{aligned}$	
1496	Montgomery			34					861	$\begin{array}{r}2,823 \\ 3 \\ \hline\end{array}$				
1497	Moore.	34	46	77	113	144	8.42	6.78	1,035 3,514		69	78	1,377	
1498 1499	Nash-....	55 19 19	70   23   14	96 33	144	199	9.65	6. 02	971	$\stackrel{3}{3} 279$	61	73	1,673   2,522	
1500	Onslow -	$\begin{array}{r}19 \\ 7 \\ \hline\end{array}$		$\begin{array}{r}33 \\ 197 \\ \hline\end{array}$	$\begin{array}{r}44 \\ 321 \\ \hline\end{array}$	58	7.61	8. 817	${ }^{670}$	2,459	113	90	, 766	
1501	Pamlico.	7	${ }^{8}$	13	19	25	9.58	5.96	, 719	2,645	48	59	2,380	
1502	Pasquotank	${ }^{2}$	36 17	47	${ }_{41}^{66}$	84 54	${ }_{9}^{8.37}$	5. 29	1,091	-3,067	73 38 3	${ }_{68}^{68}$	-1,938	
1504	Pender-....		9	12	18	${ }_{23}$	9.61 8.51	6.30	660	$\underset{2,715}{2,}$	44	60	$\xrightarrow{2,023}$	
1505	Person...	22	31	45	65	87	10.20	6.45	909	3,298	61	73	1,644	
1506	Pitt.	53	80	124	182	250	11.16	7.31	822	3,340	55	74	1,596	
1507	Polk	崖	16	25	39	51	9.35	8. 20	749	4, 243	50	94	547	
1508	Richmond	40	${ }_{8}^{49}$	${ }^{73}$	101	121	6. 21	5.16	1,015	$\stackrel{2}{2,993}$		67	2, 1212	
1510	Robeson...	60 74	$\begin{array}{r}81 \\ 107 \\ \hline\end{array}$	116   153	176 220	${ }_{285}^{243}$	11.35 9.01	6.56 6.32	1685 1,134 1	2,795   $\mathbf{3 , 8 1 4}$	$\begin{array}{r}46 \\ 76 \\ \hline 8\end{array}$	62 85 8	$\xrightarrow{2,247}$	
1511	Rowan-..	88	125	181	270	348	8.83	6.45	1,161	3,851	78	86	${ }^{1,982}$	
1512	Rutheriord.	40	57	84	120	161	10.29	6.53	- 858	3,269	57	73	1,687	
1513	Sampson...		46	72	110	139	8.11	7.38	583	2,956	39	66	2,064	
${ }_{1515}^{1514}$	Statand.	19   39	28 59 59	${ }_{93}^{41}$	$\stackrel{64}{131}$	$\begin{array}{r}88 \\ 163 \\ \hline\end{array}$	$\begin{array}{r}11.20 \\ 7.56 \\ \hline 8.5\end{array}$	7.22	$\begin{array}{r}898 \\ \hline 1.054 \\ \hline\end{array}$	3,162   3   3	49	70 83 8	1,819	
1516	Surry..	51	77	114	156	199	8.45	6.38	1,106	3,733 3,783	74	$\begin{array}{r}83 \\ 83 \\ \hline\end{array}$	1,122	
1517	Swain.	8	10	13		22	8.97	4.71	791	2,369	53	53	2,564	
1518 1519	Transylvania	$\begin{array}{r}19 \\ 3 \\ \hline\end{array}$	${ }_{31}^{31}$	36 4 4	54	68 10	7.99		1,259	- ${ }^{3,426}$	84	76 54 54	1,504 $\mathbf{2} 536$	
1519   1520	Tyrrell	$\begin{array}{r}3 \\ 32 \\ 3 \\ \hline\end{array}$	3 38 3	$\begin{array}{r}4 \\ 59 \\ \hline\end{array}$	$\begin{array}{r}7 \\ 8 \\ \hline 8\end{array}$	10 123	12.62   12.24	5. 63	1.637 1,001	$\begin{array}{r}2,427 \\ 3,870 \\ \hline\end{array}$	$\begin{array}{r}43 \\ \hline 67\end{array}$	54   86	2, 5360 960	
1521	Warren.	15	18	26	33	45	10.89	5.12	${ }^{1} 636$	$\xrightarrow{2,688}$	43	60	2,340	
1522	Washington-	11	16	${ }^{23}$	32	${ }_{71}^{41}$	8.61	6. 16	856	3,019	57	67	1,988	
1523 1524 1	Watauga.	${ }^{10}$	17	$\begin{array}{r}30 \\ 150 \\ \hline\end{array}$	49	71	13.16	9. 32	535	${ }^{2,931}$	$\stackrel{36}{55}$	$\stackrel{65}{67}$	2,098	
1525	Wayne.	11   28	101 47	150 80	228 132	31 171 1	$\begin{array}{r}10.43 \\ 9.01 \\ \\ \hline\end{array}$	8.31 8.57	823 610	3,478 3 3 3	$\stackrel{55}{41}$	$\begin{array}{r}77 \\ 7 \\ \hline\end{array}$	-1,430	
1526	Wilson.	51	73	106	160	213	10.01	6.71	942	3,694	63	82	1,169	
1527	Yancey.	9	13	16	23	33	12.79	6.08	554	2,510	37	56	2,494	
	South Carolina: ${ }^{1}$ SMSA's:													
${ }_{1528}^{158}$	Charleston.	223	399	599	916	1,170	8. 50	7.83	1,028	3,420	69	76	1,513	
${ }_{1539}^{1529}$	Columbia--.-.-.....	215	${ }_{641}^{416}$	${ }_{971}^{639}$	$\begin{array}{r}1,008 \\ \hline 1433\end{array}$	- 1,324	9.52	8. 61	1,151	3,944 3 319	77	88	+882	
	Non-SMSA Counties:													
1531	Abbeville............	19	24	${ }_{10}^{40}$	52	65	7.72	5.75	849	3,092	57	${ }_{69}^{69}$	1,911	
${ }_{153}^{1532}$	Allendale.	5	$\begin{array}{r}10 \\ 148 \\ \hline\end{array}$	168	${ }^{21}$	${ }^{25}$	5.98	7.59	388 1	${ }_{3}^{2,508}$	$\stackrel{26}{68}$	${ }_{80}^{56}$	2, $\begin{array}{r}\text { 1, } 296 \\ \\ 2\end{array}$	
153	Anderson.	$\stackrel{9}{8}$	13	${ }_{22}$	304 3	394 44	11.20	6. 8.84	1,463		${ }_{31}$	${ }_{62}$	2, 266	
1535	Barnwell.	8	16	25	41	52	8.24	8.88	464	3,030	31	${ }^{67}$	1,976	
1536	Beaufort...	33	64	96	193	250	9.01	9.64	1,222	4,590	82	102	, 292	
${ }_{1538}^{1537}$	Cahoun..	8	12	16	${ }^{26}$	39	14.47	7.47	551	${ }^{3,826}$	$\stackrel{37}{58}$	85	1,009	
${ }_{1538}$	Cherokee.	30	42	67	91	128	12.04	6. 82	871	3,335	58	74	1,599	
1539	Chester.	29	36	52	76	96	8.10	5.59	876	3,171	59	71	1.809	
1540	Chesterfield	22	31	49	73	96	${ }_{9.36}$	6. 93	609	2, 827	41	63	2,208	
1541	Clarendon.		20	32	43	61	12.36	f. 92	448	2,298	30		2,595	
1542	Colleton.	20	26	36	57	73	8. 60	6. 06	714	${ }^{2}, 662$	48	59	2,365	
${ }^{1543}$	Darlington..-	$\stackrel{33}{19}$	59	92	131	177	10.55	7.93	652	3. 363	44	74	1,636	
${ }_{154}^{1544}$	Dillon-id	19	$\stackrel{27}{ }$	${ }^{41}$	$\begin{array}{r}56 \\ \hline 56\end{array}$	77	11.20	6. 57	624	2,754	${ }_{5}^{42}$	61	2,284	
1546	Edgetield	13 16	18	$\stackrel{26}{32}$	36 43 4	45   54	7.72 7.89	5.81	794 713	$\begin{array}{r}3,002 \\ 2 \\ \\ \\ \hline\end{array}$	53 48	${ }_{61}^{67}$	2,286	
1547	Florence.-	61	101	146	227	308	10.71	7.64	766	3,374	51	75	1,557	
1548 1549	Georgetown-.	23   55	35 64	${ }^{51}$	-15	104	13.57	7.10 564	$\begin{array}{r}723 \\ 1330 \\ \hline\end{array}$	2,954 3 3	48 89 89	${ }_{8}^{66}$	-2,070	
1550	Hampton.--	10	64 16	104 27	155 36	184 49	5.88   10.82	5. 64 7.49	1, 541	3,704   3,126	$\stackrel{89}{36}$	${ }_{70}^{82}$	1,876	
1551	Horry.	43	81	122	169	259	15. 29	8.50	724	3,368	48		1,563	
${ }_{1553}^{1552}$	Jasper-.	5	10	14	20	128	11.87	8.15	462	2,493	31	$\stackrel{53}{59}$	$\xrightarrow{2,551}$	
1554	Lancaster-	42	55	85	115	147	8.53	5.86	1,140	3,259	76	73	1,699	
1555	Laurens.	43	61	92	135	171	8. 20	6. 48	927	3,538	62	79	1,354	
1556   1557   158		10	15	24	30	43	12.75	6. 85	+133	2,490	$\stackrel{29}{29}$	55 59 59	$\begin{array}{r}2,507 \\ 2 \\ \\ \hline\end{array}$	
1558	Marion....-	${ }_{22}^{11}$	-88888	42	17 64	${ }_{90}^{21}$	7.30 12.03	2.98 61	1, 103	-	74 44	${ }_{66}$	2,067	
1559	Mariboro.	17	25	46	60	79	9.60	7. 23	521	2, 841	35	${ }^{63}$	$\stackrel{2}{2.191}$	
1560	Newberry	29	35	53	76	97	8.47	5.64	901	3, 270	60	73	1,684	

See footnotes at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$ - Con.


See footnotas at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1 \text { - Con. }}$


[^29]Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{11-C o n .}$


Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{\text {In-Con. }}$


See footnotes at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{\text {1-TCon. }}$


Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$-Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence				
		Millions of dollars					Average annual rates of growth		Dollars		Percent of the national average		Rank in United States
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972
	Southwest Region-Continued Texas:   Non-SMSA Counties-Continued												
2208	Kendall...........................	${ }_{6}$	10	18	22	28	8.37	7.25	1,115	3,661	75	82	1,216
${ }_{2210}^{2209}$	Kenedy	3	3 2 2	${ }_{4}^{2}$	4 4 4	5 5 5	7.72 772	7.59 2.35	1,821 1,334	8,467	122 89	188 76	1, 509
2211	Kerr.	15	31	50	66	85	8.80	88.20	1,093	${ }_{4}^{3,310}$	${ }_{73}$	96	1,479
2212	Kimble	6	8	9	11	14	8.37	3.93	1,374	3,662	92	82	1,214
2213	King-..	1	1	1	${ }^{(6)}$	3		5.12	1,612	7,867	108	175	10
2214	Kinney.	4	$\begin{array}{r}4 \\ 4 \\ 4 \\ \hline\end{array}$	$\begin{array}{r}4 \\ 53 \\ \hline\end{array}$	5	-8	16.96	3.20	1,510	3,848	101	86 68	-984
2215 2216	Kleberg-	27 15	49 12	53 16	75 18	${ }_{23}^{95}$	8. 20 8.51 8.	5.88 1.96	1,217 1,462	2,833 4,018	82 98	63 89 89	$\begin{array}{r}2,204 \\ \hline 79\end{array}$
2217	Lamar..	32	46	67	96	122	8.32	6. 27	1,735	3, ${ }^{4,252}$	49	72	1,711
2218	Lamb.	27	46	60	58	71	6.97	4.49	1,314	3,995	88	89	806
2219 220	Lampasas.	10 7	14	19 7	${ }_{11}^{26}$	33   18	8.27 17.84	5. 4.38	1,031	3,131 3,267 3	69	70	1,865 1,689
2221	Lavaca...	18	21	28	45	56	7.56	5.29	803	${ }_{3,224}$	54	72	1,747
2222	Lee...	8	9	12	18	24	10.06	5.12	753	2,957	50	66	2,059
2223	Leon--.....	8	10	13	17	24	12.18	5.12	677	2,752	45	61	2,285
2224	Limestone..	18	22	32	44	55	7.72	5.21	718	2,914	48	65	2,119
${ }_{2226}^{2225}$	Lipscomb	9	9	12	13	16	7.17	2.65	2,392	4,555	160	101	316
2227	Llano....	8	12	16	${ }_{24}^{15}$	19	8.20 11.20	3.45 6.65	980 1,470	3,014 4,316	66 98	67 96	$\begin{array}{r}1,993 \\ \hline 475\end{array}$
2228	Loving.	$\left.{ }^{6}\right)$	1	1.	${ }^{(6)}$	(6)			-533	3,541	36	79	1,351
$\begin{array}{r}2229 \\ 220 \\ \hline\end{array}$	Lymn	21	23	28	29	39	10.38	2.85	1,930	4,312	129	96	478
2231	McMullen.	15 2	$\begin{array}{r}14 \\ 3 \\ \hline\end{array}$	18	25 4	31 7	7.43 20.51	3.   5   5.86	1,250 1,927	3,756 6,799	84 129	$\begin{array}{r}84 \\ 151 \\ \hline\end{array}$	1,086
2232	Madison.-	6	8	11	15	21	11.87	5.86	1,711	2,898	48	65	2,135
2233	Marion.	5	8	10	17	20	5.57	6.50	462	2,577	31	57	2,438
${ }_{2235}^{2234}$	Martin-	8	12	12	14	24	19.68	5.12	1,503	4, 853	101	108	${ }_{583}^{177}$
${ }_{2236}^{2235}$	Matagorda		$\begin{array}{r}8 \\ 4 \\ 4 \\ \hline\end{array}$	$\begin{array}{r}8 \\ \hline 8\end{array}$	$\stackrel{11}{82}$	14 96	8.37 5.39	5.59	1,683 1,318	4,216 3 3,464	113 88	94 7	1783 1,449
2237	Maverick	11	14	19	27	40	14.00	6.04	, 859	2,091	58	47	2,658
2238	Medina	15	22	32	46	59	8.65	6.42	853	2,816	57	63	2,223
2240	Menard	5	5	${ }^{6}$	8	11	11. 20	3. 615	1,271	3,790	85	84	1,048 1,202
2241	Mills.	6	7	9	10	14	11.87	3.93	1,068	3,224	72	72	1,746
2242	Mitchell	16	18	23	23	34	13.92	3.49	1,083	3,819	73	85	1,019
2243	Montague.	15	18	31	42	${ }_{59}^{53}$	8.06	5.90	878	3,328	59	74	1,612
2244	Moore-.	25	37	43	54	59	3.00	3.98	1,879	4,259	126	95	530
${ }_{2246}^{2245}$	Morris.	9	${ }^{23}$	29	43	56	9.20	8.67	1955	4,400	64	98	414
2247	Nacogdoches.	20	$\begin{array}{r}4 \\ 40 \\ \hline\end{array}$	5 56	7 89	111	8.74 7.64	1.86 8.10	1,620 662	4,550 2,818	109 44	${ }_{63} 101$	319 2,218
2248	Navarro.	38	47	67	90	114	8.20	5.12	932	3,593	62	80	1,287
2249 2250	Newton-	5	9	15	19	24	8.10	7.39	488	2,081	33	${ }^{46}$	2,660
2251	Oolan---	25	35	41	53	67	8.13	4.58	1,275	4,022	85	90	774
2252	Oldham.	17	${ }_{4}{ }^{3}$	25 5	37 5	43 9	5.14 21.64	- ${ }^{4.71}$	2,790 2,571	4,812   3,180	187 172	107 71	1,800
2253	Palo Pinto.	19	28	43	66	72	2.94	6.24	1,082	$\stackrel{3}{2,920}$	72	65	2,111
$\begin{array}{r}2254 \\ 2255 \\ \hline\end{array}$	Panola-	12	21	22 44	${ }_{61} 3$	43	-9.22	5.97	+643	$\stackrel{2,613}{ }$	$\stackrel{43}{ }$	58	$\begin{array}{r}2,403 \\ \hline 115\end{array}$
2256	Pecos.	13	27	${ }_{30}$	36	$\stackrel{4}{45}$	-3.72	5.81	$\stackrel{1}{1,307}$		888888	75	1,587
2257	Polk.	14	16	22	33	45	10.89	5.45	${ }^{1,357}$	$\stackrel{\text { 2,799 }}{ }$	57	62	2,242
2258	Presidio.	9	8	8	8	12	14.47	1.32	1,209	${ }^{2,343}$	81	52	${ }^{2}, 575$
${ }_{2260}^{2259}$	Reagan	3	$\stackrel{3}{7}$	4 11	7 11	8 14	4.55 8.37	4.56 4.79	638 1,508	1,966 4,522	$\begin{array}{r}43 \\ 101 \\ \hline\end{array}$	44 101	$\begin{array}{r}2,683 \\ \hline 337\end{array}$
2261	Real	2	3	3	3	3		1.86	-808	1,626	54	36	2,708
2262	Red River	11	15	20	31	40	8.87	6.04	509	2,675	34	60	2, 354
${ }_{2264}$	Reeves.	13	31   15	36 24	${ }_{26}^{52}$	47 29	$-3.31$	6.02   4.50	1,128	2,902   , 980	76 75	65 66	2,130 2,032
2265	Roberts.	5	${ }_{4}$	3	${ }_{5}$	${ }_{6} 6$	${ }_{6} 6.27$	$\stackrel{4}{4 .} 83$	4, 484	$\stackrel{5}{5,490}$	294	122	${ }^{2} 1$
2266	Robertson	14	19	26	33	45	10.89	5.45	${ }^{4} 694$	3,065	46	68	1,941
2267	Runnels	20	23	28	36	44	6.92	3. 65	1,166	3,711	78	83	1,142
2268	Rusk.	33				108	8.31	5.54	778				
2269	Sabine.	7	8	12	16	8	$-20.63$	. 61	780	1,022	52	23	2,723
2270 2271	San Augustine	6 3 3	$\stackrel{8}{5}$	10	15	20	10. 06	5.63	${ }^{624}$	$\stackrel{2}{2,515}$	42	56	2,490
2272	San Saba...	10	${ }_{9}$	11	14	17	12.31 6.69	- 2.44	1,125	2,190 2,979	75	${ }_{66}$	2,033
2273	Schleicher.	5	7	6	8	10	7.72	3. 20	1, 889	4,244	127	94	, 546
${ }_{9275}^{2274}$	Scurry-1-.-	26	36	36	48	65	10.63	4. 25	1,150	3,826	77	85	1,008
2275	Schackelford	6	7	9	11	13	5.73	3.58	1,269	3,946	85	88	-879
${ }_{2277}^{2276}$	Shelby-..--	17	25	33	51	64	7.86	6.21	715	3,159	48 306	-70	1,825 30
	Sherman..	11	8	15	25	21	-5. 05	2.98	4,576	6,173	306	13.	
2278	Somervell.	$\stackrel{2}{8}$	3	4	6	8	10.06	6.50	833	2,847	56	63	$\stackrel{2,186}{ }$
2279 2280	Starr--..	8	11	17	${ }^{26}$	${ }^{33}$	8. 27	6.65	541	1,787	${ }_{85}^{36}$	40	- 2,704
2281	Sterling.	$\begin{array}{r}14 \\ 2 \\ 2 \\ \hline\end{array}$	15 3	${ }_{4}^{20}$	5	34 5	7.99	4. 4.2	- 1,932	- 4,698	129	105	235
2282	Stonewall.	5	4	6	7	9	8.74	2.71	1, 1,389	3,769	93	84	1,071
2283	Sutton-.	6	8	7	11	14	8.37	3.93	1,609	4,650	108	104	255
2284   2285	Swisher-_	17	30	43	48	57	5.90	5. 65	2,056	5,328	138	119	90
2286	Terry...	21	${ }_{41}^{6}$	4 46	88	9 59	4.00 7.12	1.86   4.81	1,736 1,559	4,546 4,095	116	${ }_{91}^{101}$	${ }_{692}$
2287	Throckmorton.	5	5	6	8	12	10.06	4.06	1,438	4,833	96	108	182
2288	Titus	13	22	31	44	58	9. 65	7.03	763	3,350	51	75	
2289 2290	Trinity.	6	8	11	${ }^{16}$	22	11. 20	6. 08	590	2,745	${ }_{53}^{40}$	61 58	$\stackrel{2}{2,297}$
${ }_{2291}^{2290}$	Tyler-...	9 13	${ }_{22}$	18 29	28 39	34 49	6.69 7.91	6.23 6.22	789 639	2,605 $\stackrel{2}{2} 123$	53   43	58 47	$\stackrel{\text { 2, }}{2,652}$
2292	Upton-	6	12	11	12	16	10.06	4. 56	1,212	3,474	81	77	1,434
22.13	Uvalde	19	26	32	43	55	8. 55	4. 95	1,164	${ }^{2} \mathbf{2 , 9 7 6}$	78	66	2,038
2294	Val Verde.	21	45	52	71	91	8. 62	6.80	1,280	3,138	86	70	1,860
2295	Van Zandt.	16	25	34	51	67	9. 52	6. 73	${ }^{716}$	2,635	48	59 78	2,390
2296	Tictoria	${ }_{13}^{37}$	74 23	119 35	146 56	$\stackrel{1!2}{81}$	$\begin{array}{r}\text { 9. } \\ \text { 136 } \\ \hline 18\end{array}$	7.77 8.67	1,177	3,487 2,583	79 43	78 58	$\stackrel{1,412}{2,43}$

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$ - Con.


Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1}$-Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence					
		Millions of dollars					Average annual rates of growth		Dollars		Percent of the national average			
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972	
	Rocky Mountain Region-Continued Montana:   Non-SMSA Counties-Continued	204314733314144422												
${ }_{2370}^{2369}$	Deer Lodge..............--.......		$\begin{array}{r}32 \\ 5 \\ \hline\end{array}$	$\begin{array}{r}34 \\ 8 \\ 8 \\ \hline\end{array}$	42	55		4.71 5	1,216	3,460	81	77	1,458	
2371	Fergus-		2768	3186	41	53	8.93	2. 47	2,197	3,441 4,147	$\begin{array}{r}81 \\ 147 \\ \hline\end{array}$	97	1,484	
${ }^{2372}$	Flathead.				116	147	8.21	5. 32	1,476	3,532	99	79	1,361	
${ }_{234}^{2373}$	Gallatin.		48 5	60	90	122	10. 67	6. 12	1,482	-3,466	99	77	1,446	
2375	Glacier.		17254	3 38 28	\% ${ }^{6}$	51	14.47	5. 12	1,479	5, 296	99	118	91	
2376	Golden Valley-			$\begin{array}{r}28 \\ 2 \\ 5 \\ \hline\end{array}$	30 3 3	51 5	18.56	4. 25	1,682	$\stackrel{4}{5,743}$	113	128	234 50	
2377	Granite....				$5{ }^{6}$	64	14.475.18	3. 75	1,450	3,334	97	74	1,602	
2378	Hill......		5 41	47				4.97	1, 560	3,579	104	80	1, 1,301	
${ }_{2399}^{2379}$	Jefferson.-.-.	5	7	9	13	17	9.35	5.72	1,184	2,778	$\begin{array}{r}79 \\ 201 \\ \hline 1\end{array}$	62131	2,265   299   2,040	
2380 2381	Judith Basin	10 15	${ }^{7} 9$	${ }^{9}$	10 33	47	12.51	5. 33	1,102	5,   2,983   18				
2382	Lewis and Clark.		69	83	118	157	-1. 99	5.95	1, 806	4,504	${ }^{7} 7$	${ }^{66}$	2,040	
2383	Liberty....		9	10	11	64	15.62 4.85   3.94    93			6,835	121	100 152	161,343	
${ }_{2385}^{2384}$	Lincoln..		22		57				1994 3,545	196 67	79			
2386	MeCone.		${ }_{11}^{4}$	10	${ }^{9}$	1421	15. 87	9. 33 4.79		1,656	3,545	11196	90	$\begin{array}{r}1,343 \\ \hline 134 \\ \hline 185 \\ \hline\end{array}$
2387	Meagher.		${ }_{6}$	${ }_{6}$	18		14.47 11.20	3. 71	-1,434	- ${ }_{\text {S }}$	$\begin{array}{r}114 \\ 1,917 \\ \hline\end{array}$			
2388	Mineral.	3	4	6	7	10	12. 62	5.63	1, 392	3,088		${ }_{93}$	69	
2389	Missoula	54	88	132	175	231	9. 70	6.83	1,509	3,791	101	84	1,0471,5111,308	
${ }_{2391}^{2390}$	Musselsheil	7	${ }_{2}^{26}$	${ }^{8} 8$	${ }_{31}^{10}$		11.87	3. 20	1,573	3,577	105	$\begin{array}{r}76 \\ 80 \\ \hline 100\end{array}$		
2392	Petroleum.	2		2	2	4	$\begin{aligned} & 25.99 \\ & 11.57 \end{aligned}$	3.20   5.96					1,308 85 810	
2393	Phillips..	7	11 13	15	18	25			2,075 1,129	4,760 4,760	76 194	106 103 103	210 261	
${ }_{2395}^{2394}$	Pondera----	19 6	13	22 5	24 8 8	10	$\begin{array}{r} 12.31 \\ 7.72 \end{array}$	2.68 2.35	2,903   2,268	4,054	194		261   738   7918   18	
${ }_{2396}$	Powell........	10	14	$\stackrel{5}{15}$	19	26		4. 44	-1,576	4,906 3	$\begin{aligned} & 152 \\ & 106 \end{aligned}$	87		
2397	Prairie..	415	420	427	6	7	5. 27	2.58	1,116	$\begin{aligned} & 4,304 \\ & 3,028 \end{aligned}$	99	9667	4831,978	
2398	Ravalli.				36	49	10.82	5.53			75			
2399	Richland	13	14	162512	30	${ }_{33}^{39}$	9.143.23	5. ${ }_{4} 12$	1,237	3,971	8387	88	837	
2400	Roosevelt.	1	14		30				1,304	3, ${ }^{3} 156$		70	1,831	
2401	Rosebud.		12		17	24	12. 18	4. 06	1,467	3,751	98	84	1,092	
${ }_{2403}$	Shanders.-.	8	${ }_{10}^{13}$	${ }_{20}^{15}$	${ }_{20}^{18}$	18	$\begin{array}{r}11.57 \\ -3.45 \\ \hline\end{array}$	5. 32	1,210	3,354 3 3	${ }_{83}^{81}$	75 70	1,582	
2404	Silver Bow.	87	102	123	130	167	8.71	3.01	1,798	${ }_{4}$	120	90	762	
2405	Stillwater.-	8	11	9	14	20	12.62	4.25	1,435	4,042	96	90	752	
2406	Sweet Grass.	6	5	6	9	15	18. 56	4.25	1,519	4,605	102	103	282	
2407 2408	Teton.-	17 16	14 16	$\stackrel{21}{20}$	$\stackrel{23}{23}$	31 34	10.46 10.79	2.77 3.49	$\xrightarrow{2,388} \mathbf{2}$	4,817 5 5,795	160 157	107 129	${ }_{4}^{191}$	
2409	Treasure...		3					3. 20		4,939	140			
2410	Valley....	17	27	52	43	51	5. 85	5. 12	1,454	4, 4 , 258	97	95		
2411	Wheatland	6	6	6	8	11	11. 20	2.79	1,835	4,697	123	105	236	
2412	Wibaux	2	3	3	5	6	6.27	5.12	1,258	4,499	84	100	351	
	Idaho:   SMSA's:													
2413	Boise City	106	208	277	392	548	11.81	7.75	1,492	4,555	100	101	315	
	Non-SMSA's Counties:													
${ }_{2415}^{2414}$	Adams Banock.-.-.............	5   63	${ }_{91}^{7}$	117	8 144	$\begin{array}{r}11 \\ 188 \\ \hline 17\end{array}$	11.20 9.29	3. 65	1,551	3,556   3,499	104	79 78	1,331	
2416	Bear Lake.	8	11	12	15	18	4.26	3. 49	1,229	$\stackrel{3}{2,997}$	82	67	2,008	
2417	Benewah..	${ }^{6}$	8	13	17	22	8.97	6.08	1996	3,413	67	76	1, 522	
2418	Bingham..	27	42	69	82	102	7.55	6. 23	1,162	3, 362	78	75	1, 568	
2419	Blaine.-	6	8	11	18	27	14.47	7.08	1,128	4, 012	76	89	787	
2420	Boise.-	2	3	3	4	5	7.72	4.25	1,217	2, 815	82	63	2,224	
2421 2422	Bonner ${ }^{\text {Bonneville }}$	${ }_{44}^{14}$	$\stackrel{23}{23}$	$\begin{array}{r}29 \\ 148 \\ \hline 18\end{array}$	38 172 172	${ }^{52}$	11.02 9.69	6.15 7.74	928 1.461 1	3,111 4,189	62   98   8	69 93	1,895	
2423	Boundary..	6	9	10	15	20	10.06	5. 63	1,069	3,161	72	70	1,821	
2424	Butte....		4	${ }^{6}$		8	10. 06	4. 56	1,204	2,687	81	60	2,341	
${ }_{2426}^{2425}$	${ }_{\text {Camas }}$ Can	${ }^{2}$	2 100	3 135	3 195	${ }_{3}^{3}$		1. 86	1,439	4, 283	${ }_{98}^{96}$	95	1966	
2427	Caribou.	7	11	17	12	28	10.06	6.73 6.50	1,163 1,330 1	- $\begin{array}{r}\text { 3,789 } \\ 4 \\ 4 \\ \hline 602\end{array}$	78 89	84	1,050	
2428	Cassia.-	17	26	47	55	71	8.88	6. 71	1,168	4, 4 , 054	78	90	737	
2429	Clark.	2	2	2	2	4	25.99	3. 20	2,201	4,870	147	108	169	
2430	Clearwater	9	17	20	35	41	5. 42	7.14	1,114	3,652	75	81	1,226	
${ }^{2431}$	Custer---	4	4	6	7	9	8.74	3. 75	1,239	2,837	83	63	2,196	
${ }_{2}^{2432}$	Elmore.-	8	31	44	52	72	11. 46	10. 50	1,209	3,928	81	87	898	
2433	Franklin..	10	12	14	19	22	5.01	3.65	1,018	2,941	68	65	2,082	
2434	Gem.-...	9	11	16	23	31	10.46	5.78	1,081	3,108	72	69	1,898	
2435	Gooding..	11	13	18	${ }_{25}^{23}$	32	11. 64	4. 97	-983	3,382	66	75	1,548	
${ }_{2437}^{2436}$	Idaho-...	15	31	30	35	43	7.10	4. 90	1,311	3,377	88	75	1,552	
$\stackrel{2438}{2438}$	Jefferson.	10 12	${ }_{22}^{18}$	${ }_{28}^{26}$	$\stackrel{24}{32}$	34	12.31	5. 72	, 952	-2,849	${ }_{64}^{64}$	63	2,182	
2439	Kootenai.	29	48	69	101	136	10.43	7.28	1,149	3,479	77	77	${ }_{1}^{1,425}$	
2440	Latah....	29	35	48	67	88	9.51	5. 18	1,357	3,445	91	77	1, 476	
2441	Lemhi.	8	10	${ }^{9}$	12	18	14.47	3.75	1,226	2,810	82	63	2, 231	
2443	Lincoln.	$\stackrel{8}{5}$	8	12	15 9	18	6.27 6.92	3.   3. 65   .65	1,926	4,295 3,418	129 75	96 76	+ 488	

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1-}$ Con.


See footnotes at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{11}$-Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence				
		Millions of dollars					A verage annual rates of growth		Dollars		Percent of the national average		$\begin{aligned} & \text { Rank } \\ & \text { in } \\ & \text { United } \\ & \text { States } \end{aligned}$
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972
	Rocky Mountain Region-Continued Colorado:   Non-SMSA Counties-Continued												
2523	Pitkin.	2	8	15	27	35	9. 04	13.89	1,161	4,768	78	106	206
2524	Prowers.	18	22	28	36	50	11.57	4.75	1,184	3,680	79	82	1,188
${ }^{2525}$	Rio Blanco.	6 14	10	13	17	$\stackrel{22}{39}$	8. 97	6. 08	1,260	4, 568	84	102	${ }_{1} 311$
2526 2527	Rio Grande	14	15	25	26	39	14.47	4.77	1,062	3,715	71	83	1,138
2528	Soutuache.	9 5	10 5	13 9	16 6	13	21.93 29.40	5.46 4.44	1,043 809	3,709 3,180	70   54	83	1,146 1,799
2529	San Juan.	1	1	1	2	3	14.47	5.12	761	3,796	51	85	1,038
2530	San Miguel	3	3	4	5	7	11.87	3.93	1,143	3,679	77	82	1, 191
${ }_{2531}$	Sedgwick	${ }^{6}$	10	12	14	18	8.74	5. 12	1,211	5, 201	81	116	106
2532	Summit..	1	3	4	5	14	40.95	12. 75	1,172	3,532	78	79	1,359
2533	Washington.	10	15	15	17	28	18. 10	4. 79	1,389	5,104	93	114	119
2534	Weld...	89	122	182	273	392	12.82	6.97	1,313	4,074	88	91	711
2535	Yuma.	12	15	21	28	38	10.72	5.38	1,112	4,464	74	99	373
Utah:   SMSA's:													
2536	Provo-Orem.	85	168	226	318	426	10. 24	7.60	1,025	2,849	69	63	2,181
2837	Salt Lake City-Ogden.	623	1,190	1,700	2,267	3,032	10.18	7.46	1,528	4,073	102	91	714
2539	Box Elder.	21	39	67	80	107	11.87	7. 68	1,049	3,506 3,649	81 70	78 81	1,383
2540	Cache..	30	51	73	100	139	11.60	7.22	885	3,155	59	70	1,832
2541	Carbon.	25	39	37	41	55	10.29	3.65	977	3,141	65	70	1,853
2542	Daggett.	1	2	2	2	2		3.20	1,552	2,964	104	66	2,050
2543	Duchesne.	7	9	9	14	27	24.47	6. 33	810	3, 052	54	68	1.952
2545	Garfield	6	8	9	10	19	23.86	5.38	912	3,751	61	84	1,091
2546	Grand.	2	12	16	20	23	4. 77	11. 74	1,238	3,746	83	88	1,096
2547	Iron...	10	20	25	32	44	11.20	6. 97	1,054	3,280	71	73	1,670
2548	Juab.-	7	6	10	11	13	5.73	2.85	1,116	2,778	75	62	2, 263
2549	Kane	2	4	4	5	8	16. 96	6. 50	1,023	2, 822	69	63	2, 213
2550	Millard.	11	11	14	17	22	8.97	3. 20	1, 110	2, 812	74	63	2, 228
2551	Morgan.	4	5	10	13	17	9.35	6.80	1,393	4,050	93	90	744
2552	Piute.	1	2	2	3	3		5.12	711	2, 833	48	63	2,203
2553	Rich..	2	3	4	5	5		4.25	1,414	3,102	95	69	1,901
2554	San Juan	6	16	13	16	23	12.86	6.30	1,103	2,081	74	46	2,659
2555	Sanpete.	13	15	20	27	37	11. 07	4.87	- 898	3,197	60	71	1,780
2556 2557	Serier	12	14	18	25	34	10.79	4.85	991	3, 101	66	69	1,902
2557	Summit	8	8	13	16	24	14. 47	5.12	1,176	3,961	79	88	850
2558	Uintah	10	17	22	29	43	14.03	6.85	975	2,991	65	67	2,023
2559	Wasatch.-	7	9	12	15	21	11. 87	5. 12	1,233	3,194	83	71	1,782
2560	Washington	8	14	20	28	41	13.56	7.71	834	2,642	56	59	2,383
2561	Wayne.	2	2	2	3	4	10.06	3. 20	677	2,256	45	50	2,610
	Far West Region: Washington: ${ }^{4}$												
2562	Richland-Kennewick	133	192	261	330	418	8.20	5.34	2,045	4,355	137	97	441
2563	Seattle-Everett.	1,570	2,983	3,907	6,212	6,790	3.01	6.88	1,853	4,851	124	108	178
2564	Spokane.	351	588	708	1,005	1,276	8.28	6.64	1,579	4,227	106	94	569
2565	Tacoma-	466	691	929	1,553	1,697	3.00	6.05	1,684	4, 187	113	93	606
2566	Yakima.	176	263	334	453	570	7.56	5.49	1,289	3,832	86	85	1,005
	Non-SMSA Counties:												
2567	Adams....-..........	20	24	36	47	66	11.98	5. 58		5,091	203	113	${ }_{1} 121$
2568 2569	Asotin..	13	24	29	38	53	9. 58	6. 31	1,189	3,396	80	76	1,537
2569	Chelan	62	91	124	164	191	5.76	5.32	1,569	4,831	105	108	183
2570	Clallam.	44	62	75	118	153	9.04	5.83	1,655	4,152	111	92	637
2571	Columbia.	9	12	14	19	23	6.58	4.36	1, 884	5,249	126	117	100
2572	Cowlitz.	87	108	169	237	295	7.57	5.71	1,631	4, 277	109	95	505
2573	Douglas.	23	27	34	48	66	11.20	4.91	2,095	3,731	140	83	1,114
2574	Ferry	5	6	6	7	10	12.62	3.20	1,191	2,333	80	52	2,581
2575 2576	Garfield	7	7	8	11	19	19.98	4.64	2,295	6, 278	154	140	24
2576	Grant.	41	95	123	148	193	9.25	7. 29	1,675	4,334	112	96	455
2577	Grays Harbor.	91	115	154	208	253	6.75	4.76	1,691	4,257	113	95	533
2578	Island.........	13	33	44	81	99	6. 92	9.67	1,139	3,479	76	77	1,427
2579	Jefferson.	18	17	23	34	42	7.30	3. 93	1,545	3,988	103	89	816
2580	Kitsap.	113	182	251	389	449	4.90	6.47	1,484	4,425	99	99	399
2581	Kittitas	35	43	49	66	84	8.37	4.06	1,560	3,157	104	70	1,827
2582	Klickitat.	19	25	31	35	52	14.11	4.68	1,589	3,936	106	88	892
2583	Lewis...	61	79	100	148	197	10.00	5. 47	1,390	4,175	93	93	615
2585	Lincoln.	27	22	29	43	59	11.12	3. 62	2,424	5,869	162	131	42
2585	Mason-	24	35	43	68	84	7.30	5. 86	1,564	3,931	105	88	895
2586	Okanogan.	42	43	55	84	112	10.06	4.56	1,430	4,122	96	92	665
2587	Pacific	23	26	37	53	66	7.59	4.91	1,371	4,316	92	96	474
2588	Pend Oreille	12	11	18	16	22	11. 20	2.79	1,598	3,289	107	73	1,659
2589	San Juan.	4	7	9	14	19	10.72	7.34	1,242	4,434	83	99	392
2590	Skagit....	57	101	134	193	238	7.24	6.71	1,301	4,463	87	99	374
2591	Skamania.	7	10	13	17	23	10.60	5.56	1,375	3,899	92	87	928
2592	Stevens	23	30	32	49	60	6.98	4.45	1,210	3,285	81	73	1,665
2593	Thurston....	79	123	175	283	361	8.45	7.15	1,748	4,399	117	98	415
2594	Wahkiakum.	4	5	7	13	16	7.17	6.50	1,113	4,265	75	95	522
2595	Walla Walla	64	87	111	145	186	8.65	4.97	1,597	4,456	107	99	379
2596	Whatcom.	88	143	176	270	366	10.67	6.69	1,311	4,114	88	92	672
2597	Whitman.	52	67	86	127	152	6.17	5.00	1,601	3,792	107	84	1,044

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{1-}$ Con.

Line	Area title	Total personal income by place of residence							Per capita income by place of residence						
		Millions of dollars					A verage annual rates of growth		Dollars		Percent of the national average				
		1950	1959	1965	1969	1972	1969-72	1950-72	1950	1972	1950	1972	1972		
	Far West Region-Continued Oregon:   SMSA's:														
2598	Eugene-Springfield.	204$\mathbf{1 , 2 1 7}$$\mathbf{1 7 7}$	3501,921	490	644		10.46		1,6091,716		115	$\begin{array}{r}86 \\ 108 \\ \hline\end{array}$			
$\begin{aligned} & 2599 \\ & 2600 \end{aligned}$	Portland, Oreg.-Wash.			2,774	3,948	5,029	8. 40	6. 606		3,864 4.853			176		
	Salem.--.......--		, 264	${ }_{4} 43$	593	785	9.80	7.01	1,373	4,010	92	89	789		
2601	Non-SMSA Counties:	24	32	37	48	64					100	87	930		
2602	Benton.	35	70	106	152	194		${ }_{8.09}^{4.56}$	1,4873		100	75	930 1,541		
2603	Clatson.--	5031	${ }_{41}^{60}$	757656	98	122	${ }_{7}^{8.58}$	8. 14	1,625	$\begin{array}{r}3,890 \\ 4,234 \\ \hline\end{array}$	1099191	94	15381,192		
$\begin{array}{r}2604 \\ 2605 \\ \hline\end{array}$	Columbia				179	227	11. 8.64 8.24	5. 93	1,359	3,678 3 3					
2606	Crook...	19	103 23	$\begin{array}{r}139 \\ 23 \\ \hline\end{array}$	30414	42	11.87	5.10	2,147	3,721	$\begin{aligned} & 119 \\ & 144 \end{aligned}$	86   83	1,129868		
2607	Curry --	9	${ }_{28}^{28}$	$\stackrel{23}{35}$		$\begin{array}{r}42 \\ 54 \\ \hline\end{array}$	11.87 9.61	8.48	1,425		$\begin{array}{r} 95 \\ 109 \end{array}$	888888			
2608	Deschutes.	36	53	68	97	141	13.28	6. 40	1,627	3, 950			870997		
$\stackrel{2609}{ }$	Douglas..	8	126 8	172 9	215 8	295 9	$\begin{array}{r} 11.12 \\ 4.00 \end{array}$	1.15	$\begin{array}{r} 1,612 \\ 2,389 \end{array}$	3,838 4,584	108 160	85 102			
	Grant.							2.46		4,584	160		297		
2612	Harney.	17	17	17	${ }_{20}^{23}$	29	8.03			3,649	137		1,234		
2613	Hood River.	20	14   28	$\begin{aligned} & 17 \\ & 36 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & 26 \\ & 59 \end{aligned}$	$\begin{aligned} & 9.14 \\ & 5.67 \end{aligned}$	3.20	2,066	3,27   4,278   3,682	102	$\begin{aligned} & 81 \\ & 85 \\ & 95 \end{aligned}$	1,006		
2614	Jackson...	93	1501515	$\begin{array}{r}210 \\ 26 \\ \hline 1\end{array}$	$\begin{array}{r} 20 \\ 275 \\ 25 \end{array}$	380	${ }_{11.87} 11.38$	6.61	$\begin{aligned} & 1,54 \\ & 1,576 \\ & 1,460 \end{aligned}$		10698	828383	1,1811,0941,094		
${ }^{2615}$	Jefferson-.					$\begin{array}{r} 35 \\ 144 \end{array}$				1,460   1,298					
${ }_{2617}^{2616}$	Josephine.	35	${ }_{56}$	79	102		12. 18	6.64					87 114	83 76	1,094 1,496
2618	Lake....	14	$\begin{array}{r}104 \\ 17 \\ \hline 15 \\ \hline 15\end{array}$	171760	$\begin{array}{r}18 \\ 77 \\ \hline\end{array}$	$\begin{gathered} 23 \\ 98 \end{gathered}$	$\begin{aligned} & 8.91 \\ & 8.51 \\ & 8.37 \end{aligned}$	+ ${ }_{2}^{4.94}$	2,028		136	92	-664		
2619	Lincoln.	78						6. 02	1,351	$\stackrel{3,579}{ }$	130 90	80	1,284 1,300		
2620	Linn.		111	159	218	282	8. ${ }^{8 .} 96$		1,422	3,656	95	81	1,223		
2621	Malheur.	36			72	95	9.68	4.51	1,544	3,922	103	87			
${ }_{2623}^{2622}$	Morrow-	11 6	12 6	13 4 4	13 9	16 12	7.17 10.06	1.72 3.20	1,303 2,675	3,555 5 510	$\begin{array}{r}154 \\ 179 \\ \hline\end{array}$	79 120	1,332		
2624	Tillamook.	28	36	40	55	71	8.88	4.32	1,472	3, 827	$\begin{array}{r}199 \\ \hline 9\end{array}$	85	1,007		
2625	Umatilla.	60	90	114	149	190	8.44	5.38	1,440	4,087	96	91	700		
${ }_{2627}^{2626}$	Union.-	24	32	41	57	80	11. 96	5. ${ }^{33}$	1,304	3,810	87	85	1,032		
${ }_{2628}^{2627}$	Wascowa	10	13 43	14	18	${ }_{81}^{23}$	8	3. ${ }^{\text {5 } 68}$	1,408	3,527	94	79	1,364		
2629	Wheeler-	${ }_{5}$	${ }_{6}$	5	$\stackrel{4}{4}$	6	14.47	$\begin{array}{r}\text { 5. } \\ \hline 88 \\ \hline 88\end{array}$	1, 1,642	-3,155	109	88	1,883		
2630	Yamhill.	45	61	80	119	156	9.44	5. 81	1,342	3, 590	90	80	1,289		
	Nevada: SMSA's:														
${ }_{2631}^{2631}$	Las Vegas.	98	332	726	1,122	1,476	9.57	13. 12	2,002	4,991	134	111	146		
2632	Reno.	115	262	423	537	744	11.48	8.86	2,266	5,703	152	127	52		
2633	Non-SMSA Counties:		18	23	31	43	11.52	6.85			107	83	1,145		
2634	Douglas.	4	15	${ }_{31}^{23}$	38	53	11. 73	12.46	1,906	6,246	128	139	$\begin{array}{r}1,145 \\ \hline 27\end{array}$		
${ }_{2635}^{2635}$	Elko---	26	33	40	60	82	10.97	5.36	2,196	5,616	147	125	60		
${ }_{2637}^{2636}$	Esmeralda	1	${ }^{(6)}$	${ }^{(6)} 5$	1	${ }^{(6)}$			994	-799	67	18	2,724		
2637 2638	Eureka	${ }^{2}$	${ }_{13}^{2}$	5 19	${ }^{6}$	37	5.27	5. 86	$\stackrel{2}{2,308}$	8,696	155	194	${ }^{5}$		
2639	Lander...	14	$\stackrel{1}{3}$	${ }^{19} 5$	10	13	9.14	5. 50	2,103 2,015	5,630	135	125	57		
2640	Lincoln.	9	9	5	7	9	8.74		2, 389	4,074	160	91	712		
2641	Lyon.	7	8	18	27	35	9.04	7.59	1,762	3,694	118	82	1,168		
2642	Mineral	9	11	16	26	31	6. 04	5. 78	1,542	4,650	103	104	254		
2643	Nye.-................					15			1,193	3,208		71			
2644 2645	Carson City (Ormsby) Pershing...........	7	21 8 8	$\begin{array}{r}40 \\ 7 \\ \hline\end{array}$	170 13	91 17	14.89 9.35	$\begin{array}{r}12.37 \\ 5.72 \\ \hline\end{array}$	1,694 1,605 1,68	4, 564   6,616   , 68	113 108	102 147	309 19		
2646	Storey.	1	1	2	3	4	10.06	6.50	1,077	6,032	72	134	35		
2647	White Pine.	15	17	26	33	44	10.06	5.01	1,580	4,246	106	95	539		
	California: SMSA's:														
2648	Anaheim-Santa Ana-Garden Grove.	409	1,712	3, 423	5,483	7,062	8.80	13. 82	1,876	4,624	126	103	${ }_{718} 27$		
2649 2650	${ }_{\text {Fresno }}$ Bakersfield.	359 428	659 800	945 1.078	1,103	1, 1,868	7.44	6.27 6.79	1,558	4,071	104	91	718		
2651		8, ${ }^{428}$	$\begin{array}{r}\text { 16,928 } \\ \hline 1800\end{array}$	23,781	32,097	1,815 38,045	9.14   5.83	6.   7   7.28	1,534	5, 435	103 130	94 121	585 79		
${ }_{2652}^{2652}$	Modesto --...........	${ }^{8} 186$	-341	481	-699	871	7.61	7.27	1, 448	4,326	97	96	459		
2653	Oxnard-Simi Valley-Ventura-.-.-.	186	497	${ }^{820}$	1,227	1,546	8.01	10.10	1,606	3,820	108	85	1,015		
${ }_{2655}^{2654}$	Riverside-San Bernardino-Ontario.	656	1,704	2, 621	3,757	4,799	8. 50	9.47	1, 441	4,072	${ }^{97}$	91	717		
2656	Sacramento---.........	623 24	${ }^{1,441}$	${ }^{2}{ }^{2712}$	1,073	1,339	8.97 7.66	8.51 8.07	1,844	5,264	124	117	${ }_{97}$		
2657	San Diego..	947	2,402	3,355	5,420	6,822	7.97	9.39	1,686	4,727	113	105	222		
${ }^{2658}$	San Francisco-Oakland.	4, 509	7,740	11,283	15, 254	18,411	6.47	6. 60	2,093	5,879	140	131	41		
2659	San Jose - .-.-.-.......-........	480	1,576	2,761	4,311	5,434	8.02	11. 66	1,638	4, 823	110	107	186		
${ }^{2660}$	Santa Barbara-Santa Maria-Lompoc.	198	513	756	1,046	1,247	6. 03	8.72	1,998	4, 588	134	102	296		
${ }_{2662}^{2661}$	Santa Cruz..	102	205	329	444	566	8.43	8.10	1,526	4, 167	102	93	622		
2663	Santa Rosa	157 339	354   554	502 788	1, 0968	1,314	9.22 7.15	8.30 6.35	-1,501	4,142 4,422	112	98	401		
2664	Vallejo-Fairfield-Napa.	270	463	657	${ }^{1} 942$	1,148	6.81	6. 80	1,766	4,342	118	97	448		
	Non-SMSA Counties:														
2665 2666	Alpine-.-.-.......-	1	1	1	2	2		3.20	3,424	3,658	229	81	1,217		
2667	Ammador-.	${ }_{101}^{12}$	$\begin{array}{r}19 \\ 192 \\ \hline\end{array}$	261	328	${ }_{417}^{52}$	8.33	6.   6.69   8	-1,337	3,   3,835	104	85	1,000		
2668	Calaveras..	15	25	29	41	52	8.24	5.81	1, 527	3,516	102	78	1,373		
2669	Colusa..	28	41	46	76	85	3. 80	5.18	2,397	6,934	161	154	14		
2670	Del Norte.	16	38	46	48	62	8.91	6.35	1,999	4,094	134	91	694		
2671	El Dorado.	25	66	113	146	198	10.69	9.86	1,535	4,084	103	91	${ }^{703}$		
${ }_{2673}^{2672}$	Glenn- ${ }^{\text {a }}$ -	+30	${ }^{47}$	$\begin{array}{r}59 \\ 285 \\ \hline\end{array}$	${ }^{72}$	${ }_{84}^{84}$	${ }_{6}^{5.27}$	${ }^{4.79}$	1,903	4,767	127 130	106	207 650		
2674	Imperial.	126	180	243	346	476	11.22	6.23	1,987	6,211	133	138	28		

Table 1.-Total Personal Income and Per Capita Personal Income by SMSA's and Non-SMSA Counties for Selected Years 1950-72 ${ }^{11}$ Con.


[^30]6. Less than $\$ 500,000$
6. Data not shown to avoid disclosure.
9. Census Division detail not available prior to 1969. Estimates were not made for Alaska prior to 1959.

Source: U.S. Department of Commerce, Bureau of Economic Analysis.

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 ${ }^{1}$-Continued

Millions of dollars																			Line
$\mid \underset{\text { earnings }}{\text { Farm }}$	Governmert labor earnings			Private nonfarm labor and proprietary eamings								Total earnings by place of work	Lersona personal contributions	Plus residence adjustment	Netearningsby placeof resi-dence	Plus property income	Plus transfer payments	Total personal income by place of residence	
	Federal civilian	Military	State and local	Manu-	Mining	Contract construction	Transportation, communications. and public utilities	Wholesale and retail trade	Finance, insurance, and real estate	Services	Other								
15.7	106.1	25.1	631.5	747.7	(7)	223.4	218.0	474.6	(7)	463.4	(7)	3,039.4	136.4	-69.8	2,833.2	514.8	475.1	3,823.0	59
12.3	14.0	3.7	150.7	433.5	(7)	66.3	56.0	138.8	33.9	115.6	(7)	1,030. 5	48.7	. 4	982.2	157.5	166.6	1,306.4	60
11.2	117.9	22.8	675.3	1,913.6	(7)	270.8	372.6	738.0	193.9	655.1	(7)	4,983.8	231.0	$-50.1$	4, 702.7	823.4	771.7	6,297.7	61
3.4	9.1	1.2	44.2	137.5	(7)	27.6	18.1	56.5	9.5	41.1	(7)	349.1	16.1	-20.5	312.5	-39.8	65.1	337.9	62
2.3	199.7	56.1	1,278.7	1,630.7	2.3	625.3	487.1	1,660.7	503.7	1,912.6	43.4	8, 402.6	376.7	2,154.3	10,180.2	2,211.9	1,306.9	13, 698.9	63
7.3	1,233.5	163.8	5, 693.3	9,706.3	${ }^{(7)}$	2,182.1	4,761.1	8,739.9	5,837.0	10,461.1	$\left.{ }^{7}\right)$	48,939.9	2,296. 1	2,882. 5	43, 761.3	10, 151.7	6,760.7	60, 673.7	64
1.2	16.3	2.9	163.7	1 379.4	3.0	39.2	34.3	107.2	24.2	100.1	2.9	880.5	40.5	-38.5	801.5	${ }^{139.0}$	112.5	1,053. 1	65
29.5 26.3 18.7	56.3 54.4	13.1 26.8	437.4 303.9	1,787.4	(7)	222.2 1672	176.0	503.7	143.9	508.8	(7)	3, 899.1	185.3	-47.3	3, 666.5	663.1	516.9	4, 846.5	66
18.7	54.4 66.0	26.8 51.1	303.9 172.7	679.7 337.2	(7)	167.2 46.8	175.7 62.2	402.8 137.1	121.6 43.0	338.6 126.8	(7)	$2,307.8$ $1,067.7$	105.3 46.7	-33.3   -13.9	$2,169.2$ $1,007.1$	349.2 182.1	311.8 230.6	$2,849.0$ $1,401.0$	67 68
7.3	1.7	. 6	25.8	34.1	2.0	7.5	3.3	12.1	3.3	14.7	1.1	113.5	4.5	12.6	121.6	3	25.9	147.8	69
12.7	3.2	1.2	34.3	74.3	3.8	7.9	16.7	33.3	5.4	29.0	1.4	223.1	9.6	7.1	220.6	6.6	48.9	276.0	70
4.4	2.5	. 9	35.1	57.1	${ }^{7} 7$	7.0	14.5	26.2	5.9	28.0	(7)	183.3	7.8	39.2	214.7	39.8	44.1	298.5	71
10.5	5.2	1.7	64.8	173.4	(7)	24.6	22.7	65.3	14.1	52.2	(7)	437.0	19.7	11.4	428.7	79.7	89.2	597.6	72
7.7	1.6	.6	24.3	46.5	(7)	3.0	4.5	18.8	4.3	15.6	(7)	128.4	5.4	4.2	127.2	23.4	24.8	175.4	73
7.0	13.3	47.0	44.2	30.7	${ }^{8}$	12.2	14.0	27.4	4.4	24.3	(7) 8	225.3	7.5	$-2.3$	215.5	23.1	40.6	279.3	74
5.9	1.8	. 7	22.8	29.0	${ }^{7}$	6.8	11.1	21.5	2.7	18.6	${ }^{7}$	122.2	5.2	27.3	144.3	38.0	31.4	213.7	75
7.0	1.4	. 5	25.5	53.3	(7)	5.7	4.1	18.8	3.5	17.0	(7)	138.0	5.7	$-.7$	131.6	23.3	23.4	178.2	76
10.1	1.8	. 5	28.2	50.0	(7)	5.0	5.4	16.2	3.2	13.5	()	135.3	5.6	-9.7	120.0	23.8	25.7	169.6	77
1.5	1.3	. 6	16.2	15.9	3.6	4.8	3.0	13.2	1.9	21.6	. 4	83.8	3.5	. 8	81.1	19.4	24.0	124.6	78
5.3	2.0	. 6	20.6	7.5	${ }^{(8)}$	4.7	5.4	16.3	1.9	16.7	. 8	82.0	3.1	8.8	87.7	19.7	29.2	136.6	79
1.4	1. 5	. 8	18.6	46. 9	${ }^{(8)}$	4.6	8.9	21.4	3. 3	17.0	(7) 6	125.0	5.7	26.0	145.3	30.3	31.0	206.6	80
${ }_{2} .8$	6.3	6 4	29.9	74.9	(7)	9.3	9.5	25.9	4.3	20.5	(7)	188.5	8.6	15.1	195.0	29.7	32.6	257.2	81
2.2	1.5	(8) 4	18.0	17.3	(7)	4.4	9.0	14.6	2.2	13.6	(7)	84.1	3.7	16.7	97.1	24.4	25.0	146.5	82
${ }^{(8)}$	. 2	${ }^{(8)}$	3.6	4.4	${ }^{(8)}$	. 8	. 2	2.0	(7)	1.9	(1)	9.4	. 4	. 9	9.9	3.2	3.5	16.7	83
13.7	12.1	3.7	39.9	54.8	(7)	12.0	23.4	41.4	11.9	34.9	(1)	250.1	10.5	1.3	240.9	46.2	57.5	344.6	84
9.3	. 8	. 2	10.4	18.9	(7)	1.4	. 8	5.9	. 9	4.7	(7)	54.3	2.0	5.7	58.0	12.0	11.9	81.9	85
7.0	46.4	77.5	112.8	131.7	(7)	75.4	56.1	118.5	28.7	97.9	(7)	756.2	31.0	63.5	788.7	138.5	137.4	1,064.5	86
9.5	2.0	. 6	29.9	10.3	(2)	6.0	10.8	22.7	4.3	27.3	(7)	124.8	4.6	18.4	138.6	37.1	33.1	208.8	87
14.0	7.5	1.6	68.6	91.0	14.2	16.1	13.2	38.8	5.8	37.9	2.4	311.1	12.9	$-7.2$	291.0	40.7	61.6	393.3	88
5.3	. 9	. 3	13.3	5.9	(8)	14.0	2.6	7.9	1.1	6.7	(7)	59.0	2.4	15.3	71.9	15.3	13.8	101.1	
+6	1.7	4.2	5.8	11.2	${ }^{(8)}$	2.8	. 8	4.2	${ }^{\text {. }} 8$	4.3	${ }^{7} 6$	32.1	1.4	13.1	43.8	6.4	8.9	59.0	90
1.0	11.6	4.0	30.9	37.2	${ }^{8}$	3.6	2.0	11.9	(7)	7.7	(7)	112.0	4.9	$-.5$	106.6	15.9	20.3	142.7	91
13.6	10.5	1.2	43.6	147.7	(7)	14.5	23.6	34.1	6.2	32.1	(7)	329.0	15.2	-7.1	306.7	-37.7	63.9	333.0	92
1.3	3.0	. 6	26.7	9.4	(7)	13.2	8.0	34.6	5.7	55.6	(7)	158.3	7.0	. 9	152.2	40.2	36.4	228.7	93
11.4	3.8	1.3	61.3	47.8	(7)	11.7	21.2	28.9	10.0	59.6	(7)	259.9	9.6	-18.1	232.2	41.7	39.1	313.0	94
4.1	5.0	1.8	70.3	152.6	(7)	21.5	23.4	64.4	${ }^{7}$	67.6	(7)	430.6	19.6	41.5	452.5	94.5	82.7	629.7	95
. 1	3.0	. 6	20.1	47.0	(7)	11.0	11.0	37.5	12.9	35.6	(7)	180.6	8.3	-24.5	147.8	25.4	30.4	203.6	96
9.1	1.6	. 7	27.7	57.3	(7)	5.1	6.1	13.9	1.9	12.5	(7)	137.0	5.9	18.4	149.5	21.1	28.8	199.4	97
10.3	1.0	.4	21.9	32.4	(7)	3.1	3.9	11.3	2.7	8.7	(7)	96.9	3.9	18.9	111.9	19.7	21.2	152.8	98
3.1	. 7	. 2	7.5	7.8	(3)	2.1	5.1	6.4	(7)	8.0	(7)	43.4	1.7	7.9	49.6	11.9	13.1	74.6	99
5.8	38.8	3.7	73.9	79.4	(7)	46.9	42.9	124.0	33.2	111.1	(7)	563.0	28.1	-3.6	531.3	125.1	136.8	793.1	100
. 1	54.1	11.3	180.3	981.6	(7)	85.2	359.8	379.8	77.2	271.4	(7)	2,402.5	122.3	142.0	2,422.2	328.2	357.8	3, 108.2	101
5.3	160.8	65.1	171.6	197.8	(7)	102.3	69.6	215.6	58.1	292.4	(7)	1,347.2	66.6	270.7	1,551.3	351.8	249.6	2, 152.7	102
3. 6	315.3	30.9	804.1	2,943.2	(7)	556.3	859.9	1,465.9	689.4	1,658.7	(7)	9,364. 3	458.9	$-388.3$	8,517.1	1,828.9	1,064.4	11, 410.5	103
4.5	25.9	8.6	270.9	1,009.4	4.6	154.0	186.8	373.0	53.4	252.8	5.0	2,348.8	116.4	202.0	2,434.4	304.7	247.2	2,986. 4	104
. 4	20.9	6.8	146.5	778.6	1.6	114.9	95.6	329.4	81.6	257.7	3.0	1,836.9	90.9	-13.2	1,732.8	304.9	245.1	2,282.8	105
$-12.2$	33.1 3.4	5.0 1.7	337.3 50.8	433.9	. 6	56.0	70.9	170.8	59.1	304.4	3.9 3.4	1, 474.6	68.3 22.2	-214.2	1, 192.1	239.0	163.1	1,594.2	106 107
12.2	3.4	1.7	50.8	186.5	4.8	26.3	41.0	62.1	20.4	45.5	3.4	458.2	22.2	-25.9	410.1	54.3	71.2	535.5	107
6	2.1	6. 6	28.3	11.5	(7)	20.7	12.1	40.2	8.9	30.5	(7)	163.2	7.7	12.7	168.2	57.3	53.8	279.3	108
. 4	1.4	1.0	31.7	50.1	${ }^{\text {a }}$. 5	12.9	12.6	30.8	7.1	22.8	2.2	173.7	8.6	72.0	237.1	56.9	30.2	324.2	109
. 4	19.8	27.5	64.3	48.0	3.3	61.5	35.3	99.6	25.5	77.4	4.4	466.9	22.4	147.3	591.8	180.0	177.4	949.2	110
3.4	2.0	1.1	22.5	26.4	4.3	15.0	9.6	27.5	12.6	29.6	1.8	155.8	7.4	97.9	246.3	50.4	36.0	332.6	111
17.4	19.4	9.7	147.2	1,073. 6	8.3	(7)	173.2	302.8	63.6	278.2	(7)	2,230.8	110.7	-8.0	2,112.1	344.9	305.7	2,762.8	112
4.7	8.5	2.8	35.7	117.1	8.5	25.0	71.0	61.3	10.8	58.1	${ }^{\text {( }} 4$	-395.8	20.2	-13.9	2, 361.7	34.9 50.8	33.8	2, 486.4	113
11.1	12.1	5.0	88.3	464.7	(7)	56.5	57.8	128.6	31.6	108.6	(7) ${ }^{-4}$	966.0	48.5	$-20.7$	896.8	147.7	135.1	1,179.6	114
7.6	144. 8	22.1	281.5	${ }^{(7)}$	(7)	119.4	161.0	265.6	87.1	217.7	(7)	1,683.5	85.5	-131.3	1, 466.7	75.5	246.8	1,789.0	115
13.4	10.0	5.0	88.1	237.0	87.8	35.6	62.0	99.7	18.7	87.8	1.4	1746.4	35. 9	4.0	174.5	98.4	157.3	${ }_{1} 970.2$	116
42.9	9.7	5.8	78.6	504.2	4. 8	84.1	63.7	176.3	29.3	137.5	4.5	1,141.3	55, 5	47.7	1,133.5	190.4	144.6	1,468.5	117
53.1	950.1	419.3	1,716.0	5, 496.0	(7)	1,254.5	1,321.2	3,128.1	1,148.9	3,235. 3	(7)	18,781.4	909.2	20 ¢. 6	18,078.8	3,262.4	2,762.6	24, 103.8	118
13.4	196.8	47.9	725.2	3, 137.2	128.4	579.3	733.4	1,397.2	390.2	1,423.0	9.0	8,781.0	435.3	$-160.5$	8,185.2	1,595.0	1,357. 3	11,137.5	119
10.8	10.0	4.8	88.4	506.8	13.5	59.7	70.9	156.6	49.2	150.4	2.1	1,123.1	55.7	37.7	1, 105.1	151.3	165.8	1,422.2	120
4	104.4	13.0	162.7	635.6	${ }^{(7)}$	123.6	138.5	312.3	69.2	245.5	$\left.{ }^{7}\right)$	1,827.3	92.9	6.9	1,741.3	176.1	408.3	2,325.7	121
-6.9	5.3	2.0	32.0	158.8	1.3	21.8	25.0	56.4	12.7	46.4	. 6	355.5	18.2	-15.4	321.9	20.8	64.8	407.4	122
16.0	10.9	8.6	67.6	526.7	5.5	140.8	72.0	177.5	24.4	122.4	3.3	1,175.6	58.9	34.3	1,151.0	175.8	156.2	1,483.0	123
3.3	2.3	1.0	18.0	41.2	23.4	7.9	18.0	20.8	3.6	18.2	.6	158.3	7.7	32.3	182.9	33.2	44.5	260.6	124
4.0	1.3	. 6	12.4	17.9	. 4	5.9	9.5	15.9	1.8	11.5	. 5	81.7	3.9	13.3	91.1	15.1	24.6	130.9	125
-8.6	2.0	1.0	16.4	51.7	(7) ${ }^{1}$	4.2	9.6	20.4	3.4	16.1	(7)	117.0	6.2	21.0	131.8	6.6	30.4	168.8	126
7.9	12.5	2.0	34.0	154.9	5.7	24.1	19.7	52.8	8.8	41.4	. 8	364.6	17.8	19.8	366.6	67.6	64.3	498.5	127
${ }^{(8)}$	$\cdot 2$	. 1	4.1	14.2	${ }^{(7)}$	. 9	1.0	2.5	. 4	2.2	(7)	25.6	1.3	-. 9	23.4	3.3	3.8	30.6	128
5.2	4.7	1.2	95.5	58.0	4.3	23.5	11.2	34.7	6.4	36.8	1.0	282.5	14.0	-19.0	249.5	39.5	43.6	332.6	129
2.8	1.1	.6	14.7	26.8	7.9	6.1	10.2	14.7	1.7	8.2	.3	95.1	4.7	9.6	100.0	17.8	21.4	139.1	130
1.2 .5	3.2 12	.9	20.2	49.3	18.1	10.2	20.6	29.7	5.6	20.5	. 3	179.8	8.9	14.6	185.5	30.5	45.6	261.6	131
+1.0	1.2 2.0	1.4	11.7 16.2	52.8 81.5	${ }^{(7)} .5$	3.5 9.2	8.9 7.7	12.6 23.7	3.2	9.8 16.8	${ }^{(7)} .6$	103.7	5.3 8.2	-1.1	99.5 147.8	-9.9	24.4 31.1	123.7 7	132 133

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$ —Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{Millions of dollars} \& \multirow[b]{3}{*}{Line} <br>
\hline \multirow[b]{2}{*}{$$
\begin{array}{|c}
\text { Farm } \\
\text { earnings }
\end{array}
$$} \& \multicolumn{3}{|l|}{Government labor earnings} \& \multicolumn{8}{|c|}{Private nonfarm labor and proprietary earnings} \& \& \& \& \& \& \& Total. \& <br>
\hline \& Federal civilian \& Military \& State and local \& Manu- \& Mining \& Contract construction \& Transportation, communications and public utilities \& Wholesale and retail trado \& Finance,
insur-
ance,
and real
estate \& Services \& Other \& Total earnings by place of work \& Less
personal
contri-
butions \& Plus residence adjustment \& Net
earnings
by place
of resi-
dence \& $$
\begin{gathered}
\text { Plus } \\
\text { property } \\
\text { income }
\end{gathered}
$$ \& $\underset{\text { transfer }}{\text { Plus }}$ payments \& personal
income
by
place of
residence \& <br>
\hline 9.2 \& 2.7 \& 1.1 \& 21.7 \& 97.7 \& . 9 \& 11.4 \& 14.7 \& 28.9 \& 5.1 \& 31.6 \& . 8 \& 225.8 \& 10.6 \& 14.4 \& 229.6 \& 42.4 \& 44.2 \& 316.2 \& 134 <br>
\hline . 5 \& 1.1 \& . 4 \& 5.5 \& 79.3 \& . 7 \& 2.8 \& 5.6 \& 10.5 \& 2.0 \& 11.3 \& .1 \& 119.8 \& 5.8 \& $-1.3$ \& 112.7 \& 17.6 \& 18.9 \& 149.2 \& 135 <br>
\hline 3.1 \& 4.9 \& 2.4 \& 37.7 \& 66.1 \& 17.5 \& 16.5 \& 31.1 \& 55.2 \& 9.4 \& 37.8 \& . 2 \& 281.8 \& 13.8 \& 81.5 \& 349.5 \& 54.5 \& 107.9 \& 512.0 \& 136 <br>
\hline ${ }_{15} .1$ \& 6.5 \& . 1 \& 2.6
315 \& 4.5 \& (7) \& . 4 \& 1.7 \& 1.2 \& (7) \& . 5 \& . 1 \& 10.7 \& ${ }_{6}{ }^{6}$ \& . 9 \& 11.0 \& 2.1 \& 3.4 \& 16.6 \& 137 <br>
\hline 15.5 \& 63.7 \& 4.7 \& 31.5 \& 108.1 \& 3.6 \& 14.3 \& 13.6 \& 36.6 \& 6.1 \& 31.1 \& 1.6 \& 330.3 \& 16.4 \& 1.9 \& 315.8 \& 48.1 \& 49.6 \& 413.6 \& 138 <br>
\hline 2.6 \& . 3 \& . 2 \& 2.5 \& ${ }^{(7)}$ \& (7) \& 1.2 \& ${ }^{6} 4$ \& 3.4 \& . 4 \& 1.8 \& . 2 \& 17.3 \& .7 \& 7.6
-1.8 \& 84.2 \& 3.4 \& 4.9 \& 32.4 \& 139 <br>
\hline 1.9 \& 1.7 \& . 5 \& 11.7 \& 4.3 \& 41.3 \& 1. 5 \& 6.5 \& 7.7 \& 1.1 \& 8.6 \& . 5 \& 87.3 \& 4.3 \& $-1.8$ \& 81.2 \& 31.9 \& 25.6 \& 138.6 \& 140 <br>
\hline 3.8
5.6 \& 1.8
3.0

1. \& .5
1.3 \& 12.5
27.2 \& 31.0
44.3 \& 33.5 \& 7.1 \& 4.7
20.6 \& 11.4
27.3 \& 3.1
4.3 \& 9.6
18.3 \& .2
.7 \& 86.0
193.8
2. \& | 4.0 |
| :--- |
| 9.4 | \& 9.0

12.6 \& 91.0
197.0 \& $\begin{array}{r}6.0 \\ 27.5 \\ \hline 1\end{array}$ \& 23.4
43.0 \& 120.4
267.4 \& 141 <br>
\hline 2.5 \& 1.4 \& . 5 \& 10.9 \& 44.7 \& 4.2 \& 4.4 \& 11.3 \& 19.9 \& 1.7 \& 12.6 \& .5 \& 114.6 \& 5.6 \& .4.1 \& 113.1 \& 18.1 \& 26.3 \& 157.4 \& 143 <br>
\hline $-9.2$ \& . 7 \& . 3 \& 4.5 \& 11.5 \& () \& 5.0 \& 2.7 \& 4.6 \& . 6 \& 2.5 \& (7) \& 23.4 \& 1.7 \& 12.2 \& 33.9 \& 7.5 \& 9.1 \& 50.6 \& 144 <br>
\hline 3.7 \& 3.5 \& 1.4 \& 26.0 \& 114.3 \& 4.6 \& 13.0 \& 29.0 \& 40.2 \& 10.9 \& 43.6 \& ${ }^{\text {. }} 5$ \& 290.9 \& 14.0 \& 42.3 \& 319.2 \& 61.9 \& 66.2 \& 447.2 \& 145 <br>
\hline 7.5 \& 25.7 \& 4.1 \& 22.0 \& 125.1 \& 8.1 \& 13.0 \& 18.5 \& 46.6 \& 5.7 \& 33.6 \& . 7 \& 310.6 \& 15.3 \& 33.9 \& 329.2 \& 26.0 \& 49.3 \& 404.6 \& 146 <br>
\hline . 1 \& 2.1 \& . 7 \& 15.1 \& 68.4 \& 5.8 \& 5.4 \& 9.0 \& 18.5 \& 4.4 \& 20.1 \& . 1 \& 149.6 \& 7.3 \& 4.8 \& 147.1 \& 36.4 \& 33.5 \& 217.0 \& 147 <br>
\hline 5.7 \& 3.2 \& 2.2 \& 30.9 \& 219.8 \& 1.5 \& 16.5 \& 39.9 \& 52.8 \& 9.4 \& 52.1 \& . 5 \& 434.6 \& 21.3 \& -3.8 \& 409.5 \& 65.8 \& 65.8 \& 541.0 \& 148 <br>
\hline -4.4 \& 1.0 \& . 5 \& 12.0 \& 70.3 \& (7) \& 3.9 \& 9.7 \& 17.5 \& 3.6 \& 13.8 \& (7) \& 128.2 \& 6.6 \& $-1.9$ \& 119.7 \& $-5.5$ \& 23.8 \& 138.1 \& 149 <br>
\hline . 7 \& . 4 \& . 2 \& 9.9 \& 20.3 \& (7) \& 1.3 \& 5.7 \& 3.8 \& . 8 \& 15.3 \& (7) \& 58.8 \& 2.4 \& -15.7 \& 40.7 \& . 6 \& 9.9 \& 51.1 \& 150 <br>
\hline -2.9 \& 3.7 \& 1.8 \& 22.2 \& 115.1 \& 4.2 \& 14.6 \& 22.4 \& 42.4 \& 7.5 \& 24.5 \& . 5 \& 256.0 \& 13.3 \& 23.2 \& 265.9 \& 10.2 \& 64.0 \& 340.1 \& 151 <br>
\hline .3
2.4 \& . 5 \& . 3 \& 3.8 \& 2.1 \& ${ }^{(8)}$ \& 4.3 \& 1.5 \& 4.3 \& 1.3 \& 7.8 \& \& 26.8 \& 1.3 \& 8.5 \& 34.0 \& 10.7 \& 8.1 \& 52.8 \& ${ }_{153}$ <br>
\hline 2.4 \& . 5 \& . 3 \& 6.0 \& 7.7 \& . 5 \& 1.3 \& 2.5 \& 3.9 \& . 6 \& 4.4 \& . 2 \& 30.5 \& 1.3 \& 6.3 \& 35.5 \& 5.6 \& 9.6 \& 50.6 \& 153 <br>
\hline 3.2 \& 5.1 \& 2.3 \& 38.5 \& 171.1 \& 21.8 \& 21.1 \& 27.9 \& 53.0 \& 10.5 \& 42.8 \& 1.0 \& 398.3 \& 20.0 \& 57.3 \& 435.6 \& 61.3 \& 108.4 \& 605.4 \& 154 <br>
\hline 3.2 \& . 8 \& . 4 \& 16.4 \& 26.5 \& (7) \& 3.7 \& 8.1 \& 10.7 \& 1.8 \& 5.8 \& (7) \& 78.3 \& 3.8 \& 4.2 \& 78.7 \& 3.9 \& 14.3 \& 96.8 \& 155 <br>
\hline 1.3 \& . 5 \& 1.2 \& 2.8 \& 2.8 \& . 1 \& . 8 \& . 4 \& 1.8 \& . 2 \& 1.1 \& . 1 \& 13.1 \& . 5 \& 1.8 \& 14.4 \& 2.5 \& 3.6 \& 20.5 \& 156 <br>
\hline 5.3 \& 1.9 \& . 9 \& 14.1 \& 22.3 \& (7) \& 2.2 \& 8.2 \& 11.0 \& 2.5 \& 8.4 \& (7) \& 78.8 \& 3.7 \& 15.2 \& 90.3 \& 7.6 \& 21.0 \& 119.0 \& 157 <br>
\hline 2.1 \& 7.2 \& 1.1 \& 10.3 \& 18.8 \& (7) \& 8.1 \& 2.2 \& 8.6 \& 1.4 \& 14.5 \& (7) \& 74.7 \& 3.3 \& 5.9 \& 77.3 \& 7.1 \& 14.0 \& 98.2 \& 158 <br>
\hline 1.8 \& 1.6 \& . 8 \& 26.6 \& 80.9 \& (7) \& 7.3 \& 16.0 \& 25.0 \& 6.6 \& 21.5 \& (7) \& 189.0 \& 9.2 \& $-.8$ \& 179.0 \& 41.0 \& 34.9 \& 254.9 \& 159 <br>
\hline 3.2 \& 3.2 \& . 7 \& 22.3 \& 62.8 \& (7) \& 4.1 \& 10.2 \& 24.0 \& ${ }^{(7)}$ \& 14.4 \& (7) \& 149.2 \& 7.4 \& 7.4 \& 149.2 \& 30.7 \& 26.2 \& 206.1 \& 160 <br>
\hline 7.3 \& 1.1 \& .4 \& 14.2 \& 17.4 \& (7) \& 5.1 \& 4.4 \& 11.3 \& 4.5 \& 10.4 \& (7) \& 77.2 \& 3.6 \& 5.8 \& 79.4 \& 19.3 \& 18.9 \& 117.6 \& 161 <br>
\hline 2.5 \& . 6 \& . 3 \& 6.0 \& 31.9 \& (7) \& 1.7 \& 2.2 \& 6.8 \& . 7 \& 5.3 \& (7) \& 59.7 \& 2.9 \& $-2.6$ \& 54.2 \& 2.1 \& 10.5 \& 66.8 \& 162 <br>
\hline 21.7 \& 56.2 \& 44.8 \& 196.9 \& 961.6 \& 2.0 \& (7) \& 117.0 \& 284.1 \& 94.5 \& 274.4 \& (7) \& 2, 252.3 \& 94.5 \& -53.8 \& 2,104.0 \& 429.4 \& 205.5 \& 2,738.9 \& 163 <br>
\hline 13.6 \& 23.3 \& 51.9 \& 40.4 \& (7) \& (7) \& 14.2 \& 13.9 \& 38.2 \& 6.5 \& 24.7 \& 1.2 \& 294.3 \& 9.0 \& -12.0 \& 273.3 \& 32.1 \& 35.8 \& 341.2 \& 164 <br>
\hline 40.5 \& 4.8 \& 2.5 \& 30.5 \& (7) \& (7) \& 17.4 \& 11.8 \& 41.8 \& 6.8 \& 28.2 \& 1.4 \& 284.3 \& 9.6 \& 6.2 \& 280.9 \& 60.0 \& 39.5 \& 380.4 \& 165 <br>
\hline 24.6 \& 615.3 \& 279.0 \& 914.3 \& 1,940. 4 \& (3) \& 525.5 \& 620.7 \& 1,416.3 \& ${ }^{(7)}$ \& 1,205.5 \& (7) \& 7,085.3 \& 422.3 \& 68.1 \& 7,631.1 \& 1,115.7 \& 1,002.1 \& 9,748.9 \& 166 <br>
\hline . 8 \& 2.2 \& 1.8 \& 26.2 \& 117.2 \& 1.9 \& 22.4 \& 28.9 \& 38.0 \& 6.7 \& 37.7 \& .4 \& 284.3 \& 14.1 \& -29.4 \& 240.8 \& 40.1 \& 45.2 \& 326.2 \& 167 <br>
\hline 1.9 \& . 4 \& 1.2 \& 7.1 \& 1.6 \& (7) \& (7) \& . 8 \& 6.0 \& 1.6 \& \& \& 65.7 \& 3.1 \& 4.9 \& 67.5 \& 15. 5 \& 11.2 \& 94.2 \& 168 <br>
\hline 9.5 \& . 9 \& . 5 \& 5.2 \& 7.0 \& (7) \& 1.9 \& 9.5 \& 7.2 \& (7) \& 4.2 \& (7) \& 47.7 \& 1.9 \& 12.2 \& 58.0 \& 10.8 \& 10.2 \& 79.0 \& 169 <br>
\hline 7.2 \& 1.5 \& . 4 \& 13.2 \& 27.6 \& ( ${ }^{\text {( })}$ \& 10.1 \& 6.1 \& 12.4 \& 1.3 \& 8.3 \& (7) \& 89.0 \& 4.1 \& 5.4 \& 90.3 \& 16.7 \& 15.3 \& 122.4 \& <br>
\hline 20.4 \& 15.4 \& 8.3 \& 27.8 \& 51.2 \& . 2 \& 23.9 \& 16.1 \& 40.2 \& 7.7 \& 39.1 \& 1.1 \& 251.3 \& 11.5 \& 52.8 \& 292.6 \& 50.4 \& 36.2 \& 379.2 \& 171 <br>
\hline 3.7 \& 1.0 \& . 4 \& 6.9 \& 6.0 \& 2.5 \& 5.2 \& 2.8 \& 9.1 \& 1.3 \& 5.3 \& . 6 \& 44.7 \& 2.1 \& 6.1 \& 48.7 \& 6.9 \& 10.7 \& 66.5 \& 172 <br>
\hline 7.3 \& . 8 \& . 5 \& 4. 6 \& 6.7 \& (7) \& 2.6 \& 2.9 \& 7.3 \& 1.2 \& 6.7 \& (7) \& 41.7 \& 1.5 \& 4.4 \& 44.6 \& 15.4 \& 8.2 \& 68.2 \& 173 <br>
\hline 8.0 \& .$^{.5}$ \& . 9 \& 5.2 \& 4.0 \& (7) \& 4.1 \& 1. 6 \& 6.7 \& . 6 \& 3.8 \& (7) \& 37.3 \& 1.3 \& 13.2 \& 49.2 \& 14.6 \& 7.4 \& 71.3 \& 174 <br>
\hline 7.1 \& 37.7 \& 59.5 \& 10.8 \& 1.6 \& (7) \& (7) \& 4.1 \& 14.6 \& 2.7 \& 13.8 \& (7) \& 155.5 \& 6.4 \& 10.9 \& 160.0 \& 17.0 \& 17.8 \& 194.8 \& 175
176 <br>
\hline 7.9 \& . 7 \& . 5 \& 8.8 \& 10.3 \& (8) \& 1.0 \& 1.4 \& 6.2 \& . 7 \& 3.2 \& . 5 \& 41.2 \& 1.6 \& 8.1 \& 47.7 \& 7.9 \& 9.9 \& 65.4 \& 176 <br>
\hline 6.5 \& 1.7 \& . 5 \& 6.2 \& 12.8 \& $\left.{ }^{8}\right)$ \& 5.3 \& 5.0 \& 18.1 \& 2.5 \& 15.0 \& 1.2 \& 74.9 \& 3.2 \& $-.8$ \& 70.9 \& 40.7 \& 12.7 \& 124.2 \& 177 <br>
\hline 11.7 \& 11.6 \& 11.8 \& 36.4 \& 136.3 \& (7) \& 21.1 \& 33.6 \& 54.1 \& 7.1 \& 46.5 \& (7) \& 372.0 \& 17.5 \& -6.9 \& 347.6 \& 53.3 \& 51.7 \& 452.6 \& 178 <br>
\hline 12.2 \& 3.2 \& 1.3 \& 20.3 \& 45.4 \& (7) \& 15.7 \& 16.9 \& 44.7 \& 7.2 \& 34.5 \& (7) \& 202.4 \& 9.4 \& -9.1 \& 183.9 \& 33. 2 \& 25.3 \& 242.3 \& 179 <br>
\hline 9.5 \& 2.1 \& . 5 \& 7.1 \& 13.7 \& (7) \& 7.8 \& 2.5 \& 19.1 \& 3.6 \& 13.3 \& (7) \& 80.4 \& 3.6 \& $-2.2$ \& 74.6 \& 19.4 \& 11.8 \& 105.8 \& 180 <br>
\hline 7.4 \& 4,690.3 \& 835.9 \& 1,376.0 \& 537.2 \& (7) \& 952.1 \& 821.2 \& 1,866.9 \& 684.2 \& 2,930.6 \& ( ${ }^{\text {( })}$ \& 14,779.5 \& 710.1 \& -295. 2 \& 13,774.2 \& 1,966. 0 \& 1,837.8 \& 17,578.1 \& 181 <br>
\hline 7.9 \& 27.7 \& 4.3 \& 281.6 \& 530.0 \& 2.3 \& 48.2 \& 27.4 \& 106.3 \& 22.0 \& 124.2 \& 2.2 \& 1,184.1 \& 49.0 \& -168.3 \& 966.8 \& 167.0 \& 92.3 \& 1,226. 2 \& 182 <br>
\hline 16.4 \& 41.9 \& 3. 0 \& 55.5 \& 285.8 \& (7) \& 23.4 \& 32.4 \& 73.0 \& 35.5 \& 70.2 \& (7) \& 1.639 .9 \& 28.5 \& 5.7 \& 612.1 \& 101.6 \& 93.2 \& 806.9 \& 183 <br>
\hline 7.4 \& 3.0 \& 1.4 \& 33.2 \& 127.4 \& (7) 5 \& 19.7 \& 27.0 \& 59.0 \& 6.8 \& 41.6 \& ${ }^{\text {(7) }} 6$ \& 327.4 \& 13.2 \& 58.0 \& 372.2 \& 70.8 \& 52.4 \& 495.5 \& 184 <br>
\hline 36. 7 \& 364.3 \& 63.9 \& 1,888.9 \& 9,042. 7 \& (7) \& 1, 100.0 \& 1, 148.6 \& 3,094.5 \& 850.1 \& 2,739.5 \& (7) \& 20,373.5 \& 858.2 \& 62. 6 \& 19,577.9 \& 2,726.2 \& 2,112.7 \& 24,416.8 \& 185 <br>
\hline ${ }_{27} 1.2$ \& 15.5 \& 5.9 \& 191.5 \& 1,350.7 \& ${ }^{(7)}$ \& $\begin{array}{r}92.4 \\ \hline 137\end{array}$ \& 81.8 \& 308.4 \& 42.8 \& ${ }^{216.6}$ \& () \& 2,319.1 \& 91.7 \& -74.8 \& 2, 152.6 \& 277.4 \& ${ }^{230.6}$ \& 2, 660.7 \& 186 <br>
\hline 27.0
10.4 \& 23.5 \& 7.2 \& 158.7 \& 823.0 \& \& 137.7 \& 121.6 \& 390.3 \& 75.2 \& 264.1 \& 4.1 \& 2,033.1 \& 88.4 \& -59.5 \& 1,885.2 \& 357.0 \& 242.2 \& 2,484. 4 \& 187 <br>

\hline | 10.4 |
| :--- |
| 16.5 |
| 8.2 | \& 5.2 \& 1.6 \& 62.7 \& 226.8 \& 1.1 \& 30.0 \& 63.1 \& 72.0 \& 13.0 \& 63.0 \& .7 \& 549.6 \& 23.0 \& 8.3 \& 534.9 \& 86.9 \& 64.5 \& 686. 3 \& 188 <br>

\hline 16.5 \& 10.5 \& 2.8 \& 135.3 \& 388.5 \& .$^{.9}$ \& 63.7 \& 35.8 \& 121.6 \& 24.3 \& 110.9 \& 2.2 \& 913.0 \& 38.9 \& $-7.7$ \& 866.4 \& 177.4 \& 116.6 \& 1,160.4 \& 189 <br>
\hline 48.2 \& 26.6 \& 6.2 \& 379.8 \& 669.6 \& (7) \& 88.1 \& 50.4 \& 203.2 \& 61.3 \& 174.5 \& (7) \& 1,711.5 \& 66.8 \& -21.1 \& 1,623.6 \& 224.3 \& 187.9 \& 2,035.8 \& 190 <br>
\hline 9.8 \& 5.1 \& 2.1 \& 54.5 \& 259.3 \& (3) \& (7) \& 37.9 \& 70.9 \& 11.8 \& 61.6 \& (7) \& 1543.2 \& 23.3 \& -2.4 \& 517.5 \& 86.2 \& 93.4 \& 697.1 \& 191 <br>
\hline 14.3 \& 12.3 \& 2.7 \& 70.2 \& 521.0 \& 1.1 \& 48.3 \& 39.2 \& 123.7 \& 25.4 \& 88.5 \& . 8 \& 947.6 \& 39.4 \& -60.1 \& 848.1 \& 147.2 \& 98.9 \& 1,094.2 \& 192 <br>
\hline . 8 \& . 6 \& . 2 \& 1.8 \& 1.1 \& $\left.{ }^{8}\right)$ \& \& (7) \& 2.7 \& (7) \& 1.4 \& . 2 \& 9.9 \& 4 \& 3.1 \& 12.6 \& 4.7 \& 5.8 \& 23.2 \& 193 <br>
\hline 1.2 \& . 6 \& . 2 \& 3.0 \& 5.9 \& (3) \& (7) \& . 5 \& 2.2 \& . 4 \& 2.0 \& (7) \& 15.5 \& . 7 \& 1.2 \& 16.0 \& 2.6 \& 5.1 \& 23.8 \& 194 <br>
\hline 15.6 \& 1.5 \& . 7 \& 17.4 \& 59.2 \& 1.9 \& 7.6 \& 4.9 \& 18.4 \& 1.4 \& 13.6 \& (7) 8 \& 142.9 \& 5. 3 \& 50.3 \& 187.9 \& 27.8 \& 29.2 \& 244.7 \& 195 <br>
\hline 1.7 \& 1.3 \& 1.4 \& 13.6 \& 34.1 \& (7) \& 5.4 \& 5.5 \& 15.6 \& 2.6 \& 8.5 \& (7) \& 91.0 \& 3. 9 \& $-1.6$ \& 85.5 \& 16.1 \& 15.3 \& 116.9 \& 196 <br>
\hline 1. 1 \& . 6 \& $\stackrel{.}{ } \cdot 1$ \& 4.2 \& 11.7 \& (8) \& 2.2 \& . 4 \& $\begin{array}{r}18.6 \\ \hline 1\end{array}$ \& . 6 \& 3.1 \& . 1 \& 27.6 \& 1.2 \& 2.6 \& 29.0 \& 9.2 \& 8.1 \& 46.3 \& 197 <br>
\hline 2.7 \& . 6 \& .1 \& 3. 0 \& 2.7 \& 1 \& 4 \& . 8 \& 4.5 \& . 5 \& 2.7 \& 1 \& 18.1 \& . 6 \& 7.0 \& 24.5 \& 6.0 \& 7.1 \& 37.6 \& 198 <br>
\hline . 3 \& . 3 \& . 1 \& 4. 2 \& 8.8 \& $\left.{ }^{8}\right)$ \& . 7 \& . 2 \& 2.8 \& (7) \& 1.3 \& (7) \& 18.9 \& . 8 \& . 3 \& 18.4 \& 3.2 \& 5.5 \& 27.0 \& 199 <br>
\hline 14.29 \& . 7 \& . 3 \& 3. 0 \& 3.2 \& (8) \& 2.7 \& 3.2 \& 2.7 \& . 4 \& 3.4 \& $\cdot 1$ \& 19.9 \& . 9 \& 1.6 \& 20.6 \& 7.5 \& 6.2 \& 34.3 \& 200 <br>
\hline 14.0
7.8 \& . 78 \& 2.0
.4 \& 50.3
23.7 \& 364.0
35.5 \& ${ }^{(8)} 1$ \& 26.5
3.2 \& 24.3
5.7 \& 78.7
17.2 \& 15.6
2.4 \& 65.4
6.9 \& 2.2
.2 \& 648.8
103.9 \& 27.3
4.2 \& -19.5
7.0 \& 602.0
106.7 \& 115.9
20.9 \& 79.8
18.3 \& 797.6
145.2 \& 202 <br>
\hline
\end{tabular}

Table 2.—Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 _Continued

$\begin{gathered} \text { Farm } \\ \text { earnings } \end{gathered}$	Millions of dollars																		Line
	Government labor earnings			Private nonfarm labor and proprietary earnings								Total earnings of work$\qquad$	$\begin{gathered} \text { Less } \\ \text { personal } \\ \text { contri- } \\ \text { butions } \end{gathered}$	$\left.\begin{gathered} \text { Plus } \\ \text { residence } \\ \text { adjust- } \\ \text { ment } \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { Net } \\ & \text { earnings } \\ & \text { by place } \\ & \text { of resi- } \\ & \text { dence } \end{aligned}$	$\begin{gathered} \text { Plus } \\ \text { property } \\ \text { income } \end{gathered}$	Plus transfer ments	Total personal by place of residence	
	Federal civilian	Military	$\begin{aligned} & \text { State } \\ & \text { and } \\ & \text { local } \end{aligned}$	Manu-   facturing	Mining	Contract construction	Transportation, communications, $\underset{\text { utilities }}{\text { and public }}$ utilities	Wholeretail trade		Services	Other								
7.1	1.0	. 5	11.1	38.8	${ }^{(8)}$	2.6	3.5	11.9	1.8	7.1	. 2	85.6	3.5	58.5	140.6	21.0	18.2	179.8	203
7.1	. 5	1.2	5.5	14.3	(7)	2.3	3.6	5.4	1.1	6.6	${ }^{(7)}$	41.6	1.7	2.1	42.0	10.2	9.4	${ }^{61.6}$	204
. ${ }^{2}$	- ${ }^{.5}$	1.0 30.2	$\begin{array}{r}4.4 \\ 1.4 \\ \hline 14\end{array}$	11.6 1.9	(7)	3.5   3	2.0 6.4	8.8 10.0	1.5	5.7	(7)	39.3 89	1.6 2	.9	38.6 871	${ }^{9} 9.4$	11.1	116.7	205 206
.9	12.8	${ }^{1} .2$	4.3	4.9	(7)	1.7	2.1	6.9	1.2	4.5	(7)	27.3	1.1	4.6	30.8	7.6	12.3	50.7	207
${ }^{(8)}$	1.4	.1	2.4	2.4	(8)	1.7	$\stackrel{.}{ } 6$	2.9	. 4	2.9	. 1	13.9	${ }^{.6}$	$-.4$	12.9	3.0	4.1	20.0	${ }^{208}$
2.1	2.5	.3	12.3	27.4	(7)	4.4	12.1	15.0	3.0	9.8	(7)	89.5	3.9 3 3	-1.2 -3	84.4	17.3	24.0 15,	125.7	209 210
1.3	6.2 1.1	. 2	8. 6	14.0 8.6	(7)	8.8 7.0	6.8 3.4	12.5 14.8	${ }_{1.6}^{1.3}$	$\begin{array}{r}6.3 \\ 15.9 \\ \hline\end{array}$	(7)	72.2 60.7	3.3 2.4	-3.8 -4.1	65.1 54.2	14.4 15.3	15.7 10.6	95.2 80.1	${ }_{211}^{210}$
. 1	. 3	.1	3.7	4.8	$-.1$	1.7	. 6	4.0	1.3	3.4	${ }^{1} 1$	20.0	. 8	11.9	31.1	6.3	8.3	45.7	212
. 3	2.1	. 2	7.7	9.3	(\%)	2.1	1.7	6.9	1.1	4.3	${ }^{(7)}$	36.3	1.6	8.6	43.3	10.0	15.3	68.7	${ }_{214}^{213}$
$-2.0$	2.5	1.0	27.3	21.5	(8)	15.1	11.5	${ }^{29.5}$	5.8	2.13	(7) 3	136.5 111.2 112	1.8 4.2 4.2	-15.0 -15.2	115.7 122.2	30.4 16.4	22.8 18.4	168.9 157.0	214 215
8.4 9.3	1.2 1.1	. 4	10.8 11.6	44.5 43.3	${ }^{(7)} 1.6$	4.4 2.8	9.2   3.8   1	15.5 13.7	2.4	13.3 6.2	${ }^{(7)} .2$	111.2 95.7	4.2 3.7	15.2 21.5	122.2 113.5	16.4   18.8	18.4 17.5	157.0 149.8	215   216   18
.	2.8	1.1	18.1	5.7		5.6	5.9	11.0	3.5	7.5	.2	62.7	2.6	3.5	63.6	21.3	23.1	108.1	217
18.5	1.4	1.6	15.5	20.4	(\%)	3.2	4.0	12.8	1.9	8.0	(7)	88.6	2.9	6.1	91.8	21.6	18.1	131.6	218
-1.7	6.6	36.1	7.9	6.4	(7)	$\stackrel{2.5}{5}$	4.3	10.2	1.8	5.1	(7)	81.0	1.9	-1.6	77.5	13.2	14.1	104.8	219
9.4	1.2 1.2	. 6	6.6 36.9	1.4 6.3	${ }^{7} 7$	5.0 4.5	3.7	5.0 17.1	2.8	2.4 11.7	(). 4	100.7	1.0 3.5	2.9 14.3	26.6 111.5	6.4 20.9	10.8 18.8	43.7 151.2	${ }_{221}^{220}$
. 4	1.2	.1	1.7	1.6	(7)	1.1	. 3	2.0	${ }^{(7)}$	. 7	(7)	8.3	. 3	2.7	10.7	3.0	4.0	17.7	222
${ }^{(8)}$	. 1	1.2	. 8	1.0	${ }^{(8)}$	(7)	${ }^{(7)}$	. 2	(7)	1.2	(7) 1	3.7 8.1	.3	. 9	4.5 9	1.0 2.5	1.7 5.2	${ }^{7} 7.15$	${ }_{224}^{223}$
$\stackrel{.}{3}$	. 7	. 8	1.7 2.0	1.1	(8)	${ }_{2}{ }_{2} 2$	$\stackrel{.}{ } \mathbf{2}$	1.6	${ }^{(7)} .7$	1.7 3.6	${ }^{(7)} .2$	8.1 15.3	$\begin{array}{r}.3 \\ .5 \\ \hline\end{array}$	9.7	$\begin{array}{r}9.9 \\ 24.5 \\ \hline\end{array}$	2.5   8.8   8	5.2   5.6	17.5 38.9	${ }_{225}^{224}$
16.3	1.9	. 8	2. 2.3	153.0	(7)	8.3	10.4	32.4	5.7	28.5	(7) ${ }^{2}$	283.3	11.6	5.0	276.7	49.5	${ }_{36.3}^{5 .}$	362.5	226
. 2	. 1	. 1	12.8	1.4	(8)	. 3	(7)	2.2	. 2	1.2	(7)	18.7	. 7	$-.9$	17.1	2.6	4.5	24.2	227
.5	7	. 2	4.9	. 8	(9)	2.1	1.7	4.0	. 3	4.0	(7)	20.6	. 9	6	20.3	5.7	6.3	32.4	228
1.4	1.0	. 3	5.7	22.6	(1)	2.7	3.6	7.5	1.3	5.1	${ }^{(1)}$	51.3	2.2	2	49.3	10.9	12.7	72.9	229
. 2	10.6	42.7	37.0	${ }^{8.3}$	39.2	10.7	10.3	22.0	4. 1	19.8	${ }^{(7)} 4$	205.2	7.0	-3.0 -6	195.2 70.8	30.4 15.4	30.9 12.6	256.6 98.8	${ }_{231}^{230}$
3.0 4.9	. 8	. 3	6.0 20.6	21.2 9.4	(7)	18.6 2.8	${ }_{2.6} 8$	7.9	1.6	5.2	(7)	74.1	2.1	4.9	57.9	12.5	13.6	83.9	232
3.4	. 7	. 3	8.1	20.8	$\left.{ }^{8}\right)$	2.3	2.8	8.8	. 9	5.7	(7) 3	54.3	2.2	6.0	58.1	11.1	13.0	82.2	${ }_{234}^{233}$
2.8	1.3	. 7	22.6	200.7	(7)	18.8	5.3	18.9	3.6	21.8	(7)	296.9	13.2	-40.0 4.8	$\begin{array}{r}243.7 \\ 16.4 \\ \hline 18\end{array}$	56.5	21.9	322.2 23.7	234 235
3.7 9.4	1.2	.1	2.5 11.9	4.28	${ }^{(7)} .2$	1.1	$\stackrel{1}{0}$	2.3 14.5	2.4	12.1	${ }^{\text {(2) }} 7$	11.9 104.6	.3 4.0	4.8	16.4 108.2	3.2 20.3	4.1 23.1	23.7 151.6	235 236
${ }^{.} \mathbf{6}$	1.2	.1	1.8	3.5	${ }^{(8)}$	1.1	$\stackrel{3}{2}$	2.0	. 4	1.1	.1	11.0	4.	-. 4	10.2	4.2	4.5	18.9	237
9.9	. 7	. 3	7.9	18.9	(\%)	2.3	3.3	6.8	1.4	6.5	(7)	58.4	2.1	16.0	72.3	15.5	14.8	102.6	${ }^{238}$
2.0	. 4	. 1	3.2	3.3	(7) 2	2.2	1.7	5.5	.4	2.7		${ }_{21}^{21.8}$	. 9	1.4 -140	${ }_{30}^{22.3}$		8.2	37.5 48	239   240
3. 5	.7	.1	3.8 5.5	4.9 16.8	${ }^{(7)} .2$	1.6	. 6	2.5 4.7	. 6	1.1 2.4	${ }^{(7)} .2$	46.8 35.5	2.1	$\underset{(8)}{-14.0}$	30.7 34.1	3.6 6.3	6.1 9.1	40.4 49.4	240 241
${ }^{3} .5$	.2	${ }^{(8)}{ }^{1}$	1.5	. 9	${ }^{(8)}{ }^{2}$	1.0		1.3	(7) ${ }^{\text {a }}$	2.8	.1	6.3	. 3	${ }^{\text {. }} 5$	6.5	2.4	3. 6	12.4	242
4	. 7	2	5.7	8.9	(7)	2.1	. 8	5.7	. 6	3.8	(7)	29.1	1.3	-1.2	26.6	7.0	6.1	39.7	243
${ }^{18} 1.6$	. 5	1.4	3.5	. 8	(7)	$\stackrel{8}{8}$	(7) 1.8	3. 6	. 4	2.4		27.4	1.1	- 7	27.0 178	${ }_{11}^{6.2}$	7.3	${ }^{40.6}$	${ }_{245}^{244}$
${ }^{(8)} 7.0$	1.4	.5	4.5 16.1	1.7 84.4	(7)	1.0 6.9	${ }^{(7)} 7.2$	6.1 21.3	1. 1.1	2.8 10.2	(7)	19.1 158.8	.8 6.9	-. 2.6	17.8 154.5	31.1	10.1 23.3	39.1 209.6	${ }_{246}^{245}$
19.2	1.1	.3	9.4	30.5	(7)	3.2	1.8	11.4	1.7	7.4	(2)	188.8 86.9	2.9	11.7	95.7	20.0	18.5	134.2	247
${ }^{(8)}$	. 6	. 2	3.2	2.6	(7)	3.2	(7)	2.8	. 5	1.5	. 1	15.6	. 7	${ }^{(8)}$	14.9	3.9	6.2	24.9	248
13.1	1.3	. 5	22.7	26.6	(7)	3.8	6.6	17.8	1.5	7.6	(7)	102.4	3.8	47.8	146.4	24.4	22.2	193.1	249
1.1	1.7	. 3	8.3	18.3	${ }^{(7)}$	2.4	4.4	10.4	1.6	7.7	(7)	56.8	2.3	-6.2	48.3	10.4	12.2	71.1	250
${ }_{11}^{9.8}$	30.1	8.7	${ }_{2}^{246.8}$	1,127. 1	(7) 2.4	122.7	212.7	376.9	82.1	312.7	${ }^{6.0}$	${ }^{2}, 537.8$	122.6	97.0	2,512.2	${ }_{233}^{378.7}$	286.2	3, 177.2	${ }_{252}^{251}$
11.0	14.5 146.8	4.9 18.6	96.3 417.9	1647.6 $1,798.2$	(7)	$\begin{array}{r}72.2 \\ 320.2 \\ \\ \hline\end{array}$	86.8 440.9	194.2 902.0	43.9 266.8	164.8 778.0	(7)	1,344. ${ }^{\text {5, 116. }}$	63.3 240.8	45.5 -44.1	$1,5226.3$ $4,831.3$	${ }^{2334.0}$	166.8 616.2	${ }^{1,726.1}$	${ }_{253}^{252}$
13.0	266.8	25.7	686.1	3, 374.3	(7)	474.8	670.5	1,560.1	432.9	1,367.0	(2)	$8,901.0$	414.0	-376.1	8,110.9	1,579.4	982.6	10,672.9	254
45.9	149.4	53.7	471. 1	1,057.9	( ${ }^{\text {( })}$	280.8	280.5	688.0	276.6	613.5	(3)	3,936. 7	191.9	-93.5	3, 651.3	557.6	421.6	4,630.5	${ }_{255}^{255}$
36.7	353. 4	133.0	293.4	$1,456.9$	(7) 8	170.1	154.6	449.3	${ }^{(7)}$	431.3	(7)	3,594.6	166.2	-202. 7	3, 222.7	499.2	${ }^{366.4}$	4,091.2	${ }_{257}^{256}$
5.5	5. ${ }_{8}$	3.2	83.8	347.5	1.8	${ }_{39}^{47.5}$	28.7	91.2	28.6	81.8	(7) 8	${ }_{7}^{725.7}$	35.0	48.5	739.2   720	123.0	89.6	${ }^{954.8}$	257   258
84.3	25.9	4.5	64.7 65.7	506.7	(7)	${ }_{43}{ }^{3} 7$	39.8	${ }_{92.8}$	20.1	98.9	(7)	${ }_{908.6} 6$	38.8	72.8	942.6	127.1	94.7	1,164.4	259
3.7	7.3	1.6	38.0	264.8	${ }^{\text {. }} 9$	27.6	33.3	69.0	20.0	55.2	${ }^{.} 6$	521.8	24.6	-27.7	469.5	72.5	49.8	591.7	260
21.2	8.2	4.2	47.5	244.3	(7)	25.4	39.0	75.0	19.4	73.5	(7)	560.0	22.9	85.7	622.8	90.3	82.2	795.3	261
. 5	4.7	2.8	31.0	377.1	(3)	28.9	45.5	60.4	10.8	58.0	(7)	641. 2	30.8	-54.1	556.3	84.2 484 4	76.9 350.0	717.5 3676.5	${ }_{263}^{262}$
61.1	36.6	10.1	265.5	1,159.5	(7).	182.9	234.9	462.8	90.2	377.3	(7)	2.893.0	129.2	78.3	2,842.1	484.4	350.0	3,676.5	263 264
5.6	23.9	7.0	129.0	1,113.4	(7)	110.6	124.0	266.8	55.1	232.2	(i)	2,072.5	93.0	-15.5	1,964.0	271.4	236.6	2,472.0	264
7.6	${ }^{.6}$	. 2	5.1	5.5	(7)	8.5	4.4	4.0	. 7	1.8	(7)	39.6	1.7	2.7	40.6	6.2	11.7	58.5	265
5.6	1.2	. 5	14.1	69.0	. 2	4.1	2.8	15.3	3.2	13.9	. 6	130.2	5.7	14.4	138.9	24.0	15.9	179.0	${ }^{266}$
6.2	2.9	1.4	22.0 59	130.2	${ }^{.6}$	12.7	44.5	35.6	7.4	27.7	. 8	292.2	13.6	23.5	302.1	46.9	50.1	399.1	268
.2 9	2.1	. 9	59.7	11.5	${ }^{\text {(8) }}$. 5	5.2	13.7	16.6	2.9	14.4	. 5	128.1	${ }^{7} 8$	${ }_{25}{ }^{.5}$	120.8	15.7 10.2	25.8 11.9	162.2 86.0	268 269
9.0 11.4	. 7	1.3	6.3 47.3	4.3 25.9	(8)	1.7   3.2	$\stackrel{2.1}{3.3}$	7.1 14.1	2.2 1.9	4.4 10.4	(7) ${ }^{1.6}$	39.8 120.2	1.6 6.4	25.6 5.6	$\begin{array}{r}123.8 \\ 119.4 \\ \hline 18\end{array}$	10.2 16.8	18.9	154.3 15.3	270
4.6	2.8	1.3	19.7	93.4	3.6	10.2	14.3	41.4	8.3	34.1	. 9	234.6	10.9	80.2	303.9	48.5	46.8	399.2	271
3.6	1.3	. 3	7.3	50.8	8.0	16.1	9.0	11.7	2.2	10.0	. 2	120.6	5.5	1.6	116.7	19.5	14.2	150.3	${ }_{273}^{272}$
7.8	1.3	. 5	11.1	103.2	(7)	6.6	10.2	17.6	3.8	17.0	(7)	179.9	7.9	${ }^{(8)}$	172.0	30.7	22.6	225.4	273 274
19.8	1.1	. 6	9.3	26.0	(7)	5.5	9.2	23.0	2.9	12.3	${ }^{(7)}$	112.0	4.4	48.4	156.0	28.0	18.1	202.0	274
9.1	1.2	,	12.4	107.0	()	5.5	5.7	17.9	2.9	13.5	${ }^{\text {(\%) }} 7$	176.2	7.9	-18.5	149.8		13.5   31.5   1.5		275 276
${ }^{6} 11.6$	$\begin{array}{r}9.7 \\ \hline\end{array}$	1.0 .3	20.1 5.9	144.3 18.5	(7) ${ }^{1.6}$	$\begin{array}{r}15.6 \\ 2.5 \\ \hline\end{array}$	17.4 3.1	36.1 11.3	7.7 1.6	40.8 6.6	(7) ${ }^{7}$	301.7 62.9	$\begin{array}{r}14.2 \\ 2.5 \\ \hline\end{array}$	$\begin{array}{r}-6.7 \\ 9.8 \\ \hline\end{array}$	280.8 70.2	46.6 12.3	31.5 11.1	358.9 93.7	${ }_{277}^{276}$
1.6	. 6	. 3	16.7	6.5	1.1	16.0	9.8	8.0	1.7	8.7	. 3	71.3	3.6	-.98	66.8	9.5	13.4	${ }^{89.7}$	${ }_{278}^{278}$
. 7	1.0	. 4	18.5	41.1	7.3	5.8	8.1	13.6	3.1	11.4	. 5	111.6	5.6	-5.0	101.0	14.1	21.7	136.8 273	279
17.4 12.6	1.9 .8	. .4	13.1 6.5	73.6 33.6	${ }_{(7)}^{29}$	8.6 1.7	11.0 3.5	30.8 9.5	4.8 1.6	27.1 9.2	(7) ${ }^{1.0}$	119.5 80.2	9.4 2.8	4.9 14.9	215.0 92.3	36.5 16.0	22.0 12.9	273.6   121.2  	280 281
12.8	$\begin{array}{r}.8 \\ .9 \\ \hline\end{array}$	${ }_{2}$	6.5 4.6	(7) ${ }^{33}$	37.0	1.7	3.3	${ }_{4.3}$	1.8	${ }_{3.3}$	(7)	62.8	3.0	14.9 -7.0	52.8	7.9	8.0	68.7	282
17.9	. 7	4	8.4	35.8	${ }^{(8)}$	5.5	3.5	13.6	1.6	7.2	. 2	94.8	3.6	12.0	103.2	17.2	10.8	131.1	283
12.4	. 8	. 3	7.8	21.8	(7)	3.7	3.5	9.7	2.0	5.6	()	68.9	2.8	10.5	76.6	15.3	14.8	106.8	284

Table 2．－Personal Income by Major Source for SMSA＇s and Non－SMSA Counties， $1972{ }^{1}$ —Continued

civinewoornor	wntinciois © Nos	م cronconinconco	－oorcorosiosoro	hennorinioo	＂ ～TVNOCOATAO	$\rightarrow \omega^{\circ} \infty \infty \infty$ ioncios				
	．－$\rightarrow$ ．．$-\boldsymbol{\omega}$ ఠいかかゃのかんお。			気参 Nocreviocio	ConNindino nor	$-\stackrel{\rightharpoonup}{\omega}$ ． ocrisciosioctis：			0 0 ¢	
is ©	Nocincumisitio	Givóovivincosin	coumisivinios	Grumiococio	incoincoisoso	onviviniosowivis	is is in éovicorivio	室		
官 onvooucons	Vovivirimóso	Nois onovavio	Vicoos Voo ed	wss vooronar	介ro  	000NOHONW由	N○オーOめNOHic	啇宫谷	$\stackrel{\square}{\square}$	
$\infty$ sonvoorico	oososncomocro	coivaitoded	Vovincionis o	Na OHONNOONO	venionivios	vo csiocolisi	जosoosiociocico－			
is	$3_{i \infty} 33{ }_{i s} 3$	ほこత૭૭૭త9૭త	Nio is	SO BOBSN in	Fir erso	Gir Opererem.	Burnowson	桀	3	
 	－   －onvioncrino	－ －ovinvivioo		जn wermando	coroinocromin	oncocu vincoos	由iscrovojncoio		栜	
－rnumbnert in Nooocinamio	$\mapsto \rightarrow \infty \rightarrow \infty \infty \infty$	以N？  	بN． －Nois oícojoco	  ouncorvons	ตッドーッゼッぞゃ nvantincoios	－ －OV $\rightarrow \infty \rightarrow \infty$	mancinerooio		鸳	
$\infty$ o $\omega \omega \omega \sigma \sim \infty$ orv	－is ovvicoriso：	图 －it évivivioerco	ionionionv	जONOONNO	NOMODOEOO	wovoocinmor	NA Nocrovionim		吕	是
	－wer．－－－NNo Hersocrerrinios	 	onivitincunco  	vosecooo $\omega$		enodioncurcionco	！．Rnotorem．－ जoincianovirn		¢ ¢ ¢ \％ \％	¢ 吕 0 0 0 0
$\because$－$\rightarrow$ ． －isocivionoer	ハージッ owosit oconio	نoocois ovo	oris $\infty$ is is vicemis	ancomonmor		 	 	\％ 4 4 8 8 8	嵒	忽
$\text { ; } 3 \text { wis or }$	$\mathrm{O}_{\mathrm{i}} \mathrm{O} \mathrm{O}_{\mathrm{i}} \mathrm{O}$	i	$\mathrm{O}_{\mathrm{in}} 3 \text { is } 3$	$\underset{\infty}{303}$	$\exists_{\text {ivini }} 33$	inimis ivoiriv	${ }^{3}$ isioniocoio ${ }^{3}$	욲		
OHONWODNDO	 	－occriviunco	 	A 10 mon    uncioonto	verererosinveren	$\infty \omega \infty$	 			
－．．$\omega$ －iveonit cocrin	N． cons wosinouso	Qretun－encor $\omega \rightarrow \infty \infty \sim \infty=\infty$	Norcumonvenon	$\infty \omega \omega \mathrm{Nivovior}$	由CTONONOMHN	sognone．serrem   oswivirionn in	$\omega \omega \omega \omega \infty$－$\omega_{0}^{\circ}{ }^{\circ}$ is			
 				1     1 1 1   0 1  いー $\rightarrow \infty$ のणーか○	K！Nown－ll orvinorvioomis					
OOOWHOAN iocis	ois vicioojomin	Fergity Mercoifo $\infty \infty \omega+\infty$	2ず へかかいいがか○。	可Nい    $\rightarrow-10$ $\qquad$		－moncouncia	ONoNer vindeso el			
crominomion	N $\omega \rightarrow \infty$	－rrianconoinio	onnosisoritiono	＊$\infty$ NOHOON\％	世N NHONOOONN	 	フOANOのNOOD			
OON0000100かの	の rivinoodoion	No Nommernocono	क いのかんがッロールー	  IA HANOMO NO	－ NめA Cromッーか	NONODAC $\infty+\infty$ ．	 			
o vo wewnover	－ONNOOHAN	世が －－नonit 000000	かomitncoo ermo	CNHM，Hat   M以   SNTNA  	 	  －i－oorosiociór	－$\omega \infty \infty 0 \omega 0$			
	W్MWH  			 			T్ర్⿷Nutu	＋		

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 -Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{Millions of dollars} \& \multirow[b]{3}{*}{Line} \\
\hline \multirow[b]{2}{*}{\[
\underset{\text { earnings }}{\text { Parm }}
\]} \& \multicolumn{3}{|l|}{\({ }_{\text {Government labor }}^{\text {earnings }}\)} \& \multicolumn{8}{|c|}{Private nonfarm labor and proprietary earnings} \& \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{Net
earnings by place dence} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Plus } \\
\text { property } \\
\text { income }
\end{gathered}
\]} \& \multirow[b]{2}{*}{Plus transfer ments} \& \multirow[b]{2}{*}{Total personal by place of
residence residence} \& \\
\hline \& Federal
civilian \& Military \& State local \& \[
\left\lvert\, \begin{gathered}
\text { Manu- } \\
\text { tacturing }
\end{gathered}\right.
\] \& Mining \& \[
\begin{gathered}
\text { Contract } \\
\text { construc- } \\
\text { ition }
\end{gathered}
\] \& Transpor-
cation,
compuni-
cations
snd public
utilities \& Whole-
sale and
retail trade \& Finance, ance, estate \& Services \& Other \& Total by place of work \& \& \& \& \& \& \& \\
\hline 2.8 \& \& \& 3.4 \& 1.9 \& \& \& \& 2.3 \& \& \& \& 15.1 \& \& \& 29.3 \& \& \& 39.7 \& 363 \\
\hline 6.2 \& \(\begin{array}{r}.9 \\ 2.5 \\ \hline\end{array}\) \& \(\stackrel{.}{2}\) \& 3.7
5.0
5 \& 1.4
26.5
2.5 \& (7) \({ }^{2}\) \& 1.8 \& 2.3 \& 5.3 \& \& 2.6 \& \(\cdots\) \& 27.4 \& -9 \& \(\begin{array}{r}14.7 \\ 9.3 \\ \hline 8\end{array}\) \& 35.8 \& 6.7 \& 7.8 \& 50.3 \& \({ }_{364}^{368}\) \\
\hline 3.9 \& \(\begin{array}{r}2.5 \\ .4 \\ \hline\end{array}\) \& .\(_{2}\) \& \({ }_{2 .} 5\) \& 26.5
.4 \& 88 \& 3.8
2.5 \& 1.3
3.8 \& \(\stackrel{4.6}{2.8}\) \& (7) \({ }^{1.1}\) \& 3.7
2.1 \& (7) \& 49.9
27.7 \& 1.2 \& \(\stackrel{-8}{9.2}\) \& 46.7
35.7 \& 7.9
6.6 \& \begin{tabular}{l}
8.6 \\
6.5 \\
\hline
\end{tabular} \& 63.3
48.9 \& 365
366 \\
\hline 9.4 \({ }^{9.4}\) \& - 5 \& \({ }^{1}\) \& \({ }_{4}^{4.3}\) \& \({ }^{6.0}\) \& (1) \& .9 \& 产 1.8 \& 4.4 \& (7) \& 1.9
1.3 \& (1) \& \({ }_{71.6}^{30.6}\) \& . 9 \& 5.9 \& \({ }^{35.6}\) \& 8.88 \& 5.6. \& \(\begin{array}{r}49.9 \\ 498 \\ \hline 108\end{array}\) \& - \\
\hline 11.3
10.0 \& 1.2 \& \begin{tabular}{|r}
.3 \\
.3 \\
\hline
\end{tabular} \& 9. 7.6 \& \({ }_{57}^{19.0}\) \& (7) \& \begin{tabular}{l}
2.6 \\
3.4 \\
\hline 1
\end{tabular} \& \begin{tabular}{l}
3.6 \\
4.3 \\
\hline 1
\end{tabular} \& 7.9
8.3 \& \({ }_{1.7}^{2.4}\) \& 12.3
8.9 \& (1) \& 71.6
102.8 \& \({ }_{4.3}^{2.5}\) \& \begin{tabular}{l}
8.5 \\
2.8 \\
\hline
\end{tabular} \& \(\begin{array}{r}77.6 \\ 101.3 \\ \hline 1\end{array}\) \& \begin{tabular}{l}
14.8 \\
17.6 \\
\hline 10.6
\end{tabular} \& 10.6
13.2 \& 132.1 \& 368
369 \\
\hline 6.3 \& . 8 \& .\(^{2}\) \& 5.9 \& 27.1 \& \({ }^{3}\) \& 2.5 \& 2.3 \& 7.6 \& 1.1 \& 4.9 \& . 2 \& 59.2 \& 2.5 \& 5.4 \& 62.1 \& 14.5 \& 9.5 \& 86.0 \& 370 \\
\hline \begin{tabular}{l}
15.5 \\
2.4 \\
\hline
\end{tabular} \& . 7 \& . 2 \& 7.9
6.3 \& 10.0
12.5 \& (2) \({ }^{1}\) \& 1.3
2.8 \& 1.7
1.0 \& 6.9
5.4 \& 1.7
.9 \& 5.8 \& \((3)\) \& \({ }_{31.8}\) \& 1.4 \& 14.0
11.6 \& 64.4
45.0 \& \(\begin{array}{r}10.1 \\ 5.5 \\ \hline\end{array}\) \& 7.8 \& 82.3
58.3 \& 372 \\
\hline 5.4 \& 1.0 \& .\(^{2}\) \& 3.7 \& 2.8 \& (3) \& .8 \& . 8 \& 5.3 \& . 6 \& 6.7 \& \& 27.6 \& \& 17.0 \& 43.8 \& 6.9 \& 7.7 \& 58.4 \& 373 \\
\hline \begin{tabular}{l}
5.6 \\
5.2 \\
\hline .8
\end{tabular} \& . 7 \& :2 \& 4.0
4.8 \& 7.2
78.3 \& (1) \& 1.0 \& 2.7
2.4 \& 5.8
10.8
10.8 \& 1.0 \& \begin{tabular}{l}
3.2 \\
8.2 \\
\hline 8
\end{tabular} \& (7) \& \begin{tabular}{l}
31.6 \\
54.0 \\
\hline
\end{tabular} \& \(\stackrel{1.2}{1.1}\) \& 17.4
9.9 \& 47.8
61.8 \& 8.2
12.0
1 \& 8.4
8.7 \& 64.4
82.5 \& 374
375 \\
\hline 2.7 \& . 3 \& \& 2.2 \& (3) \& (7) \& \& \& 1.3 \& \(\stackrel{2}{2}\) \& \& \& 12.1 \& \& 3.9 \& 15.6 \& 2.3 \& 3.0 \& 21.0 \& \({ }^{378}\) \\
\hline 9.0 \& 4 \& \({ }^{2}\) \& 5.6 \& 8.8 \& (8) \& 1.1 \& 1.5 \& 5.2 \& 1.2 \& 3.7 \& (7) \({ }^{\text {a }}\) \& 37.4 \& 1.4 \& 21.2 \& \({ }_{57} 5\) \& 9.1 \& 7.1 \& 73.4 \& 377 \\
\hline \(\begin{array}{r}5.8 \\ 12.2 \\ \\ \\ \hline\end{array}\) \& .\(_{1.2}^{2}\) \& . 5 \& 2.2
9.5 \& 1.7
57.3 \& (8) \& 3.15 \& \(\stackrel{4}{4} 5\) \& 2.1
13.4 \& 2.4 \& 13.3
13.2 \& (7) \({ }^{2}\) \& 14.7
117.9 \& 1.4
4.9 \& 9.6
3.2 \& 23.9
116.2 \& \& 2.4
13.2 \& 29.6
147.7 \& 378
379 \\
\hline 9.1 \& \({ }^{3}\) \& .1 \& 2.5 \& (7) \& (7) \& . 6 \& \({ }^{.6}\) \& 1.8
1
1 \& \({ }^{2} .8\) \& 1.1 \& \& \& 4.6 \& 6.8 \& \& 2.6 \& \& \({ }^{34.0}\) \& 380 \\
\hline 5.7
9.7 \& 2.88 \& . 9 \& \({ }^{4} 27.6\) \& 16.0
136.5 \& \({ }^{(1)}\) \& 17.8 \& 12.9 \& 15.2
40.7 \& 10.1 \& \({ }_{3}^{2} \times 1.7\) \& \({ }^{(7)} 4\) \& 38.8
292.1
2 \& \({ }_{13}^{13.5}\) \& \(-11.1\) \& 48.4

259.8 \& 7.1
46.5 \& $\begin{array}{r}8.5 \\ 33.3 \\ \hline 1.3\end{array}$ \& 63.9
399.5 \& 381
382 <br>
\hline 11.5
6.5 \& 1.1 \& . 3 \& 7.2
6.2 \& 17.9
29.6 \& (1) \& 2.4 \& 4.9
3.0 \& 9.1
8.0 \& 1.3 \& 5.8
5.4 \& (1) \& 62.0
64.1 \& 2.3
2.6 \& 7.5
21.0 \& ${ }_{82}^{67.5}$ \& 14.2
12.9 \& 10.3
9.1 \& 91.8
104 \& 383
384 <br>
\hline 45.0 \&  \& 88.1 \& ${ }_{1}^{524.2}$ \& ${ }_{46}^{68.0}$ \& (7) \& ${ }_{20}^{23.2}$ \& 32.8 \& 56.0 \& 70.3 \& ${ }_{71}^{46.4}$ \& (7) \& 400.2
582.6 \& $\begin{array}{r}16.9 \\ 23 \\ \hline 1\end{array}$ \& -4.1 \& 537. ${ }_{5}^{37}$ \& 76.0 \& 42.9 \& 498.1 \& ${ }^{385}$ <br>
\hline 54.8 \& 867.1 \& 280.6 \& 2,851.5 \& 9,994.0 \& 59.3 \& - $\begin{array}{r}40.9 \\ 2038.8\end{array}$ \& 2,768.7 \& 5,970.4 \& 2,046.4 \& 5,034.4 \& 89.4 \& 2, 005.4 \& 1,499.2 \& $-2.2$ \& ${ }_{30,356.6}{ }^{836.5}$ \& 5, 93.15 \& 3, 433.5 \& ${ }_{39}{ }^{69426.6}$ \& 386
387 <br>
\hline 68.8 \& 110.2 \& 7.0 \& 119.0 \& ${ }_{5} 525.3$ \& (7) \& -79.0 \& ${ }^{25} 8.5$ \& ${ }^{\text {521.3 }}$ \& 57.0 \& ${ }^{148} 8$ \& (2) \& 1, 427.2 \& 1, 68.8 \& $-41.4$ \& 1,317.0 \& ${ }^{287}{ }^{28} 9$ \& ${ }^{164} 5$ \& 1,769.7 \& ${ }^{388}$ <br>

\hline 5 \& - ${ }_{22.9}$ \& | 1.4 |
| :--- |
| 3.8 | \& 37.9

117.2 \& 232.3
596.9 \& (3) ${ }^{5}$ \& 35.9
110.0 \& ${ }_{8}^{47.1}$ \& 70.1
219.9 \& ${ }_{5}^{18.8}$ \& $\begin{array}{r}67.7 \\ 167.9 \\ \hline 18 .\end{array}$ \& (7) ${ }^{8}$ \& 535.9
$1,447.0$
1 \& 25.8
65.7 \& ${ }_{-51.0}^{-37.6}$ \& $1,3730.5$ \& 88.4
224.2 \& 57.1
156.9 \& ${ }_{1,711.4}^{618.9}$ \& 389
390 <br>
\hline 19.1 \& 10.1 \& 2.6 \& 80.9 \& 621.0 \& \& 56.5 \& 60.2 \& 153.9 \& 32.4 \& 119.4 \& (1.2 \& 1,159.6 \& 51.9 \& -40.9 \& ${ }^{1,066.8}$ \& 171.4 \& 115.8 \& 1,354.1 \& 391 <br>
\hline 40.4 \& 23.9 \& 1.8 \& 168.5 \& 111.1 \& (7) \& 54.8 \& 70.8 \& 111.9 \& 53.5 \& 102.5 \& (7) \& ${ }^{7} 71.2$ \& 31.9 \& -30.7 \& ${ }^{675.6}$ \& 135.2 \& ${ }_{96.1}$ \& ${ }^{1}$ 1966.9 \& 392 <br>
\hline 24.9 \& 2.3 \& . 8 \& 20.5 \& 100.9 \& 4 \& 12.2 \& 14.1 \& 37.5 \& 7.2 \& 40.9 \& 1.1 \& 263.9 \& 11.0 \& -17.7 \& 235.2 \& 61.5 \& 37.7 \& 334.2 \& ${ }_{3} 393$ <br>
\hline 4.4 \& .5 \& : 21 \& ${ }_{3.4}^{4.4}$ \& 7.9

4.0 \& (7) ${ }^{2}$ \& 1.0 \& | 3.2 |
| :--- |
| 1.8 | \& 6.2

5.3 \& \& \begin{tabular}{l}
4.4 <br>
5.8 <br>
\hline

 \& (8) \& $\stackrel{29.2}{27.3}$ \& 

1.4 <br>
1.0 <br>
\hline
\end{tabular} \& $-4.3$ \& \& \& \& 38.8

50.3 \& | 394 |
| :--- |
| 395 | <br>

\hline 6.9 \& .3 \& . 1 \& 1.6 \& . 1 \& (1) \& 1.1 \& . 5 \& 2.1 \& .4 \& 1.1 \& ( $)$ \& 14.5 \& \& 1.9 \& 16.0 \& 3.3 \& 3.3 \& ${ }^{22.6}$ \& ${ }^{396}$ <br>

\hline $\begin{array}{r}34.7 \\ 3.9 \\ \\ \\ \\ \hline 18\end{array}$ \& $\stackrel{9}{2}$ \& (8) ${ }^{3}$ \& | 10.0 |
| :---: |
| 1.3 |
| 1 | \& ${ }_{2}^{22.4}$ \& (2) 3 \& $\begin{array}{r}7.6 \\ .2 \\ \hline\end{array}$ \& 3.7

.1 \& 13.6
1.3 \& $\stackrel{2}{2}$ \& ${ }^{11.0}$ \& (7) ${ }^{7}$ \& 107.5
8.4 \& $\begin{array}{r}3.5 \\ \hline .8 \\ \hline\end{array}$ \& 24.2

4.0 \& ${ }_{12}^{128.2}$ \& | 30.3 |
| :--- |
| 2.8 |
|  |
|  |
| 10. | \& ${ }_{3}^{18.5}$ \& 177.0

18.2 \& 3987
398 <br>
\hline 20.0 \& 11.2 \& 2.0 \& 4.5 \& ${ }^{6.9} 9$ \& 1 \& 1.6 \& 6.0 \& 6.1 \& 1.7 \& 3.8 \& ${ }^{4}$ \& 64.3 \& 2.3 \& 5. 1 \& 67.1 \& 14.1 \& 10.5 \& 91.7 \& 399 <br>
\hline ${ }_{22.7}^{10.2}$ \& . 9 \& . 4 \& ${ }_{9.0}^{3.5}$ \& 13.6
16.3 \& (9) ${ }^{2}$ \& $\frac{2.1}{3.9}$ \& 5.4
7.6 \& ${ }^{56.7}$ \& $\stackrel{.9}{ } \times$ \& 2.8 \& (9) ${ }^{2}$ \& $\begin{array}{r}\text { 4.4.4 } \\ 103.3 \\ \hline 1\end{array}$ \& 1.7
3.9 \& 3.0
17.0 \& ${ }^{46.7}$ \& ${ }_{27}^{10.6}$ \& $\begin{array}{r}8.6 \\ \hline 19.6 \\ \hline\end{array}$ \& ¢6.7
163.5 \& 400
402 <br>
\hline 8.0 \& . 5 \& . 1 \& 4.3 \& 5.2 \& 1.5 \& 2.9 \& 3.2 \& 6.2 \& . 7 \& 4.0 \& . 3 \& 36.9 \& 1.4 \& 4.9 \& 40.4 \& 10.7 \& 9.3 \& 60.3 \& 402 <br>
\hline 4.0
15.6 \& . 4 \& . 1 \& 4.5 \& 7.9 \& 2.3 \& \& ${ }_{2}^{2.3}$ \& ${ }^{5} 5.6$ \& \& 3.0 \& ${ }_{4}^{2}$ \& 31.7
154.0 \& 1.4 \& -5.8 \& 31.1
141.3 \& 7.9 \& 8.1 \& 47.1 \& ${ }_{403}$ <br>
\hline 15.6
8.2 \& $\begin{array}{r}1.2 \\ .4 \\ \hline\end{array}$ \& . ${ }_{2}$ \&  \& 41.7
23.9 \& 2.8 \& 10.6
2.9 \& 17.6
4.3 \& 21.7

8.7 \& ${ }_{1.0}^{4.0}$ \& $\stackrel{15.9}{6.1}$ \& 1 \& | 154.0 |
| :---: |
| 64.9 | \& 6.9

2.6 \& ${ }_{-3.2}^{-5.8}$ \& ${ }_{59.1}^{14.3}$ \& $\begin{array}{r}28.9 \\ 13.4 \\ \hline\end{array}$ \& 24.6
12.0 \& 194.8
84.6 \& ${ }_{405}^{404}$ <br>
\hline 7.1 \& . 3 \& 1 \& 2.2 \& 1.8 \& $\stackrel{3}{ }{ }^{2}$ \& 2 \& 4 \& 2.5 \& (7) \& 1.2 \& (3) \& 18.6 \& - 5 \& 5.6 \& ${ }_{21.7}$ \& 3.7 \& 5.0 \& 38.4 \& 406 <br>

\hline | 26.3 |
| :--- |
| 12.8 |
| 12. | \& $\begin{array}{r}1.5 \\ .4 \\ \hline\end{array}$ \& 2 \& | 49.0 |
| :--- |
| 4.2 | \& 75.9

9.7 \& . 8 \& $\stackrel{12}{12} 1$ \& 5.0 \& ${ }_{7.1}^{32.5}$ \& (1.8 \& 18.5
4.0
4 \& 1.0 \& \& 10.3 \& $\begin{array}{r}15.2 \\ \hline 9.9 \\ \hline\end{array}$ \& $\begin{array}{r}235.0 \\ 54.6 \\ \hline\end{array}$ \& 46.7
10.9 \& 24.6 \& \&  <br>
\hline ${ }_{16.6}$ \& . 6 \& .2 \& 5.3 \& 16.1 \& (7) ${ }^{1}$ \& 3.7 \& 5.3 \& 9.0 \& 1.3 \& 4.4 \& (8) ${ }^{2}$ \& 46.4

65.3 \& ${ }_{2.4}^{1.7}$ \& 1.9 \& S4.6 \& | 10.9 |
| :--- |
| 11.8 | \& ${ }_{7}^{8.0}$ \& \% $\begin{aligned} & 73.5 \\ & 84.5\end{aligned}$ \& ${ }_{409}^{408}$ <br>

\hline 17.5 \& .5 \& 3 \& 5.4 \& 17.1 \& (7) \& 2.4 \& 3.3 \& 9.1 \& 1.4 \& 6.6 \& (7) \& 64.0 \& 2.2 \& 3.4 \& ${ }_{65.2}^{61.2}$ \& 15.8 \& 11.4 \& 92.4 \& 410 <br>
\hline 5.4
7.4 \& 1.12 \& $\stackrel{1}{2}$ \& ${ }_{6}^{1.3}$ \& $\begin{array}{r}6.6 \\ \hline 6.9\end{array}$ \& .$_{2}^{1}$ \& 5.3 \& 3.8 \& 2.3
15 \& 2.83 \& 1.3
11.6 \& . 3 \& 18.9
80.0 \& .7
3.4 \& -5.9 \& ${ }_{71.6}^{19.1}$ \& 4.6
16.3 \& $\begin{array}{r}3.7 \\ 12.2 \\ \hline 1\end{array}$ \& 27.8
100.1 \& 411
412 <br>
\hline 7.8 \& 1.0 \& \& 8.5 \& \& \& 1.9 \& 2.7 \& 7.6 \& 1.0 \& 4.5 \& \& 44.0 \& 1.9 \& 2.2 \& 44.3 \& 10.9 \& 11.2 \& 66.4 \& 413 <br>
\hline 16.6
4.5 \& . 9 \& $\begin{array}{r}1.0 \\ .4 \\ \hline\end{array}$ \& $\begin{array}{r}5.2 \\ 10.3 \\ \hline\end{array}$ \& 8.2
4.7 \& (3) 19.2 \& 1.9
4.5 \& 2.9 5 \& $\begin{array}{r}7.3 \\ 11.6 \\ \\ \hline 1\end{array}$ \& 1.3
1.6
1.8 \& 6.1

10.1 \& ${ }^{(7)} .2$ \& | 51.8 |
| :--- |
| 73.4 | \& 1.7

3.5 \& 4.6
16.2 \& 54.7
86.1 \& 14.7
17.5 \& $\begin{array}{r}8.8 \\ 27.4 \\ \hline 8\end{array}$ \& 78.3
131.1 \& 414
415 <br>
\hline 20.9 \& . 8 \& . 4 \& 15.7 \& 32.1 \& 10.4 \& 2.1 \& 3.8 \& 14.2 \& 2.5 \& 14.1 \& . 4 \& 117.4 \& 4.7 \& 21.2 \& 133.9 \& 30.9 \& 22.4 \& 1887.2 \& ${ }_{416}$ <br>
\hline 5.6
16.4
16.4 \& 1 \& 1 \& ${ }_{4}^{1.9}$ \& 1.15 \& 11.3 \& ${ }^{1}$ \& $\stackrel{.}{ }{ }^{2}$ \& 2.8
5.3 \& .2 \& 1.1 \& $\cdot 1$ \& ${ }_{39}^{25.1}$ \& 1.0 \& $-2.1$ \& ${ }_{4}^{22.0}$ \& 3.8 \& \& ${ }^{30.2}$ \& ${ }^{417}$ <br>
\hline 16.4
7.7 \& . 7 \& ${ }_{3}$ \& ${ }_{6.5}{ }^{4.0}$ \& $\begin{array}{r}1.1 \\ 27.5 \\ \hline 1\end{array}$ \& . 4 \& 9.3 \& 3.4 \& 12.7 \& 1.7 \& ${ }_{7.7}^{4.5}$ \& . 4 \& ${ }_{84.1}$ \& ${ }_{3.6}^{1.6}$ \& 19.3 \& ${ }_{97.1}$ \& 20.1 \& 9.2
10.9 \& ${ }_{128.1} 1$ \& ${ }_{419}^{448}$ <br>
\hline 4.9 \& . 3 \& $\cdot 1$ \& ${ }_{6}^{2.5}$ \& 1.7 \& (\%) \& 5 \& . ${ }^{5}$ \& 1.9 \& 1. \& 1.1 \& (7) \& 13.9 \& . 5 \& 3.0 \& ${ }^{16.4}$ \& 4.9 \& 5.3 \& ${ }^{26.6} 6$ \& ${ }^{420}$ <br>
\hline ${ }^{28} .3$ \& . 2 \& (9) ${ }^{2}$ \& 1.4 \& 4 \& 5.1 \& ${ }_{3} .3$ \& ${ }_{2} .6$ \& 7.8 \& 1.1 \& 1.1 \& . 1 \& 10.5 \& $\begin{array}{r}1.6 \\ \hline\end{array}$ \& + \& 73.6
9.6 \& 16.7 \& 3.3 \& ${ }_{15.5}^{10.5}$ \& ${ }_{422}^{421}$ <br>
\hline 12.9 \& 1 \& 1 \& \& \& .2 \& \& \& \& \& \& .1 \& \& \& 8.1 \& \& \& \& 35.7 \& 423 <br>
\hline $\begin{array}{r}37.3 \\ 4.4 \\ \hline\end{array}$ \& 3. ${ }^{7}$ \& . 4 \& ${ }_{73.1}^{9.6}$ \& ${ }_{15.1}^{16.6}$ \& $\stackrel{.}{2}$ \& 3.4
10.8
1 \& 2.4 \& ${ }^{13.8}$ \& 2.2 \& ${ }^{10.0}$ \& . 6 \& 97.2 \& 2.9 \& 28.1 \& 114.4 \& 24.9 \& 16.8 \& 156.2 \& ${ }_{425}$ <br>
\hline 11.0 \& 3.4 \& . 1 \& 2.5 \& 1.3 \& (7) \& \& 1.1 \& 4.4 \& 5.5 \& 1.5 \& (0) ${ }^{\circ}$ \& 123.4 \& 9.6 \& -10.2 \& ${ }^{145.8}$ \& 6.5 \& 5.5 \&  \& ${ }_{422}^{422}$ <br>

\hline ${ }_{6}^{5.2}$ \& 1.4 \& . 2 \& | 9.3 |
| :--- |
| 4.5 |
| 1 | \& 13.8

18 \& (20.1 \& 6.6 \& 7.8 \& 14.1 \& 4.7 \& 17.0 \& ${ }^{(7)}$. 6 \& 121.0 \& 4.6 \& $-5.5$ \& 90.9 \& 19.9 \& 19.7 \& 130.6
66.7 \& 427
428 <br>
\hline 16.5 \& . 5 \& $\stackrel{2}{2}$ \& 4.8 \& 11.0 \& ${ }^{\text {\% }} .7$ \& 2.7 \& 1.6 \& 7.1 \& 1.2 \& 4.2 \& ${ }^{\text {. } 6}$ \& 51.1 \& 1.7 \& ${ }_{10.5}^{20.7}$ \& ${ }_{59.9}$ \& 17.1 \& $\stackrel{7.4}{9.9}$ \& 88.9 \& ${ }_{429}^{428}$ <br>
\hline 1.4 \& . 5 \& . 6 \& ${ }_{64}^{2.5}$ \& (1) \& . 6 \& ${ }^{1.2}$ \& 1.8 \& 3.0 \& (7) 7 \& 4.7 \& (7) \& 11.8 \& ..5 \& 2.6 \& 13.9 \& 3.4
59
59 \& 4.4
45
4.6 \& $2{ }^{21,7}$ \& ${ }^{430}$ <br>
\hline \& $\stackrel{3}{ } 3$ \& 1.3 \& 5.7 \& 1300.2 \& 1.9 \& $\stackrel{312}{ }$ \& 1.18 \& 68.3 \& $\stackrel{7}{.9}$ \& 4.7 \& ${ }_{3} 8$ \& 361.0
137.0 \& 5.9 \& 2.3 \& ${ }_{133.4}$ \& 17.8 \& 7.6 \& 158.8 \& ${ }_{432}$ <br>
\hline \& 2.0 \& .7 \& \& \& 2.4 \& 12.0 \& 22.7 \& 29.6 \& 5.8 \& 31.5 \& 8 \& 247.8 \& \& -14.0 \& 223.2 \& \& \& \& 433 <br>
\hline ¢5.9 \& 2.8 \& 1.1 \& ${ }_{4}^{33.1}$ \& 183.9
13.0 \& ${ }_{2.1} 7$ \& 16.9 \& $\stackrel{23.9}{ }$ \& 52.4 \& 9.1 \& 48.0 \& (8) ${ }^{.9}$ \& 395.2 \& 17.1 \& -6. 1 \& 372.0 \& 87.7 \& 54.8
50

10 \& 514.6 6 \& | 434 |
| :--- |
| 435 | <br>

\hline ${ }^{25.1}$ \& 1.1 \& .4 \& 33.3 \& ${ }^{18.6}$ \& -6.6 \& 8.0 \& 5.9 \& ${ }_{13} 1.3$ \& 4.8 \& 13.2 \& ${ }^{\text {( })} 7$ \& 125.0 \& 5.2 \& 2.1
2.8 \& +12.0 \& ${ }_{25.1}$ \& 10.5
17.6 \& ${ }_{165.3} 6$ \& ${ }_{436}^{43}$ <br>

\hline | 37.3 |
| :--- |
| 24.5 | \& . 7 \& ${ }_{3}^{4}$ \& ${ }_{29}^{21.5}$ \& ${ }^{25.3}$ \& 2.4 \& ${ }_{6}^{6.6}$ \& 4.0 \& 17.3 \& 2.4 \& 14.2 \& 1.2 \& 133.2 \& 4.7 \& 9.7 \& 138.2 \& 33.1 \& 18.7 \& ${ }^{188.9}$ \& 437

488 <br>
\hline 22.5 \& .9 \& . 4 \& 21.0 \& 18.0 \& ${ }^{3}$ \& 2.6 \& ${ }_{3.2}$ \& 14.0
15.9 \& 2.8 \& ${ }_{9.3}$ \& . 5 \& ${ }_{97.3}$ \& 4.6
3.8 \& -6.3 \& ${ }_{92.9} 11.0$ \& ${ }_{21.4}^{22.4}$ \& 15.2 \& ${ }^{129.5}$ \& 438
439 <br>

\hline | 18.2 |
| :--- |
| 4.1 |
| 1 | \& 1.6 \& ${ }_{4}^{4}$ \& 11.6 \& 10.7 \& ${ }_{6}^{6.3}$ \& 4.3 \& 5.1 \& ${ }^{15.3}$ \& ${ }_{2}^{2.5}$ \& ${ }_{11.6}^{11.6}$ \& 8 \& 88.3 \& 3.4 \& 40.3 \& 125.2 \& 29.3 \& 25.8 \& 180.3 \& ${ }_{4}^{40}$ <br>

\hline 13.0 \& 1.3 \& . 1 \& 3.1 \& 7. \& ${ }^{2} .4$ \& 9.1 \& 1.5 \& 4.9 \& 3. ${ }^{\text {a }}$ \& ${ }_{3}^{15.8}$ \& \& ${ }_{35.9}^{107.2}$ \& \& - 10.7 \&  \& 24.8 \& 9 \& 152.2
60.6 \& ${ }_{442}^{441}$ <br>
\hline
\end{tabular}

Table 2．－Personal Income by Major Source for SMSA＇s and Non－SMSA Counties， $1972{ }^{1}$ —Continued

（  	जिल  	 	 	wornormor	－U Nowncinooi－	$-\omega \omega \omega \omega$	onncumatnino			
شـ  	Corionimiosio co	जnomosio				Noonin＂	Vacriviciorionon	边边	a	
－Wemincowincr	－riosiocriomomivis		invis viminitino	ocracocrioco	ososivivivi－ivor	－iviniois ${ }^{\text {® }}$	Niviti－amivio			
 	Nonerworranor runcivococim	 	 	  coovimio	象然品 Of－ 1	nvonvenosermo	rurnowararoso		$\stackrel{\text { \％}}{\underline{\text { ¢ }}}$	
जitocociotio	 	テちロッド タッざ boinvois boino	  चoinowowionio		Nownopincerm	OUUT $0 \infty 0 \infty \infty$	mincositiosion			
	$\mathrm{Bi}_{\mathrm{i}}^{3} 3 \mathrm{i}$	$\begin{gathered} 393 \\ i \\ \hline \end{gathered}$	ふ૭૭త૭૭త ふత	$3 \underbrace{}_{n} 3, ~ З 3$	$\stackrel{\rightharpoonup}{5}$.  			砍	0	
gnom anno nota －oovintivirost	$\rightarrow$ ivoo or o vioitio	is oco ocrimiononio	N世ール．  	\％M M Mrvecy mororitior	  －ncrinemore	Nos. en-V.	 		疮	
－rwनimomounn		Nno 8 NHmer io ocioninoosios		Nome ocourm $\omega$	an worocoserico	ivivinionvone：	いーNゃ．por－vin 000 noviterverar		品	
	 	orivínsitos in vivor	$\infty$ がからのかっかった。	wancouri－	onnocooso	Nールール！ woonnowimos	هo  		$\begin{aligned} & \text { 吕 } \\ & \text { 号 } \\ & \text { 品 } \end{aligned}$	릍
		Mun	nosoniovirios	بW W్య or由○ーけ	Non－．． $\infty \infty \times$ vinomosio	Baionovivion			$\begin{aligned} & \text { 骨 } \\ & \text { 中 } \\ & \text { 曾 } \end{aligned}$	产
AOODNombor	ow－vio－चinio	 	 	oncwocios	 	wovocinocico	塗 wosinionitiono	\％ di 0 0 0	㗊	怱
$\mathrm{Bi}_{i} 393 \mathrm{~B}$	$\mathrm{i}_{\mathrm{in}}^{3} \text { a03030 }$	$\text { is } \quad 30333$	$33 \mathrm{is} \text { isi }$	$30,3 \text { os }$	inooinincinoin	$\text { Erivincivio }^{3} \text { in }$	$\therefore \infty \text { © } 3 .{ }_{i}$			
 	$\rightarrow \infty-\infty \omega \omega^{\circ}+\infty^{\circ}+{ }^{\circ}$		 	re T  	A $\omega \infty 00000 \omega$	 	onvucurrono			
osvinoricocosois	Fiou－	Now t び心nom inituriosioninio	ー＋N4．MN．	Niciobutisi  	oncmoontivn	crivoscivinocio	ーーNテーロஸ．～ー  			
	 	Non 060 on	－ちの  							
 	－0．0incosivio	moturouncois	ผ vodosivinoowe	  $0 \infty$ orocer	CNVWWOOWCTO	Nondow  	  －erostivivino			
1000がツOONO	 	NKMNTMロN゙NOCH  	Nomiocoonion	  0ットロOw	orcoorinorabos		－  			
ゆ．⿹勹巳た   $\rightarrow$－Comen	 	 	Cinobioctovinun	  $\mapsto O N \rightarrow \sim 000$	＊onvinocroan	onivivecocisios	ivaかirivosooviv			
ivonerntioomia	 	 	 	骨 courocou－	N14monovacio	कण $\omega \omega \boldsymbol{\omega}$	TN  			
								$\stackrel{5}{5}$		

Table 2．－Personal Income by Major Source for SMSA＇s and Non－SMSA Counties， $1972{ }^{1}$－Continued

故 vintuonmino	－niononosom	VWOMHONivis	Fin	,	Tiverungno	\％\％¢			喏蜀	
$\underline{+\infty}$				Whoberiteos			Obunowni			
NuTioncomiomis	incuncouisomos		i－misiomimim	－iciencomincini－	－icomicomin wi－	－¢ixit	－ivosivimis	فemernuionioutio		
	ow－untiontion or   Cos	－	－		$\omega$ cr moun Mon  	$\infty \infty 00$	\％\％	－		
03 Or   $\checkmark$ जrーowwor	NHW．Fer Bros anionnorivor			 						
						ヨヨ૭	Sతఆsscత			
－mioniofomoeios		onotimosiovo	ioneme	morrnornoter	－	Nope	2n Fr			
$\dot{\sigma}$						눈 －Noio	－			
－					  ONNACOMOCOH		Hirnenge oanctina	Nothirn Mar		
		Hosionto		sompormivin						最
					－unobernonn		WeFtyer	$\cos$ $\rightarrow \infty=1 \infty-10 \infty \infty$		若
$i=3,390$	$\operatorname{inc}_{i 0}^{30}$	$\text { ion } 390,3$	$\widehat{\Xi}_{i} \Theta_{i} \widehat{\Xi}_{i}^{3} i$	$\Xi_{i} \Xi_{\text {win }} \Xi_{i} 3$	$i_{i}^{3} 3_{i-i n i n}$	こヨら！	$33 \text { ini } 333$	$\Theta_{\text {in }}^{3} \mathrm{inin}_{\text {ini }}$	ㅇㅠㅠㅠㅠ․	
 		士NA －myonvinor	vorongonin	．   Hotowiriopo	 	vomis	氙综 $0 \cos 00^{\circ} \mathrm{N} 0$	$\cos \cos \theta \sin -100$		
		－N．	Veriosiome	Hinution try	－Mown No．		Fiotemembut	－		
  wovininionit	ب゙った cronioctanoleo	gavino かovisocininion	の日ー－	$0+\infty+0.0001000$	  owwoounioco		 	  corraitubocrioi		
worvomionm	＋NODONOGOAOO		$\rightarrow$ Tr beroviont wora		－	Hequew				
	OR の日VNoorno	owonnvooon	nnow		为			  かitvivirionsoor		
owninvomos	99 onvoiniowintif	すすひ $+00 \omega \mathrm{crowwon}$	 	  ＋Comicn andom	Nogetifisipup ronnonominiod		－rooum	onvinonona		
						وigigexe		9icces	容	

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 -Continued


Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$-Continued


Table 2．—Personal Income by Major Source for SMSA＇s and Non－SMSA Counties， 1972 1－Continued

هermonemponnt $\infty_{0}-1 \omega \infty \rightarrow \infty$	ODNOMOHnwnct	$\underset{\omega}{\omega}$	eusominnivictor	No．تxpenno $\rightarrow \infty \rightarrow \infty \omega \mathrm{OH}$		 	－ $\operatorname{co\omega } \omega+\infty \omega_{0} \omega_{0}$	N nrovoowowo	哏		
		$\stackrel{N}{0}$	Givervisis：owos		osorimisindo 華	Nomacioncoom				Q	
ininionionivit	iniminionion	$\stackrel{\sim}{0}$	is winincowio			Viviかiniojocir	－iンnivinivio	ivivomicivions			
	nonemon nent onNWHment		N．Nonementunn coon ocosvencur	－ $\infty \operatorname{son} \omega+N=1$	－NuM．PnNot －incosostrór	$\infty \rightarrow \infty \rightarrow \infty$	WNN中N．P：NN世  	motrininamino		浐	
	$\Theta_{i=0} 3 \underbrace{}_{i=i n}$	$\begin{aligned} & \mathscr{\circ} \\ & \omega \\ & \hline \end{aligned}$	－annuonnors  	wotoojir i－i	$\dot{N}$	N $\omega \omega \rightarrow \omega_{-\omega \omega} \omega \infty$	Ontwom．Tome wornocinion		碰品		
	ほヨ injiv	3	తొతతఝ్రి కతత	ふふこヨతこతత;		ふ૭ヨヨヨヨコ๔త૭	$i_{i}^{33}$	$\begin{gathered} \text { ふతత త๔ తతత } \\ \omega \end{gathered}$	$\begin{aligned} & \text { 名 } \\ & \text { 品 } \end{aligned}$	．	
	Эै ir $\operatorname{\omega }$	$\underset{i}{\mathscr{N}}$	Vintionstroctin	-Nociosinino	$\operatorname{\omega isin} \hat{0}+i+\hat{\sigma}_{\omega}^{\omega}$	$\underset{-1}{\omega}$		oñininiong mos		俍	
		$\underset{\omega}{\stackrel{\circ}{\omega}}$	minerien Nors	VGuncono inion	Moisentonn	3 Gonnintingio	sionintionemou	govion Nom：－			
ocinionocion	wenconnm．Nove  	$\begin{aligned} & \circ \\ & \substack{\infty \\ \hline} \end{aligned}$	 	VAかcoumvirn	$0000 \infty 000000$	＂orn－w ontoror  	NoweronfFhna	 		$\begin{aligned} & 0_{2} \\ & \text { g } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	当
	ircioim is inin		気	－owivoovivive	Nivin ioncoio	Noverisionio	Gitocióntionion	orivisioion cock			
	wocooivi woir   Notirnonn	$\stackrel{8}{i}$	N．M－Tnotione mivaivonnai－	Ner．©．．． oniverosnoio		？ －oviortownim	Nompromen － 00000000 on		\％   ¢   8   8	品	房
$\underbrace{}_{i}$	ふa	3	$\widehat{\Xi}_{\dot{\omega}} \widehat{\Xi}_{i} \widehat{\Xi}_{i v i}$	ふここヨヨisi	$\operatorname{ins}_{i} \widehat{\omega}_{\omega \operatorname{\omega in}}$	ふ彐彐		=	윰		
OOATOMVNo	Twosoco invor	\％	\％otutuniticit oODONWNGVM	Nnwnourcon	0000100000000	Qumporonciong io $0 \omega 00000$ vosio	జ్ర！   －ONODNV．	0000worimios			
iciocionacioriós		会	cinoocrubuctivoin		- oriminisionve		vonoivionasis				
	$i^{\text {ఆఆఆఆఆఆఆ }}$	$\stackrel{l}{0}$	-ininirulvindix	N－1 NM，Rース VaOMOMNOWH			con－uc．gener on－moincorino				
oinimoncivioor	 	－	－oundonctuo	Townoutm in woitotorecto	ద尸ゅ orronimosioo	 	Animivisinos．	N世  			
NnNEMANGNENO 0 OTP	wosincorr wön －ownmoncon		о  	Pperr－ meonnonvar	がった  	ovormowito		wnoonconvino			
－ $0 \infty 00$ onivincon	woment．pay कowiovinotion	$\stackrel{\text {＋}}{\substack{\text { ¢ }}}$	Noveromeros	  m－0 onmodern	$00000 \omega \infty 00 \infty$	No000Narown	ongerononeticosso A $\omega$ on－wermecro	vicoucinomin			
finitiocococo	 	－	onoongumit	NHONOOODODO	NOTNHOCTHODON	かocisit 0 OOD	 	  $\operatorname{NOONONONNO}$			
		$\stackrel{\infty}{\sim}$									

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 mantinued


Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$ - Continued


Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$ _Continued


Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$ —Continued

Farm earnings	Millions of dollars																		Line
	Government labor earnings			Private nonfarm labor and proprietary earnings								Total earnings by place of work	$\left\lvert\, \begin{gathered} \text { Less } \\ \text { personal } \\ \text { contri- } \\ \text { butions } \end{gathered}\right.$	Plusresidenceadjust-ment	Netearningsby placeof resi-dence	$\underset{\substack{\text { property } \\ \text { income }}}{\substack{\text { Plus } \\ \text { and }}}$	$\begin{gathered} \text { Plus } \\ \text { transfer } \\ \text { pay- } \\ \text { ments } \end{gathered}$	Total personal income by place of residence	
	Federal civilian	Military	State and local	Manufacturing	Mining	Contract construction	Transportation, communications, and public utilities	Wholesale and retail trade	Finance, insurance, and real estate	Services	Other								
7.6	. 4	. 2	2.1	. 8	(7)	(7)	1.8	2.4	. 5	1.2	. 2	18.8	. 6	2.1	20.3	6.9	4.8	31.9	1077
6.6	. 4	. 1	1.6	(7)	(7)	. 2	. 7	2.3	. 3	. 8	. 3	13.5	. 4	${ }^{(8)}$	13.1	3.5	1.8	18.4	1078
5.4	2.4	. 7	14.6	24.6	${ }^{(7)}$	4.1	12.6	14. 1	3.2	10.2	(7) ${ }^{\text {( }}$	92.6	4.8	$-2.0$	85.8	22.5	13.3	121.6	1079
16.9 14.4	1.0	${ }^{-6}$	7.4	17.9 2 3	(7) 7	3.8	4.7	9.2	4.4	10.0 4.9	(7) ${ }^{5}$	76.9	3.1	3. 7	77.5	16.8	10.6	104.9	1080
16.9	1.2	$\stackrel{.3}{.}$	3.8 3.1	2.4	${ }^{\text {(). }} .2$	1.7	3.8	5.4	1.4	4.8	(). 7	35.0 40.8	1.3	3.7 .1	33.6	12.5	8.5	65. 6	1082
11.1	. 2	. 1	1.8	. 5	(7)	. 2	. 9	2.1	. 3	1.3	(7) ${ }^{7}$	18.7	. 4	. 9	19.2	4.5	2.1	25.8	1083
8.5	. 7	.3	11.2	4.4	. 2	2.6	7.2	7.0	1.2	4.0	. 2	47.4	2.0	10.8	56.2	12.5	8.5	77.3	1084
11.2	. 6	. 1	2.6	1.4	${ }^{8}{ }^{8}$	. 5	. 9	5. 0	1.2	2.8	.4	26.7	. 8	-. 1	25.8	9.0	4.5	39.3	1085
4.0	1.9	. 9	11.0	39.4	. 9	4.7	12.3	17.0	3.4	13.0	. 5	109.0	5.7	-1.8	101.5	27.6	23.7	152.8	1086
5.9	. 5	. 2	1.5	. 6	()	1.0	1.6	2.3	. 5	1.5	(7)	15.6	.5	1.2	16.3	5.3	3.5	25.1	1087
1.1	.2	.1	1.2	(7)		. 1	. 8	1.5	. 2	. 7	(7)	7.5	. 3	1. 1	7.3	2.0	1.2	10.5	1088
16.3	1.2	. 2	2.1	2.4	${ }^{(8)}$	. 6	1.8	4.1	. 7	3.3	. 3	33.0	. 9	1.0	33.1	9.4	5.4	48.0	1089
10.1	$\cdot 9$	.4	6.7	12.5	. 3	1.6	6.3	8.9	1.9	5.0	. 8	55.3	2.5	-. 3	52.5	13.4	11.4	77.2	1090
7.7 8.0	$\cdot 3$	$\cdot 1$	1.7	$\cdot 1$	${ }_{(7)}^{1.0}$	. 1	. 4	1.9	.4	1.5	(7) ${ }^{2}$	15.5	. 4	-. 1	15.0	4.3	2.3	21.8	1091
10.4	.4	.1	1.0 1.5	2. 4	${ }^{(7)} 2$	1.2 .3	2.0 .6	3.2 3.4	.7 .7	2.2 1.4	${ }^{(7)} .3$	22.7 21.7	. 8	-. 3	21.7 21.4	6.2 7.0	4.0 3.9	31.9 32.2	1092
7.9	.4	. 1	1.8	${ }^{(7)}$	${ }^{8}{ }^{\text {P }}$	.5	. 7	1.9	.6	1.6	(7) ${ }^{-3}$	17.9	.5	1.6	19.0	4.8	3. 6	27.4	1094
10.5	. 5	. 2	9.3	1.3	(7)	1. 0	. 7	4.0	. 9	(7)	(7)	31.5	.9	-1.0	29.6	7.8	4.6	42.0	1095
8.6	. 6	. 2	2.1	3.6	()	1.2	2.9	3.6	. 6	1.9	(7)	26.2	. 9	-. 1	25.2	5.3	4.0	34.4	1096
9.8	. 6	. 3	3. 6	1.2	(7)	. 8	1.7	4.1	. 6	4.2	(7)	27.5	8	10.2	36.9	9.3	6.2	52.4	1097
11.9	.6	.2	3.5	1.9	. 5	. 9	3.2	6.4	1.3	4.6	. 8	35. 6	1.3	. 1	34.4	9.4	5.1	48.8	1098
7.1	. 2	. 1	1.1	(7)	(7)	. 3	. 4	1.9	. 6	1.3	.2	13.3	. 3	.3	13.3	5.4	2.0	20.6	1099
16.6	3.2	1. 3	19.2	55.4		12.4	14.1	38.4	9.6	27.3	. 8	198.8	9.9	-1.9	187.0	44.7	26.8	258.5	1100
18.6	.5	$\cdot 2$	2.6	. 9	(7)	1.7	1.5	3.7	. 7	2.4	(7) ${ }^{8}$	33. 2	. 8	-. 1	32.3	6.7	4.8	43.8	1101
8.7	. 7		3.1	2.7	2.5	1.0	4.4	4.0	1.1	4.0	. 2	32.7	1.3	1.4	32.8	10.4	6.3	49.5	1102
6.6	32.5	159.3	35.8	6.3	. 1	8.7	4.9	19.5	7.4	14.4	1.3	296. 9	6.4	-45.9	244.6	23.9	16.0	284.5	1103
6.7 5.3	$\cdot{ }^{4}$	$\stackrel{1}{1}$	2.9	1.9	1.5	${ }^{6}$	1.4	3.1	. 5	2.4	.2	21.7	. 8	$-3$	20.6	6.2	3. 9	30.7	1104
5.4	.7	.2	3.8	.8	3. 1	.7	1.0	4.1	1. 5	1.1	. 2	13.2 26.6	$\begin{array}{r}1.3 \\ \hline\end{array}$	${ }_{(8)}{ }^{.7}$	13.5 25.3	4.4 10.0	2.8 4.9	20.7 40.2	1105 1106
9.3	5.0	1.9	13.2	23.6	. 2	13.0	14.4	35.5	5.9	26.6	.3	149.0	7.5	-2.7	138.8	31.6	19.2	189.6	1107
4.1	. 3	$\cdot 1$	1. 6	(1) 7	(7)	1.5	1.5	3.3	. 3	1.2	. 1	14.4	. 6	(8)	13.8	3.9	1.8	19.5	1108
	. 8	.3	4.9	10.7	4.2	2.6	9.1	12.0	2.1	5.4	. 6	53.3	3.1	$-2.6$	47.6	11.2	5.2	63.9	1109
13.4	.3	.1	1.0	(3)	(7)	.2	. 3	1.2	. 4	. 6	.2	17.7	. 2	.4	17.9	4.1	1.5	23.5	1110
14.4	. 7	.2	1.9	1.5	(8) 1	1.3	2.3	4.6	1.0	2.4	. 3	30.6	. 9	-. 1	29.6	6.1	3.8	39.5	1111
14.9	. 7	. 1	1.7	. 7	${ }^{(8)}$	. 7	. 4	2.6	. 5	1.4	. 2	23.9	. 5	.2	23.6	5.1	3.3	32. 1	1112
9.1	. 4	(8) ${ }^{1}$	2.4	${ }^{8} 4$	. 4	. 4	.6	2.3	. 5	1.9	. 1	18.7	. 5	1.2	19.4	5.3	3.3	28.0	1113
14.3	.1	${ }^{(3)}$	.9	${ }^{(8)}$	(7) 2	. 1	. 1	1.4	${ }^{(7)}$	()	$\left.{ }^{8}\right)$	17.6	. 2	. 1	17.5	1.9	. 7	20.1	1114
7.1 14.0	1.3	.15	1.5 6.9	(7)	${ }^{(7)} 6$	${ }^{-2}$	2.5	1. 9	.3 18	1.5	.2	16. 1	${ }^{5}$	${ }^{3}$	15.9	3.0	1,4	20.4	1115
								8.4				56.3	2.3	11.3	65.3	16.3	14.4	96.1	1116
10.3	. 7	. 1	2.6	. 5	(7)	1.4	1.9	4.8	. 7	2.7	( $)$	26.1	. 8	. 1	25.4	7.3	3.2	35.9	1117
7.1	. 2	. 1	1.3		(8) 3	. 4	.4	1.8	. 4	1.3	.3	13.8	. 4	. 2	13.6	4.1	2.0	19.7	1118
6.3	. 3	(8) 1	1.8	(7)	(7)	. 5	. 7	1.8		. 9		13.3		5.0	17.9	4.9	3.4	26.3	1119
6.3	. 2	${ }^{(8)}$	. 8	(7) 1	(2)	. 1	.4	1.5	(7)	.2	(7)	8.6	. 2	${ }^{8}$ )	8.4	1.9	1.1	11.4	1120
1.5 .3	.8	$\cdot 2$	2.5		(8)	.5	1.7	3.6	. 5	1.6	(7)	29.2	.6	. 7	29.3	7.7	5.1	42.1	1121
6.3	. 6	.	1.0	(9.9	${ }^{\text {(8) }} 1$	1.3		1.8 3.4 1	.7	3. ${ }^{1}$	$\stackrel{4}{2}$	20.3 30.3	.3 1.3	-. 2	19.8 29.9	2.11	7.9	$\stackrel{22.9}{44}$	1122
5.4	.4	. 1	1.2	.4	. 2	. 4	. 8	1.5	.4	1.2	${ }^{8}{ }^{\text {a }}$	11.8	. 3	.3	11.8	3.5	3.0	18.3	1124
6.1	6.4	3.9	45.4	220.9	(7)	28.3	25.9	62.4	22.8	57.5	()	480.7	23.4	-41.9	415.4	53.0	54.6	523.1	1125
1.9	219.9	189.8	94.3	370.7		66.4	42.6	130.7	30.3	154.1	3.5	1,304.5	62.0	$-14.7$	1,227. 8	117.5	126.9	1,472.3	1126
14.5	423.6	597.8	211.4	236. 6	(7)	161.6	158.9	369.1	90.5	296.7	(7)	2,564.8	109.9	-19.0	2, 435.9	298.8	314.0	3, 048.7	1127
5.1	45.8	65.2	47.3	128.7	. 3	12.4	13.9	39.8	7.5	24.3	( 4	390.8	17.2	-30.6	343.0	39.8	42.2	425.0	1128
7.5 4.9	115.9 33.6	19.4 6.1	334.0 49.9	(7) 182.6	${ }_{(7)}$	168.5 51.1		448.3	$\stackrel{(7)}{41.7}$	328.1	${ }_{\text {(7) }}$	2, 349. 1	118.0	-13.2	2,217.9	415.5	252.0	2,885.5 ${ }_{884.6}$	11129
	33.6	6.1	49.9	182.6	${ }^{(7)}$	51.1	109.2	148.5	41.7	113.7	(7)	744.8	38.4	-31.9	674.5	121.9	88.1	884.6	1130
8.5	12.4	1.5	6.7	14.7	${ }^{(8)}$	2.9	3.7	9.0	1.5	7.1	. 9	68.9	3.3	6. 7	72.3	15.0	15.0	102.3	.1131
2.6	11.6	3.2	55.5	62.2	. 7	16.4	17.5	39.1	18.5	41.1	. 7	269.1	13.0	-33.2	222.9	72.5	31.5	326.9	1132
${ }_{2} 2$	1. 1	. 8	7.1	42.5	. 1	4.3	15.9	8.3	1.4	7.9	${ }^{(8)}$	89.5	4.7	-6.6	78.2	10.6	16.5	105.4	1133
10.0	2.6	2. 2	2.1 40.8	117.5	${ }^{(8)} .5$	16.4	25.8	2.1 34.4	6. ${ }^{2}$	31.2	$\stackrel{.}{.} 8$	11.9 290.5	13.4	7.3 -5.8	18.8 271.0	1.9 40.3	2.7 30.0	23.5 341.2	1134 1135
. 6	. 4	. 4	2.1	${ }^{\text {. }} 6$	${ }^{(9)}$	1.5	- 9	1.2	. 3	5.7	.1	13.8	1.6	-5.2	14.4	2.0	2.7	19.0	1136
3.3	1.7	1.9	7.3	24.9	(7) 7	3.0	4.4	6.2	.8	6.8	.2	61.3	2.9	31.7	90.1	33.4	13.8	137.3	1137
1. 2	. 2	. 1	3.1	1.3	(7)	3.3	. 4	. 4	. 1	. 3	(7)	10.4	. 5	2.5	12.4	1.2	2.2	15.8	1138
5. 3	. 5	. 5	4.2	8.3		1.3	1.1	3.8	1.4	2.6	(7) 1	29.3	1.2	5.3	33.4	4.4	5.5	43.4	1139
. 2	. 7	1.0	6.4	3.4	55.7	2.5	2.2	8.3	(7)	3.5	${ }^{(7)}{ }^{1}$	84.8	4.4	-11.3	69.1	5.6	10.6	85.2	1140
1.5	. 2	.3	3.0	3.8	1.0	. 8	1.0	1.9	. 2	1.7	${ }^{(8)}$	15.4	. 6	4.8	19.6	2.5	3. 6	25.7	1141
1.5	3. 3	1.2	3. 1	5.5	. 1	. 8	3.1	3.4	1.2	1.3	. 2	24.8	1.2	16.2	39.8	5.0	5. 2	50. 0	1142
2.5	. 8	. 7	5.3	33.4	. 3	3.1	2.1	9.7	1.2	4.6	. 2	63.9	3.1	7.7	68.5	9.4	11.8	89.5	1143
3.8   3.3   1	. 5	. 3	3.5	6.0	${ }^{(8)}$	. 7	1.1	1.9	. 3	1.4	. 2	19.7	. 8	5.5	24.4	4.3	4.8	33.5	1144
3.3 4.1	4.6	.2	2.4	4.7	(7)	2.6	. 5	2.5	2	1.7	(7)	22.9	1.1	2.5	24.3	6.7	3.6	34.5	1145
4.1 1.4	.8	.5	4.5	10.3		2.0		7.3	1.0	7.4	(8) 4	42.3	1.8	5.9	46.4	11.6	8.0	66.1	1146
1.4	.3	.2	2.3	(7)	${ }^{(8)}$	. 3	${ }^{(7)} 8$	. 8	(7) 1	$\stackrel{9}{9}$	(7)	${ }^{6.5}$	. 2	6.0	12.3	1.1	2.0	15.5	1147 1148
1.7	.3	. 4	4.1 2.2	1.3 6.8	${ }_{(8)}^{22.5}$	.3 .9	. 8	3.1 3.5	${ }^{(7)} .9$	2.2 2.4	${ }^{(7)} .2$	35.3 19.2	1.8 .7	-.4 -8	33.1 17.7	2.5 3.9	8.0 3.2	43.6 24.8	1148 1149
3.8	7.8	15.3	5.9	2.5	(7)	6.2	2.5	9.1	1.9	2.9	(7) ${ }^{2}$	65.4	2.4	18.1	81.1	31.7	10.2	123.0	1150
1.7	. 7	. 3	3.1	2.6	${ }^{(8)}$	. 8	. 4	1.4	. 2	. 9	.1	12.1	. 5	8.4	20.0	2.8	3.7	26.5	1151
19 4	. 3	4	2.6	2.4	(8)	1.6	1.9	. 9	. 3	1.7	. 1	13.0	. 5	7.4	19.9	2.9	3.0	25.8	1152
4.7 3.5	.8 1.7	$\cdot 7$	5.5	20.5	${ }^{(8)}$	2.2	1.2	7.0	. 7	4.6	. 2	48.1	2.2	21.9	67.8	8.9	8.6	85. 3	1153
3.5 .7	1.7 .4	1.3 .4	6.9 4.2	49.3 25.6	1.5	8.7	16.0	27.7	6.6	20.6	. 7	144.6	7.1	-5.6	131.9	23.5	18.4 7	173.8 53.9	1154 1155
2.3	.4	.4	3.0	12.1	$\stackrel{.}{2}$	1.6	$\begin{array}{r} \\ \hline\end{array}$	4.2 2.6	. ${ }^{6}$	2.9 1.7	(8)	43.4 24	2.2 1.2	5. 5	41.8 29.0	4.8 2.9	7.3	53.9 37.4	1155
+ ${ }^{6}$	1	.1	2.4	(2)	${ }^{8}{ }^{8}$	. 3	${ }^{(8)}$	. 5	(7) ${ }^{3}$	1.6	(8)	24.0	1.2	3.5 7.5	12.3	1.6	1.8	15.6	1157
2.8	. 5	. 4	3. 6	14.3	. 6	1.8	2.6	6.9	. 7	5.0	. 1	39.2	1.8	$-.6$	36.8	4.8	5.5	47.2	1158
11.1 1.1	1.2	.9 1.8	8.1 13.1	34.4 178.2	. 2	2.7 11.3	2.7 16.7	10.7 25.7	1.0 6.4	8.3 19.9		81.6 276.5	3.5   14.4	5.5 19.7	83.6 242.4	12.7 31.3	${ }_{22.2}^{13.1}$	109.4 295.9	1159 1160

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 ㄴContinued


Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 1-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\underset{\text { earnings }}{\text { Farm }}
\]} \& \multicolumn{18}{|c|}{Millions of dollars} \& \multirow[t]{3}{*}{Line} \\
\hline \& \multicolumn{3}{|l|}{Government labor earnings} \& \multicolumn{8}{|c|}{Private nonfarm labor and proprietary earnings} \& \multirow[b]{2}{*}{Total earnings by place of work} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Less } \\
\text { personal } \\
\text { contri- } \\
\text { butions }
\end{gathered}
\]} \& \multirow[b]{2}{*}{Plus residence adjustment} \& \multirow[b]{2}{*}{Net earnings by place of residence} \& \multirow[b]{2}{*}{\[
\begin{array}{|c|}
\text { Plus } \\
\text { property } \\
\text { income }
\end{array}
\]} \& \multirow[b]{2}{*}{\(\underset{\text { transfer }}{\text { Plus }}\) payments} \& \multirow[b]{2}{*}{Total personal income by place of residence} \& \\
\hline \& Federal civilian \& Military \& Stato and local \& Manufacturing \& Mining \& Contract construction \& Transportation, communications, and public utilities \& Wholesale and retail trade \& \[
\begin{aligned}
\& \text { Finance, } \\
\& \text { insur- } \\
\& \text { ance, } \\
\& \text { and real } \\
\& \text { estate }
\end{aligned}
\] \& Services \& Other \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \(\left.{ }^{8}\right)\) \& \& \& \& \& \& 2.8 \& (7) \& 1.6 \& (7) \& 1.1 \& \(\left.{ }^{8}\right)\) \& 23.7 \& 1.1 \& -4.1 \& 18.5 \& 2.3 \& 3.9 \& 24.7 \& 1237 \\
\hline \({ }^{(9)}\) \& 1.0 \& .1 \& 4.8 \& 2.7 \& (7) \& 1.0 \& 1.1 \& 1.8 \& \({ }^{(1)} 2\) \& 3.1 \& (7) \& 16.9 \& 1.8 \& . 5 \& 16.6 \& 2.0 \& 5.9 \& 24.5 \& 1238 \\
\hline 1.3 \& 1.9 \& .5 \& 7.5 \& 7.5 \& 6.4 \& 5.9 \& 6.8 \& 5.1 \& (r) \({ }^{2}\) \& 3.4 \& (3) \& 46.3 \& 2.2 \& 12.1 \& 56.2 \& 6.0 \& 14.5 \& 76.6 \& 1239 \\
\hline (8) \& 6.8 \& 1.8 \& 16.2 \& 10.1 \& 55.4 \& 12.9 \& 11.0 \& 29.3 \& (r) \& 20.0 \& (2) \& 170.7 \& 8.3 \& 6.3 \& 168.7 \& 23.2 \& 47.4 \& 239.2 \& 1240 \\
\hline \({ }^{\text {r }} .4\) \& 2.8 \& 1.8
.4 \& 7.6 \& 9.6 \& 3.2 \& 2.5 \& 6.2 \& 7.6 \& (7) \& 10.4 \& (7) \& 52.6 \& 2.3 \& \(-{ }^{-2}\) \& 50.1 \& 7.7 \& 17.1 \& 74.7 \& 1241 \\
\hline . 3 \& . 5 \& . 1 \& 2.4 \& 4.1 \& (7) \& (7) \& 1.7 \& 2.2 \& (7) 3 \& 1.8 \& \({ }^{(7)}\) \& 15.2 \& . 8 \& 3.6 \& 18.0 \& 3.0 \& 7.6 \& 28.7 \& 1242 \\
\hline .3 \& . 5 \& \(\stackrel{.}{2}\) \& 5.8 \& 5.1 \& (7) 4 \& 6.0 \& 1.9 \& 3.2 \& (7) \& 2.1 \& (7) \& 27.2 \& 1.3 \& 1.0 \& 26.9 \& 4. 1 \& 9.1 \& 40.0 \& 1243 \\
\hline . 2 \& . 4 \& . 2 \& 3.1 \& . 5 \& (7) 7 \& .3 \& 6.8 \& 2.5 \& (7) 4 \& 4.4 \& (7) \& 18.8 \& \(\begin{array}{r}1.9 \\ 1.3 \\ \hline\end{array}\) \& 1.4
7.6 \& 19.3
30.5
18 \& 3.2
3.3
1.7 \& 13.3 \& 35.9
45.8 \& 12445 \\
\hline \({ }_{\text {(8) }}{ }^{2}\) \& .5
.7 \& . 3 \& 3.7
2.4 \& 4.8
4.4 \& (7) \({ }^{7}\) \& 1.5
.5 \& 7.3
1.1 \& 3.0
1.4 \& (7) \& 1.8
1.4 \& (7)
(7) \& 24.2
13.0 \& 1.3
.6 \& 7.6
.9 \& 30.5
13.3 \& 3.3
1.7 \& 12.1
4.8 \& 45.8
19.8 \& 1245
1246 \\
\hline . 1 \& 3 \& . 1 \& 2.2 \& 10.4 \& (7) \& (7) \& . 6 \& 1.5 \& \& 1.9 \& (7) \& 18.2 \& . 9 \& 4.0 \& 21.3 \& 5.5 \& 5.3 \& 32.1 \& 1247 \\
\hline . 3 \& 1.1 \& .3 \& 4.9 \& 8.6 \& 4.0 \& 1.9 \& 2.6 \& 5.7 \& (7) \& 5.7 \& (7) \& 35.8 \& 1.7 \& 2.5 \& 36.6 \& 5.9 \& 10.9 \& 53.4 \& 1248 \\
\hline . 1 \& . 3 \& .1 \& 3.1 \& 1.5 \& 1.1 \& (7) \& 1.8 \& 1.6 \& . 1 \& . 7 \& (7) \& 10.5 \& . 5 \& 2.3 \& 12.3 \& 1.3 \& 7.9 \& 21.4 \& 1249 \\
\hline (8) \& . 7 \& .4 \& 3.9 \& . 36 \& . 8 \& 4.1 \& 5.6 \& 5.5 \& . 9 \& 3. 1 \& (8) \& 28.5 \& 1. 4 \& 15.0 \& 42.1 \& 7.2 \& 11.6 \& 60.9 \& 1250 \\
\hline (8) \& 1.0 \& .4 \& 8.9 \& 1.2 \& 68.3 \& 4.5 \& 6.2 \& 5.1 \& (7) \& 4.9 \& (7) \& 101.3 \& 5.1 \& \(-14.6\) \& 81.6 \& 4.0 \& 15.2 \& 100.7 \& 1251 \\
\hline 66.1 \& 80.4 \& 4.4 \& 129.5 \& 267.5 \& (7) \& 76.9 \& 61.0 \& 143.9 \& (7) \& 152.3 \& (7) \& 1,031.8 \& 48.1 \& -51.9 \& 931.8 \& 148.1 \& 109.2 \& 1,189. 1 \& 1252 \\
\hline 14.5 \& 117.1 \& 16.0 \& 271.4 \& 1,254.5 \& (7) \& 250.3 \& 287.3 \& 556.6 \& (7) \& 439.8 \& (7) \& 3, 388.6 \& 167.1 \& -99.9 \& 3, 121.6 \& 544.9 \& 378.4 \& 4,044.9 \& 1253 \\
\hline 10.5 \& 3.8 \& 1.2 \& 23.0 \& 16.0 \& 4.8 \& 17.7 \& 23.5 \& 36.6 \& (7) \& 34.5 \& (7) \& 239, 8 \& 11.4 \& 8.6 \& 237.0 \& 42.2 \& 34.5 \& 313.8 \& 1254 \\
\hline 6. 1 \& . 5 \& . 2 \& 1.7 \& 1.5 \& (7) \& 4.7 \& 3 \& 2.7 \& . 4 \& 2.6 \& (7) \& 21.3 \& . 7 \& 3.3 \& 23.9 \& 4.0 \& 5.8 \& 33.7 \& 1255 \\
\hline 4.8 \& . 3 \& . 2 \& 2.4 \& 4.8 \& \& . 9 \& .6 \& 5.4 \& (7) \& 1.3 \& (7) \& 21.4 \& . 9 \& 4.3 \& 24.8 \& 2.9 \& 6. 0 \& 33.7 \& 1256 \\
\hline 4.4 \& . 3 \& .1 \& 1.8 \& 9.6 \& (7) \& . 6 \& 1.7 \& 2.2 \& .4 \& 2.2 \& (7) \& 23.5 \& 1.0 \& 9.2 \& 31.7 \& 3.9 \& 3.7 \& 39.3
29.4 \& 1257 \\
\hline 5.6 \& . 4 \& . 1 \& 1. 2 \& (7) \& (8) \& 1.1 \& . 5 \& 11.7 \& .3
2.0 \& 2.1 \& (7) \& 20.2
79.4 \& .7
3.2 \& 1.6
-2.5 \& \(\begin{array}{r}21.1 \\ 73 \\ \hline\end{array}\) \& 3.4
10.2 \& 4.9
11.3 \& 29.4 \& 1258
1259 \\
\hline 14.7 \& 1.2 \& . 4 \& 6.1 \& 23.3 \& (7) \& 5.5 \& 5.1 \& 11.7 \& 2.0 \& 9.2 \& (7) \& 79.4 \& 3.2 \& -2.5 5 \& 73.7
18.2 \& 10.2
2.0 \& 11.3
4.4 \& 95.2
24.5 \& 1269 \\
\hline 6.2 \& . 5 \& . 1 \& 1.4 \& (7) \& \({ }^{(8)}\) \& 1.2 \& \(\stackrel{.9}{4}\) \& 1.3 \& \(\stackrel{3}{3}\) \& .9
10.0 \& (7) \& 13.0
56.3 \& \({ }^{\text {+ }} \times\) \& 5.5
-3.4
-8.4 \& 18.2
50.3 \& 8.0 \& 4.4
18.3 \& 24.5
76.7 \& 1260
1261 \\
\hline 5. 3 \& 1.4 \& \(\cdot 4\) \& 88.3 \& \(\begin{array}{r}9.7 \\ \hline 19\end{array}\) \& (7) 5.5 \& 4.2 \& 4.7 \& 9.8 \& 2.3 \& 10.0
9.2 \& \({ }_{(7)} .1\) \& 56.3
72.9 \& 2.6
3.3 \& -3.4 \& 50.3
61.3 \& 8.1
10.9 \& 18.3
9.6 \& 76.7
81.9 \& 1262 \\
\hline 5.3
5.6 \& \begin{tabular}{l}
.6 \\
.4 \\
\hline
\end{tabular} \& . 3 \& 10.7
1.0 \& (79.2 \& \({ }^{(8)}\) \& 3.6
1.3 \& 7.5
.7 \& 14.1
1.2 \& 2.0
.4 \& 9.2
1.0 \& (7) \& 72.9
14.1 \& 3.3
.4 \& -8.3
3.3 \& 61.3
17.0 \& 10.9
2.4 \& 9.6
3.3 \& 81.9
22.7 \& 1263 \\
\hline 1.1 \& . 6 \& .2 \& 2.5 \& (). 2 \& 2.6 \& 1.3
.2 \& .8 \& 1.9 \& .4 \& 1.7 \& \({ }^{(8)}\) \& 12.1 \& . 5 \& 3.3
.3 \& 11.9 \& 1.3 \& 8.4 \& 21.5 \& 1264 \\
\hline 8.3 \& . 8 \& . 2 \& 2.2 \& 1.8 \& . 3 \& . 8 \& . 7 \& 3.0 \& (7) \& 2.3 \& (7) \& 21.0 \& . 6 \& 8.1 \& 28.5 \& 4.4 \& 6.7 \& 39.5 \& 1265 \\
\hline 2.6 \& . 3 \& . 1 \& 1.5 \& 4.0 \& . 5 \& 2.3 \& .4 \& 1.6 \& \({ }^{.} 3\) \& . 9 \& . 1 \& 14.5 \& . 6 \& 3.0 \& 16.9 \& 1.8 \& 4.9 \& 23.6 \& 1266 \\
\hline 6.0 \& . 5 \& .2 \& 2.1 \& 10.2 \& \({ }^{(7)}\) \& 1.2 \& 2.7 \& 4.1 \& . 7 \& 3.4 \& (7) \& 31.9 \& 1.3 \& 2.0 \& 32.6 \& 5.5 \& 6.7 \& 44.8 \& 1267 \\
\hline 6.3 \& . 7 \& .4 \& 11.8 \& 12.7 \& \({ }^{(7)}\) \& 3.2 \& 1.4 \& 10.8 \& 1.5 \& 7.0 \& (7) \& 55.9 \& 2.5 \& 4.0 \& 57.4 \& 11.0 \& 12.4 \& 80.9 \& 1268 \\
\hline 2.8 \& . 2 \& .1 \& 1.8
.7 \& \({ }^{(7)}\) \& (8) \& \(\stackrel{+}{2}\) \& . 5 \& 1.2 \& . 3 \& . 6 \& (7) \& 7.5 \& . 2 \& 3.4 \& 10.7 \& 1.7 \& 2.9 \& 15.3 \& 1269 \\
\hline 3.2 \& . 3 \& . 1 \& 1.8 \& 9.2 \& (7) \& . 9 \& 1.3 \& 3.1 \& . 4 \& 1.7 \& \({ }^{(3)}\) \& 22.2 \& 1.0 \& 1.0 \& 22.2 \& 3.1 \& 3.7 \& \& 1270 \\
\hline 2.5 \& . 6 \& . 3 \& 2.8 \& 4.7 \& . 8 \& 2.1 \& 1.7 \& 3.7 \& . 6 \& 1.7 \& (7) 1 \& 21.7 \& 1.0 \& 7.7 \& 28.4 \& 3.4 \& 10.9 \& 42.7 \& 1271 \\
\hline 5.9 \& . 3 \& . 2 \& 2.0 \& 3.6 \& (7) \& . 8 \& . 6 \& 2.5 \& 2 \& 1.1 \& (7) \& 17.2 \& . 6 \& 2. 4 \& 19.0 \& 1.9 \& 5.8 \& 26.7 \& \({ }_{1273}^{1272}\) \\
\hline 17.0
\(\mathbf{2}\) \& 28.4 \& 93.0 \& 17.5 \& 29.4 \& 1.1 \& 6.7 \& 5.4 \& 21.9 \& 4.1 \& 16.0
2.3 \& \& 240.7
22.5 \& \(\begin{array}{r}6.6 \\ \hline\end{array}\) \& -48.6 \& 185.5
21.5 \& 15.9
2.5 \& 23.3
10.3 \& 224.8
34.2 \& \\
\hline 2.3 \& 1.1 \& 2 \& 4.1 \& 1.2 \& 5.3 \& 1.7 \& 1.1 \& 2.8 \& . 3 \& 2.3 \& \({ }^{(8)}\) \& 22.5 \& .9 \& -. 1 \& 21.5 \& 2.5 \& 10.3 \& 34.2 \& 1274 \\
\hline 2.8 \& . 3 \& . 1 \& 1.0 \& (7) \& -. 1 \& 3.6 \& . 1 \& 2.0 \& (7) \& 1.1 \& . 1 \& 15.1 \& .6 \& -. 4 \& 14.1 \& 1.3 \& 4.2 \& 19.6 \& 1275 \\
\hline 3.0 \& .4 \& .1 \& 1.2 \& 4.5 \& . 8 \& 1.0 \& . 8 \& 2.1 \& . 3 \& 1.6 \& . 2 \& 16.1 \& . 6 \& 2.6 \& 18.1 \& 2.5 \& 4.4 \& 24.9 \& 1276 \\
\hline 2.9 \& . 3 \& . 1 \& 1.0 \& (7) \& (7) \& . 2 \& .1 \& 1.2 \& . 2 \& 1.5 \& .1 \& 9.3 \& . 3 \& 1.4 \& 10.4 \& 1.5 \& 3.4 \& 15.3 \& 1277 \\
\hline 2.1 \& 2.2 \& . 1 \& 1.2 \& (7) \& (7) \& . 4 \& .1 \& 1.0 \& . 3 \& 1.1 \& . 1 \& 10.6 \& . 4 \& 3.1 \& 13.3 \& 1.3 \& 4.0 \& 18.5 \& 1278 \\
\hline 1.2 \& . 1 \& .1 \& 1.1 \& (7) \& (7) \& .3 \& (7) \& . 3 \& \(\cdot 1\) \& 1.5 \& \({ }^{8}\) (8) \& 4. 1 \& . 1 \& 1.7 \& 5.7 \& . 6 \& 2.5 \& 8.8
31 \& 1279 \\
\hline 1.5 \& . 4 \& .2 \& 1.6 \& 2.1 \& . 2 \& . 9 \& 3.1 \& 2.1 \& . 3 \& 1.7 \& \({ }^{(8)}\) \& \& .6 \& 8.2 \& 21.5 \& 2.7 \& 7.8 \& 31.9
31 \& 1280
1281 \\
\hline 8.7 \& . 6 \& .1 \& 1.8 \& (7) \& (7) \({ }^{2}\) \& .6 \& 1.0 \& 3.4 \& (7) 5 \& 1.4 \& \({ }_{\text {(7) }} .1\) \& 22.6
65.3 \& 3.7 \& 1.1 \& 23.0
61.9 \& 3.4 \& 4.7
20.0 \& 31.1
88.1 \& 1281
1282 \\
\hline \({ }^{(8)} 4.9\) \& 1.4
4.5 \& . 4 \& 11.0
56.8 \& -5.4 \& 23.5 \& 4.7 \& 3.2
4.4 \& 8.9
13.2 \& \({ }^{(7)} 3.5\) \& \(\begin{array}{r}5.2 \\ 13.8 \\ \hline\end{array}\) \& \({ }_{(7)}^{(7)}\) \& \(\begin{array}{r}65.3 \\ 134.6 \\ \hline\end{array}\) \& 3.1
6.3 \& -.3
-15.8 \& 61.9
112.5 \& 6.2
19.3 \& 20.0
17.0 \& 88.1
148.8 \& 1282
1283 \\
\hline 4.9 \& 4.5
.5 \& \begin{tabular}{l}
.5 \\
.2 \\
\hline
\end{tabular} \& 56.8
1.8 \& 23.1
4.2 \& \({ }^{(8)}\) \& 9.7
1.8 \& 4.4
2.6 \& 13.2
6.1 \& 3.5
.9 \& \(\begin{array}{r}13.8 \\ 2.7 \\ \hline\end{array}\) \& \({ }^{(7)} .1\) \& 134.6
23.0 \& 6.3
1.0 \& -15.8
.6 \& 112.5
22.6 \& 19.3
4.5 \& 17.0
7.5 \& 148.8
34.5 \& 1284 \\
\hline 1.9 \& . 2 \& . 1 \& . 6 \& (7) \& (7) \& (7) \& (7) \& 1.1 \& . 1 \& 4 \& \({ }^{8}\) ) \& 5.5 \& . 2 \& 3.5 \& 8.8 \& 1.1 \& 1.8 \& 11.8 \& 1285 \\
\hline 7.8 \& .2 \& .1 \& 1.5 \& 3.3 \& (7) \& 1.6 \& ( 4 \& 2.4 \& . 5 \& 1.5 \& (7) \& 19.6 \& . 6 \& 5.9 \& 24.9 \& 4.1 \& 4.0 \& 33.0
329 \& 1286
1287 \\
\hline 4.2 \& . 6 \& .1 \& 1.9 \& \({ }^{(7)}\) \& (8) \& . 7 \& 1.9 \& 3.0 \& . 5 \& 1.7 \& (7) \& 16.4 \& . 6 \& 8.3 \& 24.1 \& 3.6 \& 5.2 \& 32.9
112.0 \& 1287 \\
\hline 9.6 \& 1.5 \& . 4 \& 4.7 \& 30.6 \& (7) \& 3.6 \& 4.2 \& 11.9 \& 2.5 \& 8.6 \& \({ }^{(7)}\) \& 78.4 \& 3.4 \& 6.4 \& 81.4 \& 13.7
4 \& \({ }^{17.0} 8\) \& 112.0
44.6 \& 1288 \\
\hline 5.8 \& . 5 \& .2 \& 2.5 \& 5.5 \& (7) \& 1.3 \& 2.6 \& 3.7 \& \(\begin{array}{r}.7 \\ .4 \\ \hline\end{array}\) \& 2.5 \& (7) \& 25.5
17.5 \& 1.0 \& 7.2
3.8 \& 31.7
20.8 \& 4.8
3.0 \& \begin{tabular}{l}
8.1 \\
3.8 \\
\hline
\end{tabular} \& 44.6
27.6 \& 1289
1290 \\
\hline 6.8
2.4 \& . 2 \& \(\xrightarrow{.1}\) \& 1.4 \& 2.1
31.4 \& (7) \& .7
1.6 \& \begin{tabular}{l}
.8 \\
.4 \\
\hline
\end{tabular} \& 2.8
1.0 \& .4 \& 2.1 \& (7) \& 17.5
39.8 \& 1.5
1.9 \& 3.8
-19.6 \& 20.8
18.3 \& 3.0
1.9 \& 3.8
2.6 \& 27.8 \& 1291 \\
\hline \({ }^{8} 9.0\) \& 54.4 \& 213.7 \& 13.0 \& 19.9 \& . 6 \& 7.1 \& 6.1 \& 22.3 \& 4.5 \& 13.3 \& \({ }^{1} 1\) \& 364.0 \& 7.2 \& \(-36.7\) \& 320.1 \& 16.1 \& 24.4 \& 360.6 \& 1292 \\
\hline \({ }^{(8)}\) \& 1.4 \& . 5 \& 11.1 \& 4.0 \& 36.7 \& 3.1 \& 3.0 \& 10.3 \& (7) \& 13.7 \& (7) \& 85.3 \& 3.9 \& \(-3.8\) \& 77.6 \& 7.1 \& 22.7 \& 107.3
49.3 \& 1293 \\
\hline 8.5 \& . 6 \& . 2 \& 2.0 \& 12.7 \& (7) \& 1.1 \& 1.3 \& 4.2 \& 1.0 \& 3.3 \& (7) \& 35.2 \& 1.3 \& 2.2 \& 36.1 \& 6.3 \& 6.8 \& 49.3 \& 1294 \\
\hline 9.7 \& . 5 \& . 2 \& 1.6 \& 3.4 \& . 1 \& 1.1 \& . 7 \& 3.6 \& (7) \& 2.6 \& (7) \& 23.9 \& . 7 \& 3.0 \& 26.2 \& 4.4 \& 6.4 \& 36.9 \& 1295 \\
\hline 9.7 \& . 5 \& . 1 \& 1.6 \& 3.4 \& \({ }^{8}{ }^{-1}\) \& \({ }^{1} .5\) \& .7 \& 2.6 \& \({ }^{\text {( }} 7\) \& 2.1 \& (7) 2 \& 22.1 \& .6 \& 5.3 \& 26.8 \& 4.0 \& 5.0 \& 35.8 \& 1296 \\
\hline 3.2 \& . 4 \& . 1 \& 13.9 \& (7) \& \({ }^{(8)}\) \& \(\stackrel{.}{ }\) \& . 8 \& 1.4 \& .2 \& 1.6 \& (7) \& 12.7 \& . 4 \& . 7 \& 13.0 \& 11.5 \& 2.8
20.0 \& 17.3
157.7 \& 1297
1298 \\
\hline 3.3 \& 1.6 \& . 5 \& 13.6 \& 18.1 \& 31.9 \& 11.0 \& 8.8 \& 16.3 \& 2.6 \& 15.0 \& . 4 \& 123.1 \& 5.9 \& 1.6 \& 118.8 \& 18.9 \& 500 \& 18.4 \& 1298
1299 \\
\hline 2.5 \& \(\cdot 6\) \& \(\cdot 1\) \& 1.3 \& (7) \({ }^{\text {. }}\) \& \({ }^{(7)} 3.1\) \& . 3.5 \& 1.2
4.3 \& 1.2 \& \({ }^{(7)} 9\) \& 2.4 \& (r) \({ }^{1}\) \& 8.9
29.7 \& .3
1.5 \& \begin{tabular}{l}
3.8 \\
2.8 \\
\hline
\end{tabular} \& 12.4
31.0 \& 1.1 \& 5.0
10.1 \& 18.4
45.8 \& 1300 \\
\hline \({ }^{(8)}\) \& . 7 \& . 2 \& 3.6
2.5 \& (7) \& 3.1 \& 3.4
.7 \& 4.3
.9 \& 6.2
1.3 \& . 9 \& 2.7
.7 \& \& 15.1 \& 1.5
.8 \& 2.9 \& 17.2 \& 1.5 \& 7.8 \& 26.5 \& 1301 \\
\hline 1.0 \& 1.3 \& .3 \& 4.5 \& 4.3 \& 3.3 \& 1.7 \& 2.8 \& 4.1 \& .6 \& 3. 8 \& (7) 2 \& 27.8 \& 1.3 \& 4.3 \& 30.8 \& 3. 6 \& 12.1 \& 46.6 \& 1302
1303 \\
\hline 6.2 \& . 4 \& . 2 \& 1.7 \& (7) \& (8) \& . 9 \& . 7 \& 2.1 \& (7) \& 1.8 \& (7) \& 16.2 \& . 5 \& 8.4 \& 24.1
45.4 \& 3.7
5.6 \& 4.7
13.8 \& 32.5
64.8 \& 1303
1304 \\
\hline 3.7 \& 1.6 \& . 3 \& 5.1 \& 13.2 \& . 5 \& 3.3 \& 4.0 \& 9.8 \& 1.0 \& 4.3 \& . 2 \& 47.1 \& 2.2 \& . 5 \& 45.4 \& 5.6 \& 13.8 \& 64.8 \& 1304 \\
\hline . 9 \& . 3 \& . 1 \& 1.7 \& 1.6 \& .9 \& .6 \& 3.3 \& 2.0 \& \({ }^{(7)}\) \& 2.0 \& (7) \& 13.8 \& . 6 \& 1.6 \& 14.8 \& 1.7 \& 5.7 \& 22.1 \& 1305 \\
\hline . 5 \& .3 \& .1 \& 1.4 \& (7) \& 1.1 \& .5 \& . 6 \& 1.8 \& . 1 \& . 8 \& (7) \& 8.3 \& .4 \& . 0 \& 7.9 \& 1.1 \& 4.5
6.0 \& 13.4
17.1 \& 1306
1307 \\
\hline \({ }^{(8)}\) \& . 3 \& . 1 \& 2.1 \& (7) \& 1.7 \& 1.6 \& 3 \& . 8 \& (7) \& (7) \& \({ }^{(8)}\) \& 8.5 \& \(\bigcirc \cdot 4\) \& 2.5
-2.8 \& 10.6
48.9 \& 3. 7 \& 6.0
14.5 \& 67.0 \& 1307
1308 \\
\hline -. 1 \& . 8 \& . 3 \& 4.0 \& 1.0 \& 31.8 \& 4.0 \& 1.4 \& 5.4 \& . 6 \& 4.9 \& \({ }^{(8)}\) \& 54. 2
13.4 \& 2.5
\(\quad .5\) \& -2.8 \& 48.9
18.4 \& 3.7
1.9 \& 5.0 \& 25.3 \& 1309 \\
\hline 4.1
8.9 \& . 4 \& . 2 \& 1. 6
2.5 \& 3.6
4.5 \& \({ }_{(8)}^{88}\) \& .4 \& 1.8 \& 1.5 \& (7).\(^{2}\) \& .7
2.5 \& (7) \({ }^{-1}\) \& 13.4
24.5 \& \(\begin{array}{r}.5 \\ +8 \\ \hline 8\end{array}\) \& 5.5
8.6 \& 18.4
32.3 \& 4.8 \& 8.1 \& 45.2 \& 1310 \\
\hline 8.9
3.1 \& .5
1.0 \& .2 \& 1. 2.2 \& (7) \({ }^{4.5}\) \& \({ }^{(8)} 2.1\) \& 5.7 \& 1.1 \& 1.1
1.2 \& \((7)\) \& 2. 5 \& (7) \& 24.5
16.6 \& . 8 \& 8.6
S. 4 \& \begin{tabular}{l}
32.3 \\
21.3 \\
\hline
\end{tabular} \& 4.8
2.3 \& 8.1
4.0 \& 27.6 \& 1311 \\
\hline 12.3 \& 1.9 \& .3 \& 4.0 \& 22.6 \& (7) \& 1.9 \& 1.4 \& 6.0 \& 1.0 \& 5.0 \& (7) \& 55.5 \& 2.1 \& -. 6 \& 52.8 \& 6.7 \& 10.1 \& 69.6 \& 1312 \\
\hline 2.5
2.7 \& 11.7 \& . 1 \& 2.7
2.1
16. \& \({ }^{(7)} \mathbf{4 5 . 1}\) \& (8)

7 \& .7
15.9 \& 1.2
25.1 \& .7
39.5 \& .0
8.0 \& .8
30.2 \& (7) \& 9.6
195.9 \& .3
9.5 \& 3.1
-14.3 \& 12.4
172.1 \& 2.4
29.0 \& 2.7
26.4 \& 17.4
227.6 \& 1313
1314 <br>
\hline
\end{tabular}

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 1mContinued


Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 ㄴ-Continued


Table 2．－Personal Income by Major Source for SMSA＇s and Non－SMSA Counties， 1972 1—Continued

oincooontorar $\qquad$	ouncinvosome	Areranempumer －mminanatuma			Nになnown いゅがい○○が	－  	贷 $\infty$ OnNCHONWCOM		． voosocrocinviv		
		$\stackrel{\sim}{\sigma} \dot{\sim}$				Criontioniooin					
		－	资荡			－．．$-\boldsymbol{-}$－N！N  					
inountinomi－	苞 चincinosioni	هب voritivandeono			かonnwonnoco	 	Topner pon NANOMONGOM	TnNormonoma	 		
 	 	呂菅葛： ocrivonationio			 	$\cdots \operatorname{arcos} 0 \mathrm{O}$	COWCOVODONA	avemonorion	wo जcrocion		
			930	in						䜨	
（苗  	Nown ．． wownvionitios	－asocontinerinia		ir	Opocironino	Nonno Mryon： －i－inniocrowo	$\infty$ Nivinovicomo	 	 		
－ncincino wion	mennopromenn． －vionitivector	مب：． $+0 \operatorname{cosen} 00000$				crewercinitutivos	ثب．．．．． NこEcownivono	－00のornver   $\mathfrak{b o n o n n t m}$	nn． NNownovionvi		
 	vinvomerooin	onownernoon		$\begin{aligned} & \mathrm{N} \\ & \mathrm{or} \\ & \hline \end{aligned}$	O minvinumocer	woronominvin	Nowornvocron	 	－ cocrivinooni		兑
Kine in Nonemin	Sinococriviresos					 		Noonnocice in	－NJ．－NNNM． चio ivooiocio		E E 0 0 0 0
  porinoondin	contoivoincos	－いionvonocra	$\begin{aligned} & \text { 等荡 } \\ & \substack{0 \rightarrow \infty} \end{aligned}$	$\stackrel{\sim}{\circ}$	Nonomion．erm  	中variositnor	－ondoctioo	莫 －Toosenviciós	ه户 oncononiogitio		唇
	$i_{i}^{3} 3_{i n i} \Theta_{i}$	$3_{\text {inirinio }} 3 \times \widehat{ }$	933		$33 \text { onini } 33$	$3 \text { is rini } 330$	$3{ }_{\text {is }} 303$	$33 \text { inim } 333$	$300,300,3$	움	
 	bouivoinxivi	 			 	 	onnoviontito	TNoway $\infty \cos 0 \rightarrow \omega+\infty \rightarrow \infty$	 		
	－		osion			Ocrevis ernoseo	$\rightarrow \operatorname{mon}, N+\infty$ Coisocision	conturnonct	－  		
		R  			$\cos _{\substack{1 \\ 0 \\ 0 \\ 0}}^{1}$	$0 \pi=0+0000-140$			 		
－$\omega \omega \omega$	viocoon $\omega \omega \omega$	 		$\begin{gathered} N \\ \omega \\ \hline \end{gathered}$	 	 	$0 \infty \operatorname{crosen000} 0$	N－	$-\infty$ onitiocnion		
जñost OOONO	ب品 onovacivenor	osinoticumoctio	鸟気言 CNA	$\stackrel{\sim}{i}$	Nー， mino－ceroncon	－中0000nnown	osmotivin ion	 	ب） nowonwools		
にたためのちただった Hisoinonocro	هロ $\infty 0 \infty 0 \omega 000$ cio	かocecomentin		$\stackrel{+}{-}$	nocioninnorn	our－$\omega \omega$	crostonisírivos	Noporberemo   is orimiociociso	－ionino ricioos		
－obonnoctoo	cos con orvinvos	ondoingiracior		$\stackrel{\text { ¢ }}{\substack{~}}$	Nita  	$\rightarrow 1 \rightarrow \cos \cos \boldsymbol{\sim} \rightarrow 1+\infty$	nonnNovvico	毋\％⿷匚⿳   ONO日ールーめかけに	 		
		W，Wememe		雲		 				E	

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$ —Continued


Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 1—Continued


Table 2.—Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 1—Continued

Millions of dollars																			Line
$\underset{\text { earnings }}{\text { Farm }}$	$\underset{\text { earnings }}{\substack{\text { Government labor } \\ \text { eal }}}$			Private nonfarm labor and proprietary earnings								Total earnings of work -	Lesspersonal contri-butions bation	$\begin{gathered} \text { Plus } \\ \text { residence } \\ \text { adjust- } \\ \text { ment } \end{gathered}$	Netby placeof resi-dence	$\begin{array}{\|c\|} \text { Plus } \\ \text { property } \\ \text { income } \end{array}$	Plus transfer pay-ments	Totalpersonalincomebyplace ofresidence	
	Federal civilian	Military	State and local	Manufacturing	Mining	Contract construction	tation, communi- cations. and pubic utilities	Whole sale and retail trade		Services	Other								
${ }^{(8)}$	${ }^{5}$	${ }^{3}$	2.8	1.0	(7)	1.7	. 3	3.7	1.4	4.0	(7)	16.9	. 8	-. 3	15.8	1.8	4.1	21.6	1726
24.4	1.5	. 8	40.9	10.7	(7)	4.3	3.0	10.4	1.8	4.0	(7)	104.7	3.8	1.2	102.1	8.9	15.6	126.7	1727
-1.6	$\cdot 1$	. 1	2.0	. 2	${ }^{(8)}$	${ }^{1}$	. 1	. 9	(1). 1	. 3	1	5.7	.2	3.0	8.5	. 9	1.9	11.3	1728
- ${ }^{8}$	.2	.2	4.3	11.8	(8)	. 8	3.6	1.6	$\left.{ }^{( }\right) .6$	$\begin{array}{r}1.9 \\ \hline\end{array}$	${ }_{3}^{3}$	$\stackrel{-7}{24 .} 7$	1.4	.2 -1.4	2. 2.1	.7 1.9	4.7	28.2	1729 1730
3.0	. 2	1	3.2	. 8	(7)	3	3.1	2.1	. 2	1.6	(7)	18.7	1.8	$-1.3$	16.6	1.7	3.1	21.4	1731
17.1	. 4	. 2	3.8	1.5	(8)	. 5	1.8	5.2	(7)	2.7	(1)	34. 8	. 8	4.8	38.8	5.5	6.8	51.1	1732
47.0	1.4	${ }^{-3}$	3.9	5.2	(1)	1.5	1.1	4.3	-9	2.3	(7)	$\begin{array}{r}69.5 \\ \\ 38 \\ \hline\end{array}$	1.3	4.8	73.0	3.1	4.9 13 13	81.0	1733
20.1	1.1	.8	7.2 11.3	1.8 4.2	(7)	1.9 5.7	2.4   1	5.7 12.0	6.7 3.9	4.9 10.2	(\%)	38.5 74.1	1.8 2.5	. 5	36.9 72.1	9.8 21.1	13.8 23.2	60.6 116.3	1734 1735
2.5	. 5	. 2	3.6	1.4	${ }^{(8)}$	5	5	$\begin{array}{r}2.0 \\ 22.8 \\ \hline 12.0\end{array}$	6.4	17.8	1.7	12.6 108.4	5. 5		17.0 100.6	1.3   37.9	6.0 27.7	24.5 166.3	1736 1737
6.2	1.4	.6	13.1	21.0	(8)	14.9	3.1	22.8	6.0	17.8		108.4	5. 0	-2.8	100.6	37.9	27.7	166.3	1737   1738
11.1	1.4	. 7	22.6 3.4	8.8 1.3	(7)	(7) 2.2	4.6 .5	12.5 1.6	2.7 .2	8.7 1.6	(i)	76.4 11.9	2.9 .5	5.8   3.6   1.6	79.3 15.0	8.1 2.3	$\begin{array}{r}15.6 \\ 3.8 \\ \hline\end{array}$	102.9 21.1	1738 1739
2.0	.1	${ }^{(8)}$	1.3	. 3	(8)	${ }^{1} 1$	.$^{.} 1$	$\stackrel{3}{ }$	(i) ${ }^{2}$	1.1	(i)	4.6	.1	1.1	5.6	. 4	1.3	7.3	1739 1740
106. 1	3.0	1.6	20.8	17.6		14.0	10.2	37.5	6.5	24.7	2.4	245.2	6.7	5.0	243.5	58.2	50.7	352.4	1741
${ }_{\text {(8) }}{ }^{2.7}$	$\stackrel{.}{ }$.	.4	4.8	5.4	(9)	(i) 4	1.4	3.8	(i) 5	1.6		25.5	1.1	2.8	27.2	3.8	7.2	38.2	1742
${ }^{(8)} 4.8$	.3 .5	.3	1.8 5.1	2.1 6.9	(8)	${ }^{\text {(3) }} .5$	1.3 1.0	$\begin{array}{r}.3 \\ 3.4 \\ \hline\end{array}$	${ }^{\text {(i) }} .7$	$\begin{array}{r}.3 \\ 2.3 \\ \hline 2 .\end{array}$	(7) 4	5.6 25.9 25.9	.3 1.0	$\begin{array}{r}.8 \\ 3.4 \\ \hline\end{array}$	6.1 28.3	3. ${ }^{6}$	2.1 6.4	8.8 37.8	1743 1744
20.6	.8 2.9	1.7	30.9	${ }_{41.5}^{6.5}$	(7)	19.8	1.0 6.3	3.4 43.3	12.1	2.3 36.7	(7) ${ }^{4}$	25.9 218.3	1.0 9.5	3.4 20.1	28.3 228.9	3.1 120.4	6.4 85.4	83.8 434.6	1744 1745
11.2	3.7	1.6	26.1	35.0	1.3	13.6	9.7	46.6	9.8	27.1	2.5	188.2	8.5	3.6	183.3	35.2	43.3	261.8	1746
10.0	1.0	1.0	8.2	11.0	(8)	14.7	4.0	14.3	6.5	12.9	1.9	85.5	3.5	-4.0	78.0	35.0	25.0	138.1	1747
. 1	16.2	46.2	14.4	3.7	()	11.8	6.7	23.9	4.9	24.8	()	156.1	5.5	-. 1	150.5	27.4	25.5	203.4	1748
1.1	$\begin{array}{r}52.4 \\ .4 \\ \hline\end{array}$	120.7	19.3	11.5	(8)	13.9	7.5	28.4	6.7	20.2	(a)	283.0	8.3	-9.1	265.6	19.8	40.5	325.9	1749
$\begin{array}{r}3.8 \\ .8 \\ \hline\end{array}$	1.4	1.2	$\begin{array}{r}6.1 \\ 12.2 \\ \\ \hline\end{array}$	${ }^{(7)} 32.1$	$(8)$	1.1 3.2	.7 2.8	5.3 12.5 18	${ }_{2}{ }_{2} \mathbf{7} 3$	1.9 9.4 18	(8) 7	21.5	+ 8	1.8 5.9	22.5 81.2	$\begin{array}{r}3.7 \\ 10.6 \\ \hline\end{array}$	5.6 20.4 2.4	31.8 112.2	1750
18.1	1.8	1.1	17.7	12.1	(7)	13.7	8.4	35.8	11.3	18.2	()	140.3	5.9	7.6	142.0	34.4	32.9	209.4	1752
2.7	. 5	. 3	4.8	${ }^{(7)}$	(7)	. 4	7.1	5.0	1.0	2.1	(1)	28.0	1.0	3.2	30.2	4.5	9.8	44.3	1753
4.5	1.0	. 2	7.5	2.6	(7)	1.5	2.9	10.0	1.7	2.2	( $)$	35.9	1.5	1.9	${ }^{36.3}$	3.7	7.7	47.7	1754
-. 3	.3	3	4.9	19.0	${ }^{(8)}$	2.7	1.3	4.5	. 7	2.9	.2	36.4	1.8	-1.0	33.6	3.6	6.1	43.2	1755
. 4	.$_{6}$	${ }_{4}$	${ }_{5}^{6.7}$	1.2	${ }^{(8)}$	8	.3	. 5	. 1	8,	. 2	10.2	. 5	3.2	12.9	. 8	2.6	${ }^{16.3}$	${ }^{1756}$
$-.4$	${ }_{.}$.	. 2	7.9	1.3 .8	(7)	1.8 1.9	1.7 1.9	4.1 2.5	1.2 .5	2.8 1.8	(7)	20.9 19.0	$\begin{array}{r}1.0 \\ \hline 8\end{array}$	6.8 2.8	26.7 21.0	3.6 1.9	9.1 6.8	39.5 29.5	1757 1758
2.1	76.3	49.8	26.5	98.3	(7)	11.7	12.5	35.2	7.9	26.0	(7)	346.8	16.5	-24.7	305.6	36.0	44.3	385.9	1759
12.0	88.9	19.4	219.3	709.9	(7)	186.4	282.3	503.2	167.1	375.8	(7)	2,636.7	139.7	$-62.6$	2, 434.4	407.4	352.8	3, 194.6	1760
17.7	38.2	2.7	32.1	133.4	(7)	20.1	15.0	42.1	9.6	31.3	(7)	343.4	17.8	-10.1	315.5	51.2	48.6	4	1761
3.4	4.4	2.3	21.5	126.8	(7)	14.7	18.0	37.2	9.0	31.5	(7)	269.2	14.2	-2.8	252.2	32.3	44.3	328.8	1762
41.7	266.0	44.1	60.1	159.7	(2)	25.7	20.8	104.7	20.9	189.0	(7)	935.5	49.5	-29.9	856.1	106.9	99.8	1,062.9	1763
${ }_{22}^{22.3}$	28.5	14.9	99.3	232.7	(7)	75.2	101.1	177.8	45.0	155.2	(7)	959.5	49.0	35.7	946.2	174.7	165.6	1,286.5	1764
23.3 4.5	64.0 15.8	64.8 3	${ }^{99} 9$	97.1 1072	${ }^{(7)}$	52.1	38.9	133.0	43.3	107.7	(7)	725.7	32.8	$-13.7$	679.2	122.5	103.8 50	${ }_{4}^{905.6}$	1765 1766
4.5	15.8	3.2	71.1	1012.0	2.3	26.2	14.8	41.4	12.1	39.8	.7	333.9	16.9	-8.3	308.7	49.5	50.8	408.9	1766
7.3	. 8	. 6	5.7	13.8	1.2	1.5	1.5	6.5	2.1	5.8		47.1	2.0	3.1	48.2	9.1	10.0	67.3	1767
1.4	8	.3	${ }_{2}^{2.3}$	7.7	(7)	. 4	. 5	2.1	(7)	1.7	(7)	17.7	. 9	7.7	24.5	3.4	6. 5	34.4	1768
7.7 4.1	.9	.6	4.8	8.6	${ }^{8} 8.2$	2.2	1.0	4.9	1.2	3.6	. 3	36.9	1.5	23. 6	59.0	5.3	10.1	74.4	1769
4.1 4.6	.76	.4	3.4 4.3	-6.4	(8)	1.3	1.1	2.0 6.2	1.5	1.4 4.4	(7) ${ }^{1}$	20.2 42.0	$\begin{array}{r}1.8 \\ \hline\end{array}$	1.6 .9	21.0 41.0	3.8 6.0	5.5   9.3	30.4 56.3	+1770
2.5	.7	.8	6.7	66.9	(8)	${ }_{2.5}^{1.1}$	3.2	7.0	1.8	9.   1	(\%) 1	100.2	5.5	2.2	96.9	9.3	14.3	120.4	1772
5.8	. 5	. 4	4.4	4.6	(8)	1.4	1.4	3.7	. 6	1.1	.1	24.0	. 9	12.6	35.7	3.7	5.8	45.3	1773
6.7	. 7	.6	4.9	${ }^{6} 8$	. 2	3.0	2.1	6.9	1.2	2.9	${ }_{2}$	36. 0	1.4	19.4	54.0	6.4	11.1	71.5	1774
1.0 1.4	. 6	.4	3.6   5.8   .8	21.7 22.3	(7) $^{.5}$	$\stackrel{.6}{2.2}$	2. ${ }^{7}$	2.6 7.1	$\begin{array}{r}1.7 \\ \hline\end{array}$	1.7 4.1	${ }_{(7)}{ }^{1}$	33.8 49.4	1.8 2.6	-2.6	29.4 46.2	3.3 8.0	7.4 11.3	40.0 65.6	1775 1776
	. 6	.3	2.5	9.4	${ }^{(8)}$		. 8	2.3	4	1.1		19.9	1.0	5.8	24.7	2.8	5.6	33.0	1777
1.0 8.9	1. 28	1.83	2.5 7.2	7.2 26.3	(7)	.9 3	. 5	1.5	- ${ }^{4}$	8	(7)	16. 1	${ }_{3} 8$	9.1	24.4	2.6	3.9 13 13	30.9	1778
4.1		1.4	4.0	8.0	${ }^{(1)} 1$	3.3	3.0	1.4	2.5	1.6	${ }^{\text {(7) }}$.	71.5 25.9	1.1	18.8 3.5	${ }_{28.3}$	13.6	7.0	38.9	1779 1780
. 8	3	.2	2.1	5.0	${ }^{(8)}$	. 3	. 5	1.1	. 3	1.4	.2	12.0	1.5	10.2	21.7	3.0	4.2	27.8	1781
9.9	1.6	1.1	7.7	27.0	${ }^{(7)}$	3.0	5.2	15.0	3.3	9.0	(7)	83.4	3.8	-1.2	78.4	12.5	18.0	108.8	1782
5.7 11.2	+69	${ }^{4}$	3.5 9.5	$\begin{array}{r}6.3 \\ 30.6 \\ \hline\end{array}$	${ }^{(8)} \cdot 4$	-8	4	$\begin{array}{r}3.0 \\ 15.8 \\ \hline 8\end{array}$	- ${ }^{\text {a }}$	1.4	. 1	23.0	$\stackrel{9}{1}$	4.4	-26.5	${ }^{3} 1$	66.7	36.3	1788
5.3	39.2	85.5	7.9	33.0	(8)	4.3	3.0	15.8	1.3	6.3	. 2	194.5	5.7	-36.8	152.0	9.2	13.0	174.1	1785
10.0	8.0	25.6	10.6	29.5	(7)	4.6	7.0	19.9	3. 6	21.7	(7) ${ }^{\text {2 }}$	141.4	5.3	-5.2	130.9	21.9	23.1	175.9	1786
12.6	1.5	. 9	8.0	22.7		2.0	3.1	10.5	1.7	6.1	(3)	69.6	3.0	20.9	87.5	10.5	17.6	115.6	1787
6.5 1.8	1. 1	. 7	7.9 4.3	25.3	(7) 3.4	3.8	4.8	11.3	2.1	7.3	(7) 6	74.9	3.7	1.1	72.3	11.5	15.0	99.0	1788
4.0	$\stackrel{.}{ } 9$	. 4	5.5	15.0	1.0	1.18	1.7	3.7 5.9	1.6	4.4	${ }^{(7)} .2$	27.3 40.9	1.3 1.9	$\begin{array}{r}1.2 \\ 12.1 \\ \hline\end{array}$	33.2 51.1	4.8 6.5	11.7	69.3	${ }_{1790}^{189}$
10.7	. 7	1.1	3.9	9.2	(7)	1.2	1.5	7.2	1.8	${ }_{2.6}$	(7) 2	39.3	1.4	14.1	52.0	5. 4	10.0	67.2	1791
4.0	. 3	.2	2.3	1.1	${ }^{(8)}$	1.0	. 4	1.6	${ }^{(7)}$	. 8	(7)	11.9	. 4	2.4	13.9	3.7	5.2	22.8	1792
5.5 9	1.2 .5	${ }^{3}$	3.3	${ }_{3} 3.3$	(8)	. 6	1.4	2.5	. 4	1.6	(7) 3	20.4	. 7	5.2	24.9	5. 2	7.6 5 5	37.7	${ }_{1794}^{1793}$
13.1	4.1	2.5	14.3	33.0	(7)	29.1	12.8	36. 5	10.7	22.4	(i) ${ }^{3}$	27.9 179.2	1.0 9.1	4.4 -6.6	31.3 163.5	25.4	23.2	212.1	1795
9.0	8.6	. 9	7.1	40.6	(7)	3.3	2.7	8.9	2.0	6.7	(7)	93.1	4.7	12.9	101.3	9.6	15.3	126.2	1796
2.1	. 5	. 3	3.0	7.4	(7)	2.0	1.1	2.5	. 4	1.7	(7)	21.4	1.0	4.9	25.3	3.9	7.7	36.8	1797
10.6				12.1	(8)	1.1	. 3	3.0	. 5	1.9		37.3	1.4	27.6	63.5	5.0	8.9	77.4	1798 $\mathbf{1 7 9 9}$
3.7 7.4	4.4	1.7 .3	38.9   3.1  	59.5 3.6	(7)	6.2 .5	6.2	16.7 1.8	5.7 .2	17.4 1.4	(7)	161.0 19.8	7.9	5. 5	$\begin{array}{r}153.7 \\ 24.7 \\ \hline\end{array}$	19.6 3.5	19.5 4.4	192.8 32.7	1799 1800
4.6	16.1	. 7	4.5	2.2	(7)	.7	.9	3.4	1.0	7.1	(7)	41.6	1.8	4. 4	44.2	5.8	11.8	61.9	1801
6.3	1.2	. 5	5. 5	13.0	${ }^{8}$	1.4	2.1	7.3	1.4	4.5	.3	43.5	1.9	1.8	43.4	8.6	9.1	61.1	1882
6.0		. 4	6.9 4.9	37.3 17.0	(7) ${ }^{1.6}$	1.2	1.9 1.2	5.2 5.1	1.2 .8	4.0 3.5	(7) ${ }^{2}$	63.4   41.8	3.4 1.8	-2.3	47.1	5.0	7.8	53.9	${ }^{1804}$
7.5 6.5	38.5 .7	2.0 .3	22.5 3.1	106.3 5.6	${ }_{\text {(8) }} 1.1$	18.0 .4	12.0	31.6 2.6	$\begin{array}{r}8.1 \\ \hline\end{array}$	27.7 3.0	. 9	276.2 23.6	14.9	-25.2	236.1 26.0	27.2 4.8	33.1 7.0	296.5 37.8	1805 1806

Table 2．—Personal Income by Major Source for SMSA＇s and Non－SMSA Counties， $1972{ }^{1}$＿Continued

！n！ のオーのカーかのいか	ずらったちゃのットー ocinomwocosio	－  	wostranviono	orovinancowis	HN－．wosicrer onowwaoner	R． $0000+10000$		－  	边気	
NTM，	mosconviosurion		${ }_{-\infty}^{\infty} \sim_{0}^{\infty}$			vosocoum vicos＇		－iverionosioncoer		
	Actiociocrimion			－¢wiolo		Notinumitio	of	isionorisis		
 	$-\operatorname{-anonNen}-1$   Vocrecroneow	＋ monminnveo	品 NGVanctiono	$\checkmark \infty-\infty \omega 0000 \infty$	बल川	awvoncmoon	$\begin{aligned} & \text { స్ట్ర } \\ & \text { OO } \\ & \hline 0 \end{aligned}$	4－100060000		
	－ －ONWon Nose		  oncmorivina			ค， wonnc woit	$\stackrel{\text { Kin }}{\substack{* \\ i}}$	ruroorionco	为兑	
$\operatorname{m}_{\infty} \text { ふこヨふふ }$			ios	!	$\Theta_{i=0}^{1} \Theta_{i-\infty} \Xi_{\infty} \theta^{3}$		®ง	:	苞	
Nos．  			onorne．Thow． 000000014itio			$\dot{\omega}$	No:			
जosioncoiscio	ق．－ـ．． जन由ODNi＝is	Mr．Fト．MrNN  	－  			innorivanios	$\begin{aligned} & -9!8 \\ & 6 i \end{aligned}$	Soronosomine		
onveronowo	－ conovinimain	Nonturnumom －ownioracino	G＋$+\infty 000 \infty+\infty$	Non Nonn man onoudociocio	－owoonon＋or	－ O－rivorincos		$\rightarrow \operatorname{cruncosn}$ OHOCTHOON		是
-ivivinosincit	wi vosoor	－＋	ค－بos．．．－  	$\stackrel{+}{\infty} \dot{\omega} \dot{\sim}$		$\operatorname{inimis} \cos ^{3} \text { oivion }$		Boocrision ion		彦
 	－w－w－ruF．		－O000000000	Rー．Nont．Nomen $0 \infty 00014-000$	viowonionvio	$\cdots, \cdots, \omega+\infty$ mosin ivionio		wosrownoun		愛
$\widehat{S}_{\text {is }}^{300}$	$\min { }^{3} \text { iviois }$	$303 \text { win } 3$		$\text { ionini } 3030$	is inosicior is	inion ise	S3	$i$		
 	$\omega 0 \infty$ Vowourn	 	Vivanoonnoo	荷 かmmancowo		$\text { Novit }-\infty \text { if viow }$		－の日ットゥoos		
	－	Mon－rum－nn		Qoinnomindiow	avanosoniono		$\begin{aligned} & \text { 芭合 } \\ & \infty \\ & \infty \end{aligned}$	onvinoininu		
	$\underset{-\infty}{\sim \omega}$						$\begin{array}{r} 11 \\ \underbrace{\infty}_{\infty} \\ \infty \\ \infty \\ \hline \end{array}$	crovinocouis		
N－NWOHANO	$\omega \infty \infty$	Tonoincininos	 	जरणन 000000 N	ofoowniverin	 				
－riveranosas	hornercercotion $\infty$ N0000－$\infty$ Now or		－wonwlowos	－	م ivacrowo 0 m	rncoriswiow wir	$\begin{aligned} & \text { Nu } \\ & 0.0 \\ & 0 \end{aligned}$	积 －$\omega \boldsymbol{1}$		
mernineriscrown	nnmavicincom		ownonnwonom	Nonno Nosoo	ONODNOMODNA	ب counciactosen	－	Nosotritax ＋＋wownovo		
－－Noonoculo	wwn－Nowoor			ひのかのmancran	 	 		  ONNNDWOON		
						Wosmox	$\stackrel{\text { ®0 }}{\text { ¢ }}$		들	

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 1—Continued


Table 2.—Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$ —Continued

Farm	Millions of dollars																		Line
	Government labor earnings			Private nonfarm labor and proprietary earnings								Total by place of work	Lesspersonalcontri-contri-butions$\qquad$	Plus residenc ment	$\begin{aligned} & \text { Net } \\ & \text { earnings } \\ & \text { by place } \\ & \text { of resi- } \\ & \text { dence } \end{aligned}$	$\begin{array}{\|c\|} \text { Plus } \\ \text { property } \\ \text { income } \end{array}$	Plus transfer payments	Totalpersonalincomebyplace ofresidence	
	Federal civilian	Military	State and local	$\begin{gathered} \text { Manu- } \\ \text { facturing } \end{gathered}$	Mining	$\left\|\begin{array}{c} \text { Contract } \\ \text { construc- } \\ \text { tion } \end{array}\right\|$	Transportation, communications. and public utilities	Wholeretail trade		Services	Other								
1.8	1.1	.2	1.7	2.2	(7)	(7)	. 3	2.8	(7)	2.1	(7)	15.0	. 7	1.0	15.3	5.1	7.3	27.7	1963
1.2	1.1 .7	. 1	1.4	2.0	(8)	(2)	${ }^{(7)}{ }^{\text {a }}$	. 8	(7)	(7)	(7)	6.9	. 3	4.2	10.8	1.2	3.2	15.2	1964
2.1	. 7	. 5	6.9	18.4	3. 6	2.4	(7) 2.6	6.3	1.5	7.3	(7) 2	52.5	2. ${ }_{1} 6$	1.0	50.9 37.4	4.5	11.9 8.7	72.2 50.8	1965 1966
7.0 26.9	3.8	1.3	$\begin{array}{r}3.3 \\ 13.2 \\ \\ \hline\end{array}$	$\begin{array}{r}14.8 \\ 35.9 \\ \hline\end{array}$	(7)	7.9	${ }^{(7)} 8.5$	4.4 25.4	5.88	+3.5	(7)	53.4 144.3	6.1	1.6 2.5	140.7	49.7 19.8	21.5	50.8 181.7	1967
22.0	$\begin{array}{r}3.2 \\ .5 \\ \hline\end{array}$	.4 .4	4.7	12.4	(7)	1.2	2.9	5.2	(7)	3.2	. 5	53.8	1.7	1.9	54.0	5.8	7.5	67.3	1968
2.5	. 3	.2	2.3	9.8	(8)	. 8	. 9	2.8	(7)	2.2	${ }^{(7)}$	${ }_{5}^{20.1}$	1.1	-. 1	18.9	3. 2	5.1	27.3	1969
24.9	. 7	${ }^{3}$	3.1	${ }_{14}^{7.6}$	(8)	${ }_{\text {(7) }}{ }^{1.3}$	4.5	7.9 3.2	(7) ${ }^{7}$	3.2 2.5	$\stackrel{.}{ } \cdot$	54.5 31.2	1.6	-1.2 -.2	51.7 29.6	5.9 3.9	9. ${ }^{\text {7. }} \mathbf{0}$	67.2 40.6	${ }_{1971}^{1970}$
5.4 3.4	1.5	. 8	13.2	14.0 22.7	(8)	${ }_{5} 5$	2.4	9.0	1.7	9.9	$\stackrel{.}{ }$	69.8	3.2	8.9	75.5	10.8	14.3	100.5	1972
4.0	2.2	. 2	2.0	3.5	(2)	1.5	2.5	2.2	(7)	${ }^{(7)}$	(7)	20.8	. 9	2.5	22.4	4.4	6.1	32.9	1973
3.0	.4	. 1	1.7	2. 3	(7)	(7) 8	${ }^{(7)} 7.5$	${ }^{(7)}$	${ }^{(7)} 9$	(7) 29.4	(7) ${ }^{1}$	12.4 137.0	.5 7.2	.1 -2.9	12.0 126.9	2.0 49.7	$\begin{array}{r}\text { 4. } \\ \text { 37. } \\ \hline\end{array}$	18.7 214	1974
${ }^{9} 9$	5.3	1.1	+13.6	$\begin{array}{r}31.8 \\ 9.9 \\ \hline\end{array}$	(7)	(7) ${ }^{8.5}$	(7) ${ }^{7.9}$	25.4 1.6	${ }^{7} 9.8$	${ }_{\text {(7) }} 9.4$	(8)	18.3	7.2	-6.1	23.5	2.7	4.8	31.0	1976
13.7	. 7	.5	5.1	30.4	(7)	1.4	(7)	7.9	1.2	5.5	. 2	68.7	2.8	(8)	65.9	10.6	10.9	87.5	1977
7.9	. 7	. 3	4.5	12.1	(7)	1.1	2.5	7.1	1.1	5.0	(7)	${ }^{43.2}$	1.9	4.3	45.6	${ }^{6.4}$	9.4	61.5	${ }_{1979}^{1978}$
1.4	. 6	$\cdot 4$	4.1	24.2	(7)	${ }^{2} 2.5$	3.0	6. 6	${ }_{\text {(7) }} 1.5$	5.2 1.8	${ }^{(7)} 1$	51.8 35.7	2.7 1.8	$\begin{array}{r}8.4 \\ -3.4 \\ \hline\end{array}$	57.5 30.5	7.8 3.5 8	11.0 6.0	76.3 39.9	1979 1980
3. 71	1.8	. 4	4.4	19.7	(1)	1.6	2.8	9. 2	1.4	5.2	(7)	54.5	2.5	-1.1	50.9	8.0	12.4	71.4	1981
2.4	. 4	.1	1.3	2.0	(7)	(7)	(7)	1.0	(7)	(7)	. 1	12.4	. 5	1.7	13.6	2.3	5.2	21.0	1982
13.1	. 6	. 4	3.3	13.5	${ }^{(8)}$	2.3	3.2	6.9	1.5	5.4	$\mathrm{7}^{4}$	50.6	1.9	$-1.2$	47.5	6. 8	10.6	64.8	1983 1984
3.7	1.0	.2	2.0	8.9	(7)	(7) 9	${ }^{1} 5$	2.4	(7) 5	2.5 1.9	(7)	$\begin{array}{r}23.4 \\ 20.1 \\ \hline\end{array}$	1.0 1.8	1.6 2.2	24.0 21.5	4.7 2.4	8.6   5.1   1	37.3 29.0	1985
$\begin{array}{r}5.2 \\ 13.5 \\ \hline 18\end{array}$	1.3 1.0	.3	1.6   3.3	5.0 4.5	(7)	. 7	1.4	4.8	(7)	2.2	${ }^{\text {. }} 1$	31.5	1.0	2.9	31.4	5.1	9.4	45.9	1986
18.5	. 7	.3	2.9	(7)	(8)	(7)	(7)	(7)	(7)	(7)	. 3	34.7	. 9	2.8	36.6	4.3	8.4	49.4	1987
14.6	. 3	. 2	4.8	2.4	(7)	. 9	(7)	1. 6	(7)	${ }^{\cdot 9}$	(7)	27.2	. 7	3.3	${ }_{35}^{29.8}$	1.8	$\begin{array}{r}5.3 \\ 10.3 \\ \hline 1\end{array}$	${ }_{52}^{37.0}$	1988 1989
5.2	1.3	. 4	6.3	10.3	(8)	1.8	${ }^{(7)} 2.0$	3.7 6.4	1.7	3. ${ }_{5}$. 1	${ }^{\text {() }} .4$	$\stackrel{34.0}{ }$	2.0	3.2 18.0	89.3	8.6	11.0	108.8	1990
34.4 5.9	. 5	.2	1.6	$\stackrel{.}{ }{ }^{8}$	(7)	(7)	(7)	1.7	(7)	(7)	.2	12.6	. 3	4.9	17.2	2.7	4.9	24.9	1991
2.6	. 2	. 2	1.5	1.1	(7)	${ }^{(7)}$	. 5	(7)	${ }^{(7)}$	. 8	1	9.1	. 4	2.1	10.8	4.2	4.9	20.0	1992
39.2	6.6	26.5	11.3	33.3	${ }^{(8)}$	5.4	6.6	19.5	3.5	${ }^{(7)}$	(7)	165.4	5.3	-2.1	158.0	16.7	25.1	199.8	1993
14.4	. 4	. 3	2.6	4.5	${ }^{(8)}$		1.2	4.1	(7)	2.7	(7)	31.5	. 9	1.8	32.4	3.8	7.6	43.8	1994
1.2	1.1	$\cdot 1$	1.1	2.9	(7)	(7)	${ }^{\text {( })} 13$	. ${ }^{7}$	(7)	1.888	(7) ${ }^{2}$	8.6 16.3	. 7	1.8	17.4	1.9	3.3 5.7	14.9 27.1	1996
2.6 1.7	. 6	.2	2.1	4.5 .2	(8)			(7) ${ }^{2.4}$	(\%)	${ }^{(7)}{ }^{1.5}$	(7)	16.3	. 2	2.1	7.1	1.4	3.3	11.8	1997
. 8	1.2	. 6	6.2	32.7	1.0	2.2	3.3	8.6	1.6	7.9	.1	66.1	3.4	5.5	68.2	9.7	16.5	94.3	1998
1.5	.6	. 1	1.2	(7)	(8)	. 2	${ }^{(7)}$	( ${ }^{\text {8 }}$	(1)	(7)	(7) 1	${ }_{84}^{5.8}$	$\times 2$	- 2.4	88.0	1.4	19.4	12.8	${ }_{2000}$
24.3	1.3	.8	6.7 1.4 4	20.4 5.0	(7)	(7) ${ }^{2.6}$	(7) ${ }^{4.6}$	12.8	${ }^{7}{ }^{2.2}$	8		84.6 14.6	3.7	1.6	15.5	1.9	4.7	22.0	2001
1.6 35.4	$\begin{array}{r}1.1 \\ \hline\end{array}$	. 5	1.4 4.7	5.0 17.9	(7)	${ }^{\text {() }} .7$	${ }^{(7)} 1$	7.9	1.5	1.3 6	$(7){ }^{3}$	75.4	2.2	2.7	75.9	7.2	11.7	94.8	2002
2.8	1.2	. 2	3.0	10.6	${ }^{7}$	. 7	. 9	5.1	. 7	3.9	${ }^{7}$	29.5	1.4	-1.5	26.6	4.7	8.4	39.6	${ }_{2003}^{2003}$
4.0	4.3	.7	7.3	24.9	${ }^{(7)}$	18.1	5.4	$\begin{array}{r}10.5 \\ \hline 9\end{array}$	(7) 2.0	${ }^{8} 8.4$	${ }^{(7)} 3$	86.3   36.0	4.4	-6.1 1.0	75.8	11.3	13.6 4.5	100.8 44.5	2005
24.5	.$_{5}$	.$_{2}$	1.9 2.0	2.7 8.0	${ }^{(8)}$	(7) ${ }^{.7}$	1.9	(7) ${ }^{2.9}$		(7)	$(7){ }^{3}$	36.0 24.4	1.0	-. 4	23.0	4.2	6.6	33.8	2006
5.7 16.6	1.5	. 7	2.0 6.7	88.01	(7)	1.6	4.7	${ }_{9} 9$	1.5	${ }_{5} 51$	(7)	75.0	3.0	-3.6	68.4	7.6	13.8	89.8	2007
1.9	1.0	. 1	1.5	5.0	${ }^{8}$		(7)	1.5	(7)	(7)	(7)	13.0	. 6	. 9	13.3	2.7	4.6	20.5	2008
2.5	. 4	.1	1.3	2.7	(7)	(7)	(7)	1.2	(7)	(7)	(7)	9.6	. 4	. 8	10.0	1.8	4. 6	16.4	2009
2.6	. 8	. 3	2.4	9.5	(8)	(7)	(7)	3.4	${ }^{(7)} 7$	${ }^{2} 2.8$	( ${ }^{\text {( })}$	25.0 12.3	1.2 .5	1.3 1.2	25.1 13.0	3.3 5.3	6.0 7.3	34.5 25.6	${ }_{2011}^{2010}$
2.5	. 8	.1	1.6	$\begin{array}{r}1.6 \\ \hline\end{array}$	(7)	(7)	(7)	1.6 1.0	(7) ${ }^{2.7}$	(7)	.2	12.3 8.3	. 3	. 8	8.8	1.4	3.8	14.0	2012
. 8	2.1	. 9	9.6	39.1	${ }^{(7)}$	5.6	13.8	17.8	3.9	20.4	(7)	124.9	6.5	-. 6	117.8	26.6	23.4	167.9	2013
2.8	. 5	. 1	1.3	(7) 5	(7)	(7)	${ }^{(7)} 5.5$	1.3	() ${ }^{\text {(1) }}$	${ }^{(1)}$	(7) 1	12.6	. 5.1	1.6	13.7 72.2	2.3 12.6	5.3 20.4	21.3 105.2	2014 2015
7.2	1.4	. 8	5.8	18.5	(8)	(7) ${ }^{3.4}$	(7) 5.5	${ }_{\text {(7) }} 12.5$	(7) 2.2	10.3	(7)	68.5 31.4 3	3. ${ }^{1}$	6.8 .1	30.8	13.9	50.4 5.9	40.5	2016
17.0 4.7	2.4	.3	2.9	${ }^{6.5}$	${ }^{(8)}$	1.1	${ }^{1.0}$	${ }_{3} 3$	().	2.2	${ }^{\text {. }} 3$	24.9	1.1	3. 6	27.4	4.3	8.1	39.7	2017
4.6	49.8	150.9	19. 1	11.2	${ }^{7}$	8.0	10.7	33.4	9.1	23.3	(7)	321.2	8.9	$-4.4$	307.9	31.3	31.9	371.1	2018
27.1	386.1	54.2	246.5	392.2	(7)	171.7	216.8 214.3	469.6 340.3	172.5 99.1	366.4 305.7	(7)	$\stackrel{2}{2,580.7} 1$	136.3 97.4	$-53.2$	2, 2 ,754.2	404.3 345	339.7	${ }_{2}^{3,339.3}$	2020
25.6	40.9	11.4	140.9	421.2	()	122.1	214.3	340.3	99.1	305.7									
1.2	. 7	. 3	3.0	3.8	( ${ }^{(1)}$	1.2	. 5	2.2	(7)	1.3	(7)	14.8	. 7	3. 8	17.9	4.4	8.5	30.8 373	${ }_{2022}^{2021}$
16.2	.7	. 1	3.1	(7) 5	${ }^{(7)} 4$	.2	. 9	2.1 3.0		2.3 1.7	(7)	26.7 11.8	. 5	.5 1.8	26.7 13.1	6.4 3.0	4.3   5.8	37.3 21.8	${ }_{2023}^{2022}$
1.8 13.7	. 5	. 12	2.5 2.2	(7) ${ }^{5}$	(7)	. 3	3. ${ }^{4}$	3.0 1.5	. 4	1.7	${ }^{3}$	24.2	.5	1.8 .9	13.6 24.6	5.6	2.0	32.3	2024
6.4	. 7	. 4	3.7	2.3	(7)	1.3	1.9	7.2	1.3	5.3	(7)	${ }^{33.2}$	1.3	$-5$	31.4	12.8	9.8	54.0	${ }_{2026}^{2025}$
7.9	1.0	.2	3.4	4.5 8.4	. 6	2.4	$\stackrel{.8}{8}$	3.5 10.0	1.7 1.6	2.6 4.7	. 3	25.8 45.0	1.9 1.9	1.5 6.8	26.4 49.9	8.4 10.9	6.4 14.7	75.4	${ }_{2027}$
5.7 16.7	1.7 3.5	. 5	7.4	(7)	$\underline{2.0}$	2.0	4.5	7.5	1.8	5.0	(7)	57.2	2.1	4.0	59.1	15.0	21.2	95.3	2028
2.4	2.2	.7	9.6	23.1	9.5	6.3	6.2	17.0	3.7	17.6	(2) 4	98.7	5.0	-3.7	90.0	30.1	21.7	141.8	2029
1.0	3.1	. 5	9.8	. 5	${ }^{(7)}$	2.0	. 5	4.5	1.3	2.5	()	26.0	1.2	7.2	32.0	8.4	11.9	52.2	2030
1.3	. 7	. 3	4.7	(7)		1.5	2.5	3.0	. 8	1.6	${ }^{(7)}$	19.3	. 9	2.0	20.4	5. 0	9.5	34.8	${ }_{2032}^{2031}$
13.2	.9	.1	1.4	(7)	(7)	.2	. 8	1.4	.2	1.6	.5	19.4	.$_{3}$	${ }^{(8)} 8$	19.1 8.6	3.6 1.6 1.6	1.6   3.6	24.3 13.8	${ }_{2033}^{2032}$
1.6	. 5	$\cdot{ }_{2}$	1.4	${ }_{(7)}^{7}$	${ }^{(7)} .2$	. 1	(7) ${ }^{-1}$	1.1 1.6	.4	1.0 1.3	.1	13.4	$\stackrel{.}{5}$	2.1	15.0	3.3	3.7	21.9	2034
4.2 6.2	. 7	. ${ }^{2}$	1.8 12.7	${ }_{1} 1.2$	()$^{-2}$	1.2	${ }^{3} \mathbf{3} 0$	4.3	1.0	3.0	(7)	35.1	1.3	2.0	35.8	10.2	8.4	54.3	2035
10.8	2.4	. 4	12.6	5.3	(\%)	3.5	3.0	10.8	2.0	7.7	${ }^{7}$ )	59.5	2.4	${ }^{7}$	57.4	${ }^{16.5}$	10.2	84.2 39	${ }_{2037}^{2036}$
1.7 6.4	. 7	.3   .1	3.0 1.7	1.6 .1	${ }^{(8)} 9$	1.1 .2	(7) ${ }^{5}$	2.7 1.6	.$_{4}^{4}$	1. 21	$(7)$	15.1 13.5	. 3	$\begin{array}{r}.8 \\ .4 \\ \hline\end{array}$	${ }_{13.6}$	8.8	3.0	21.3	2038
6.4	. 5	. 1	1.5	. 6	(7)	.1	. 5	1.5	. 3	1.2	(7)	14.2	. 4	4	14.2	4.6	2.5	21.4	2039
12.9	4.5	15.0	18.6	24.5	3.9	10.4	20.6	35.2	6.4	23.2	. 5	175.8	7.6	-2.8	165.4	49.6	26.1	241.2	2040

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{Milions of dollars} \& \\
\hline \multirow[b]{2}{*}{\({ }_{\text {Framm }}^{\text {Farnings }}\)} \& \multicolumn{3}{|l|}{\({ }_{\text {Goverement }}^{\text {ceammabor }}\)} \& \multicolumn{8}{|c|}{Private nontarm labor and proprietary earnings} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{\[
\begin{array}{|l|l|}
\substack{\text { pesess } \\
\text { penan } \\
\text { entrion } \\
\text { butions }}
\end{array}
\]} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{\[
\left.\begin{array}{|c}
\text { Prus } \\
\text { propery } \\
\text { income }
\end{array} \right\rvert\,
\]} \& \multirow[b]{2}{*}{\[
\begin{array}{|c}
\text { Pluss } \\
\text { thaser } \\
\text { paser } \\
\text { monts }
\end{array}
\]} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{Lim} \\
\hline \& \& Military \& \({ }_{\substack{\text { state } \\ \text { local }}}^{\substack{\text { a }}}\) \& Mank \& Mining \&  \&  \&  \&  \& Serrices \& Ofther \& \& \& \& \& \& \& \& \\
\hline \multirow[b]{31}{*}{} \& \multirow[b]{5}{*}{} \& \multirow[b]{5}{*}{} \& \multirow[b]{5}{*}{} \& \multirow[t]{6}{*}{} \& \multirow[t]{3}{*}{} \& \multirow[t]{2}{*}{3. 3.1} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\% \({ }_{\text {8, }}^{1.6}\)} \& \multirow[t]{2}{*}{\({ }_{3.0}^{2.2}\)} \& \multirow[b]{3}{*}{\[
\begin{aligned}
\& \frac{6.4}{9.2} \\
\& i: 20
\end{aligned}
\]} \& \multirow[b]{3}{*}{\[
: \frac{2}{1}
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\({ }_{3.1}^{2.5}\)} \& \multirow[t]{2}{*}{9,0} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[b]{3}{*}{Sile} \& \multirow[b]{3}{*}{} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \[
\begin{aligned}
\& 0.4 \\
\& c_{0}^{0}{ }_{4}^{4}
\end{aligned}
\] \& \(\stackrel{2}{2.3}\) \& \& \& \& \& . 4 \& \& 24.5 \& + \(\begin{array}{r}8.8 \\ 4.8 \\ 4.8\end{array}\) \& ¢ \({ }_{5}^{8.7}\) \& \& \\
\hline \& \& \& \& \& (3) \({ }^{\text {(2) }}\) \& .2
.\(_{3}^{2}\)
1.1
1. \& \[
\begin{aligned}
\& 1.4 \\
\& \hline
\end{aligned} .
\] \& \[
\begin{aligned}
\& 1.4 \\
\& \begin{array}{l}
1.2 \\
2,3
\end{array} \\
\& \hline,
\end{aligned}
\] \& \& ¢ \& \(8^{3}{ }^{4}\) \&  \& : \({ }_{\text {: }}^{8}\) \& 2.9 \& 10.9 10.7 \& 2:5 \&  \&  \&  \\
\hline \& \& \& \& \& \(\stackrel{48}{2}^{2}\) \& 2.6 \&  \& and \(\begin{aligned} \& 2.6 \\ \& 1.6 \\ \& 1.6\end{aligned}\) \& + \&  \& \({ }^{1}\) \& (12.7 \& 2.5 \& - \({ }_{2}^{2.5}\) \& cin \(\begin{aligned} \& 21.6 \\ \& 14.6 \\ \& 1.6\end{aligned}\) \&  \& ¢ \begin{tabular}{l} 
a \\
4.1 \\
4.7 \\
\hline
\end{tabular} \& , \& \(c2042050
c2050\) \\
\hline \& \& \multirow[t]{3}{*}{\[
\begin{aligned}
\mathrm{r}_{1}^{1} \\
: \begin{array}{l}
3 \\
: 3 \\
: 4
\end{array}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
3.0 \\
32.0 \\
3.6 \\
5.6 \\
5.2
\end{aligned}
\]} \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{8.6 \({ }^{\text {8 }}\)} \& \multirow[t]{2}{*}{\[
\begin{gathered}
10.4 \\
0_{12}^{12}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 10.61 \\
\& 20.7 \\
\& 3.7
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\left.\begin{array}{l}
r_{3}^{3} \\
: 8 \\
8 \\
8
\end{array}\right]
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& ()^{2}{ }^{5} \\
\& i_{1}^{9}
\end{aligned}
\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{i}_{9}^{4} \\
: 8 \\
: 8 \\
8
\end{gathered}
\]} \& \multirow[b]{2}{*}{- \({ }_{\text {cti. }}^{\substack{\text { i. } \\ 1.4}}\)} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\begin{gathered}
5.5 \\
.4 .5 \\
5.5 \\
.8 .7 \\
4.7
\end{gathered}
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{3}{*}{} \\
\hline \& 4.8 \& \& \& \[
\begin{gathered}
9,7 \\
8.7 \\
9.7 \\
0.7
\end{gathered}
\] \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
1 i_{2}^{7}
\]} \& \multirow[b]{2}{*}{\[
\frac{1.7}{2} \cdot \frac{7}{2}
\]} \& \multirow[b]{2}{*}{\({ }_{2 .}^{2.9}\)} \& \multirow[t]{2}{*}{5.5} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 1.3 \\
\& 1.1 .1
\end{aligned}
\]} \& \multirow[t]{2}{*}{} \& \& \& \& \multirow[t]{2}{*}{10.6
10.8
1} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{,} \& \\
\hline \& \& \[
: 8
\] \& ¢ \& \& \& \& \& \& \& \& \[
\begin{array}{r}
(9) \\
a_{1} \\
\hline
\end{array}
\] \&  \& \[
\begin{gathered}
1.6 \\
1: 8 \\
\hline 18
\end{gathered}
\] \& \& \& \& \& \&  \\
\hline \& \({ }^{1.8}\) \& \& \({ }_{8.1}^{8.6}\) \& \({ }^{26.3}\) \& \& \({ }^{4.5}\) \& \({ }^{1.4}\) \& \({ }^{6.5}\) \& \({ }^{1} \mathrm{i} / 2\) \& \({ }_{2}^{4.0}\) \& : 1 \&  \& 2.9 \& \({ }_{3}^{1.7}\) \& \({ }^{545} 18.2\) \& 12.4
\% 2.7 \& \({ }_{8.2}^{16.0}\) \& \({ }_{\substack{82 \\ 32.2}}^{\substack{\text { 32, }}}\) \& 2039 \\
\hline \& \& \& \% \& \({ }^{1.2}{ }^{1.2}\) \& 1.4 \& - \(\begin{aligned} \& 1.0 \\ \& 1.3 \\ \& 1.2\end{aligned}\) \& \& 2.8 \& \& - \(1 . \frac{4}{3}\) \& \(\%^{(6)}\) \&  \& . 8 \& 1.5 \&  \& 4.6
5.9
5.9 \& 5. \&  \& \({ }_{\substack{2061 \\ 2063}}^{2063}\) \\
\hline \& \({ }^{15} 1.4\) \& 1:2 \& \multirow[t]{2}{*}{20.1} \& \[
\begin{aligned}
\& 2.5 \\
\& 36.5 \\
\& 6.5
\end{aligned}
\] \& \({ }^{(3)} .5\) \& \({ }^{12} .6\) \& \multirow[t]{2}{*}{1.1.
1.7
1.7} \& \multirow[t]{2}{*}{,} \& \multirow[t]{2}{*}{} \& \begin{tabular}{c}
1.8 \\
\(\substack{2.8 \\
8.0 \\
1.7}\) \\
\\
\hline
\end{tabular} \& \multirow[t]{2}{*}{\[
{ }^{\bar{n}} .5 .5
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\begin{gathered}
1.0 \\
.8 .0 \\
1.5 \\
.6 \\
\hline .6
\end{gathered}
\]} \& \[
\begin{aligned}
1.18 \\
-i .8 \\
i, i
\end{aligned}
\] \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& and \&  \\
\hline \& \& \[
\begin{aligned}
1: 2 \\
: 2 \\
\hline
\end{aligned}
\] \& \&  \& \& \& \& \& \& ¢ \& \& \& \& \[
\begin{aligned}
\& i, i_{3}^{2} \\
\& 3,
\end{aligned}
\] \& \& \& \& \& \\
\hline \&  \& \& \({ }_{2}^{8.7}\) \& \({ }^{19.8}\) \& \({ }^{(9)}{ }^{\text {a }}\) \& \(\stackrel{2.2}{2.0}\) \& 3.6
1.7
1.2 \& \(\stackrel{9.3}{9.9}\) \& \(\frac{1}{7}\) \& \begin{tabular}{l}
10.1 \\
\(\substack{1.9 \\
2.2}\) \\
\hline
\end{tabular} \& \({ }^{(3)}{ }^{2}\) \&  \& \begin{tabular}{l}
3.0 \\
3 \\
\hline
\end{tabular} \& a. \({ }^{2}\). \&  \& (18.4 \& \(\substack { \text { 22, } \\ \begin{subarray}{c}{15.8 \\ 6.8{ \text { 22, } \\ \begin{subarray} { c } { 1 5 . 8 \\ 6 . 8 } } \\{\hline} \end{subarray}\) \&  \& \({ }^{2080}\) \\
\hline \& \({ }_{30}^{4.7}\) \& \multirow[t]{2}{*}{\({ }_{2}^{1.5}\)} \& 38.9 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 2.3 \\
\& 1.4 \\
\& 1.4
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 6.1 \\
\& \hline .18 \\
\& 4.8 \\
\& 4.8 \\
\& 4
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 6.7 \\
\& 4.8 \\
\& 4.1
\end{aligned}
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 3.7 \\
\& \frac{3}{2}, 7 \\
\& 3
\end{aligned}
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 4.9 \\
\& 4.8 \\
\& 3.2 \\
\& .4
\end{aligned}
\]} \& \multirow[t]{2}{*}{2.5
\(\stackrel{2}{2}\)
-1} \& \multirow[t]{2}{*}{ari.} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \& \({ }^{207}\) \\
\hline \& \({ }_{2}{ }_{2} .5\) \& \& \({ }_{\substack{11.4 \\ 4.1}}^{\text {d }}\) \& \& \& \& \& \& \& \& \&  \& \& \& \& \& \& cosme \& \\
\hline \& \& \&  \& 8.
38.5
3.9 \& \({ }_{\text {bin }}^{6.0}\) \& 7.6
3.6 \&  \& \({ }^{\substack{6.6 \\ 13.3}}\) \& \&  \& \& \(\underset{\substack{10.3 \\ 98.9}}{\substack{\text { and }}}\) \& \begin{tabular}{l} 
2. \\
5.6 \\
5.0 \\
\hline
\end{tabular} \& i. \({ }^{.}\) \& +10.4 \&  \& coit \&  \&  \\
\hline \& 2.1. \({ }_{2}\) \& \& \({ }^{1128}\) \& \({ }_{20.1}^{4.2}\) \& \& \begin{tabular}{l}
1.9 \\
\\
5.4 \\
\hline .4
\end{tabular} \& ¢ 4.8 \& \({ }_{2}^{4.9}\) \& . \&  \& (7) \({ }_{2}^{8}\) \& \& 1.8
9.5
9.5 \& -5.5. \& cis. \& 5id. \&  \& 30.9 \& \multirow[t]{2}{*}{(} \\
\hline \& 2.7 \& \& 11.3 \& 20.2 \& 73.7 \& 5.4 \& 6.3 \& \& 5. 6 \& \& \& \& 9.5 \& -5.5 \& \& \& 19.0 \& \({ }^{228.2}\) \& \\
\hline \& - 4.7 \& \({ }^{-3}\) \& cis \& 1.1 \& \({ }_{5}{ }^{\text {5 }} 1\) \& - 8.7 \& 3. \({ }^{8}\) \& 4.7 \& . \& \({ }_{3.4}^{2.5}\) \& \()_{3}\) \&  \& . 1.6 \& - \(\begin{aligned} \& 2.1 \\ \& -1.2 \\ \& -1\end{aligned}\) \& ( 20.5 \& , \begin{tabular}{c}
4.3 \\
1.2 \\
12.1 \\
\hline
\end{tabular} \&  \&  \& \({ }_{\substack{208 \\ 208 \\ 208}}^{\substack{\text { 20, }}}\) \\
\hline \& \& 55:9 \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{\({ }_{\text {\% }}^{8.0}\)} \& \multirow[t]{2}{*}{(17.5} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{- -7.7} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{204
\(\substack{2385 \\ 2085 \\ 2085 \\ 2085}\)} \\
\hline \& \multirow[t]{2}{*}{} \&  \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& c.4.4. \& \({ }^{425}\) \&  \& \({ }^{18}\) \& \& \&  \& \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& , \&  \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \\
\hline \&  \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{,} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{(tay} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \&  \& \& \& \&  \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& 8.1 \& \({ }^{1}\) \& \({ }^{110.0}\) \& 720.4 \& \(\left\lvert\, \begin{aligned} \& 1,2,294 \\ \& 7296 \\ \& 1\end{aligned}\right.\) \&  \\
\hline \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{} \&  \& \({ }^{1,8,83} 8\) \& \({ }^{(1)}\) \& \({ }_{\substack{\text { 20. } \\ 21.3}}^{\text {a }}\) \& \({ }^{720.5} 1\) \& \({ }_{\text {1, }}^{1,655}\) \& 53, 5 \&  \& (8) \({ }_{\text {(\%) }}\) \& \& 14.4. \&  \&  \&  \&  \&  \& \({ }_{\text {a }}^{\substack{2093 \\ 2030}}\) \\
\hline \& \& \&  \& \({ }_{\text {cia }}^{6.9}\) \& 1.1
6.4
6.4 \&  \& \(\underset{\substack{43.6 \\ 15.1}}{1.8}\) \&  \&  \& \& i: \(\frac{1.9}{\text { i. }}\) \& \& \({ }_{13.6}^{24.5}\) \& -4.9 \&  \& , 19.5 \& cis \&  \& \(\xrightarrow{\substack{\text { and }}}\) \\
\hline \& \& \&  \&  \& - 7.4 \& \({ }^{135.5}\) \&  \& \({ }_{6 \times 4}\) \& \({ }^{12,2}\) \& \({ }_{\substack{43.9 \\ 36.7 \\ 36.2}}\) \& (1) \({ }^{\text {a }}\) \& \& \& -7.3. \& 225, \& cis. \& cis \&  \& \\
\hline \& \& \& \({ }_{\text {26. }}^{26.5}\) \& \({ }_{\substack{36 \\ 88.9 \\ 87.9}}^{\substack{2}}\) \&  \&  \&  \&  \& \({ }^{18,9}\) \&  \& 3.5.5 \& \({ }_{2}^{2.828 .5}\) \&  \& - -7.7 \& \({ }_{\text {a }}^{2,2038}\) \& \({ }^{41 .}\) \& \(\underset{\substack{33.9 \\ 427}}{\substack{42.7}}\) \&  \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 210 \\
\hline \& \(\underset{35.0}{\substack{42 \\ 35.0}}\) \& (17.0 \& \({ }_{\text {lid }}^{4.1}\) \& cis \& ¢ \& cis. \& \({ }^{23.7}\) \& \({ }_{69.0}^{88.0}\) \&  \& \({ }_{66.8}^{68.8}\) \& . \&  \&  \& - \&  \& 106: \& \({ }_{56.5}^{58}\) \& \({ }_{583}^{515}\) \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \({ }^{2 .} 3\) \& \& \& \({ }_{3.2}^{13}\) \& \({ }_{38} 8.6\) \& 220 \\
\hline -1 \& 4.1 \& \({ }^{1}\) \& - \& \({ }^{7}{ }_{2}{ }_{2} .6\) \& \({ }^{18}\) \& 8. 8.8 \& \& \({ }_{\text {cher }}^{25.7}\) \& \& \& \& \& i. 1 \& , \& cisin \(\begin{gathered}13.8 \\ 17.8 \\ 1.8\end{gathered}\) \& 边 \& 5.5 \&  \& 2211 \\
\hline \& \& (9) \({ }^{2}\) \& \({ }_{\text {l }}^{\text {1.6. }}\) \& \({ }^{\text {c }}\) (1) \& \({ }_{2}^{(92)}\) \& \(\stackrel{.}{2}\) \& \& . 8.5 \& \& \& \&  \& \& 2. \({ }^{2}\) \& cis. \& , \& 2.5
8.7
8. \&  \& \begin{tabular}{|c}
211 \\
211 \\
211
\end{tabular} \\
\hline  \& \& \&  \& \&  \& \begin{tabular}{l}
1.1 \\
1.7 \\
\hline
\end{tabular} \& ( \begin{tabular}{c}
1.2 \\
and \\
1.7 \\
\hline 1
\end{tabular} \& ¢ \& - \& \& \(8^{4}\) \& \& \begin{tabular}{l}
1.6 \\
1.5 \\
1.6 \\
\hline
\end{tabular} \& \(\stackrel{9.1}{8.1}\) \&  \& ( \& 8.7
8.9
8.8 \&  \& \({ }^{211}\) \\
\hline - \& \& \& \& \& ) \& \& \& \({ }_{1.2}^{4.2}\) \& \& \({ }_{2}^{2.6}\) \& () \& \({ }_{6.3}\) \& \& 2. 8 \& \({ }_{8.8}^{27.1}\) \& \({ }_{4.1}^{6.2}\) \& \({ }_{3.2}^{2.9}\) \& \({ }_{\substack{3 \\ 16.1}}\) \& \({ }_{211}\) \\
\hline \({ }_{\substack{1.6 \\ 4.1 \\ 4.0}}\) \& \& 2.6 \&  \& \& \& \& \& \& \({ }_{1}^{3}\) \& 4.6
6.6
6.7 \& .\(^{2}\) \&  \& 1.6 6 \& \& 13, \({ }^{13}\) \& 7.7 \& \({ }_{\text {\% }}^{3.4}\) \& \(\substack { 53.6 \\ \begin{subarray}{c}{21.6{ 5 3 . 6 \\ \begin{subarray} { c } { 2 1 . 6 } } \\{7.6} \end{subarray}\) \& \(\underbrace{\substack{12 \\ \hline}}_{\substack{2118 \\ 2120}}\) \\
\hline \& (0) \& \& 4 \& \& \({ }^{(12)}\) \& (9) \({ }^{3}\) \& \& \({ }_{1}^{1.3}\) \& \& \& \(8^{(1)}{ }^{-2}\) \& 5if \& - \({ }^{19}\) \& 2 \& 5. 5.8 \& 3. \({ }^{3}\) \& 2.1

1 \& 11.5 \&  <br>
\hline  \& ${ }_{1}^{1.3}$ \& \& ${ }^{1.8}$ \& \& \% \& \& \& 3. 3.0 \& \& ${ }^{4.8}$ \& ( \&  \& . 8 \& $\stackrel{2.7}{2}$ \& ( 28.7 \& ${ }_{4}^{8.7} 4$ \& ¢ \& (20.5 \& ${ }^{2122}$ <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& cilit \& (ta.2 \& ( ${ }_{\text {2 }}^{12.9}$ \& 10.6
0.9
10, \& <br>
\hline
\end{tabular}

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 1—Continued


Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 1—Continued


Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$-Continued


Table 2．－Personal Income by Major Source for SMSA＇s and Non－SMSA Counties， $1972{ }^{1}$－Continued

  $+\omega \in \omega \infty \omega \infty \infty$ or	osor．Ninop．ب movernoomion	nominanacina－	$\stackrel{\infty}{\text { cos }}$		بٌ   $\rightarrow \infty \omega \boldsymbol{\sim}$	－ 0 orw	anNiginverin	R． VOONCHIDOWN	发或		
is is viveronitions	isionimisisivis		$\stackrel{\rightharpoonup}{\circ}$					Nowninioctoriví		Q	
Hi－iosociviowinio		$\stackrel{\Theta}{\infty}$	\％	$\underbrace{\text { @, }}_{i}$					$\begin{aligned} & \text { 兴 } \\ & \text { 弟 } \\ & \hline \end{aligned}$		
	－ 0 ． 0 ．  	－   Nobitiveroino	$\stackrel{\text { ¢ }}{\substack{\circ \\ \hline}}$	crọ		No ． $0 \infty \infty 0$ Numan	NVNDT00000	๑ッ．N．Nロ：F oowoomm－ior		呂	
	$\underset{\sim}{\sim}$	． voo owerinno	年	$\underset{\sim}{\infty}$			$\operatorname{sic}_{0}^{3} \underbrace{3}_{i=1}$		管旨		
こほ ここほ๔૭ほコ is	$\underbrace{}_{;} \underbrace{\omega}_{i \omega} \text {. }$	$\text { O }_{\omega} \text { OSO }$	ir	$\mathrm{iv}^{\text {®ふळ }}$	$\operatorname{Lis}_{i}^{303}$	Эヨ૭ Э૭๔త		$\therefore \widehat{N i N O}_{i}^{3}$	噪	－	
$i=\dot{0} \dot{0} 000 \text { er }$		＋minninno	$\stackrel{\text { 世 }}{\stackrel{\text { is }}{2}}$	$\dot{-i} \dot{-}_{\infty}^{\infty}$	$\operatorname{vosincosin}$	$\operatorname{con} \dot{\omega} \dot{\infty} \infty$	$\dot{\omega}$	$\begin{aligned} & \text { nogern on } \\ & \text { ond } 0 \text { onconcon } \end{aligned}$		嵒	
	wereroinoobiv		$\underset{\substack{\text { © } \\ \hline}}{ }$	i-sion	nonocorontinem   N－M		$\text { -imino }{ }^{3}$				
．－ Gromivacosito	No．N．one   Nocutionoiniv	  －ioctivitivinuis	$\stackrel{\otimes}{\oplus}$	فَ	Nontrinturremer consindervo	ب．－．．－． monernomeno		gronioncorime		吕	色
3 waroworivion		$\cos _{\substack{3}}^{\operatorname{vinNis}}$	$\stackrel{\leftrightarrow}{\omega}$	$\hat{3}_{i 0} \hat{\omega}^{3}$	cromisionic		$\mathcal{E}_{i \rightarrow i o} \bigodot_{i=0 i n}$	$\underset{\sim}{\Im \Theta} \underbrace{\infty}_{\infty} \underset{\sim N-\infty}{\infty}$			¢ 吕 0 0 0 0
incins cocronio			$\stackrel{8}{\infty}$	$\cos _{\cos } \hat{3}$		＋．．．．．．．．．．\％ orrmenonocis		ons ownosion	\％ \％ 4 8 8 8	哭	\％
inis	$\widehat{S}_{i} \text { SOBS, }$	$\therefore, 3333 \text { as3 }$	－	$\widehat{O B}_{i}^{3}$	$\operatorname{io}_{i o}^{\widehat{\infty}} 3303$		$\widehat{\vartheta}_{\text {ini }} \text { Эヨ }$	$\operatorname{OQ}_{i} \Theta{ }_{i}$	윢		
 	ど oncomitiontin $\omega$	  －rionsomionos	$\stackrel{\text { H. }}{\stackrel{4}{\circ}}$	－0， 000  	 	Ren Tox  	かovivoooio	Bereto ionvoin inocor			
wasonvinosio	NoNinioninin	Vivomonosin	$$	$\dot{\omega} \cdot \stackrel{\Gamma}{\infty}$		Gi-aivicr ©					
			$\begin{array}{r} 1 \\ \vdots \\ \infty \\ \hline \end{array}$	ङఱ	$\text { 1. } 1 \times \text {. } 1 \text { ! ! }$	$\stackrel{N}{+1}$					
$\infty$ దた courminotioctor	Wopocems N-i-	ヶ゙  	$\begin{aligned} & \text { 荅 } \\ & \hline \end{aligned}$	$\underset{\sim}{\sim}$	oovinoovoris	Wer $0_{0} 90$ NOONDOHNTH	orrotnombury  	 			
 	roitiowncooin	NoM Monone N0000000 encos	$\stackrel{\infty}{\omega}$	$\dot{c}$	با  	 	－nownendone－ oovarownvon	H．HuYMors			
－ Nomoon－wor	wor－p．prem．－ Nacionnolocion	ovoonomnnor	$\stackrel{\text { 乫 }}{\stackrel{1}{\circ}}$	$\dot{d i n}$	Nn－NNMCNTR －Noonncuerorereo	nosononnernco	－N．R M－Nun 40w：ONODNO				
wornwornoro	N－No iownormo wornio	mione cociono	$\begin{aligned} & \text { 华 } \\ & -0 \\ & 0 \end{aligned}$		 	  of ouronionvor	$0 \rightarrow 000000$ on	Noondondorin			
		 	䓪			Hewdede		ENM	官		

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 1_Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\underset{\text { earnings }}{\text { Farm }}
\]} \& \multicolumn{18}{|c|}{Millions of dollars} \& \multirow[b]{3}{*}{Line} \\
\hline \& \multicolumn{3}{|l|}{Government labor carnings} \& \multicolumn{8}{|c|}{Private nonfarm labor and proprietary earnings} \& \multirow[t]{2}{*}{Total earnings by place of work} \& \multirow[b]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Less } \\
\text { personal } \\
\text { contri- } \\
\text { butions }
\end{gathered}\right.
\]} \& \multirow[b]{2}{*}{Plus
residence adjustment} \& \multirow[b]{2}{*}{Net
earning
by place
of resi-
dence} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Plus } \\
\text { property } \\
\text { income }
\end{gathered}
\]} \& \multirow[b]{2}{*}{Plus transfer pay-
ments} \& \multirow[b]{2}{*}{Total
personal
income
by
place of
residence} \& \\
\hline \& Federal civilian \& Military \& State and local \& Manu- \& Mining \& \[
\left\lvert\, \begin{gathered}
\text { Contract } \\
\text { construc- } \\
\text { tion }
\end{gathered}\right.
\] \& Transpor-
tation,
communi-
cations
and public
utilities \& Wholeretail trade \& Finance, insurand real estate \& Services \& Other \& \& \& \& \& \& \& \& \\
\hline 3.7 \& . 4 \& . 3 \& 2.5 \& 2.0 \& (8) \& 1.1 \& 1.5 \& 4.5 \& 1.1 \& 3.8 \& . 2 \& 21.1 \& . 8 \& 1.7 \& 22.0 \& 4.3 \& 3.3 \& 29.5 \& 2444 \\
\hline 21.2 \& . 6 \& . 3 \& 4.8 \& 11.2 \& (7) \& 2.2 \& 2.0 \& 6.0 \& . 8 \& 3.1 \& \({ }^{(7)}\) \& 52.4 \& 1.7 \& 1.9 \& 52.6 \& 5.2 \& 5.5 \& 63.3 \& 2445 \\
\hline 9.8 \& 2.0 \& . 6 \& 10.3 \& 36.3 \& (7) \& 5.5 \& 8.1 \& 22.7 \& 3.4 \& 11.7 \& \& 111.0 \& 5.5 \& -12.0 \& 93.5 \& 18.1 \& 16.1 \& 127.7 \& 2446 \\
\hline 3.6 \& \(\cdot^{4}\) \& . 1 \& 1.9 \& (7) \& \({ }_{\text {(7) }} \cdot 1\) \& \(\cdot 1\) \& (7) 6 \& . 8 \& \({ }^{(3)}\) \& .\(^{4}\) \& .1 \& \({ }_{13} 7.1\) \& .2 \& .\(^{3}\) \& 7.2 \& 1.7 \& 1.5 \& 10.3 \& \({ }_{2}^{2447}\) \\
\hline \(\begin{array}{r}5.9 \\ \text { 10.6 } \\ \hline\end{array}\) \& \(\begin{array}{r}1.0 \\ .4 \\ \hline\end{array}\) \& .3 \& 1.7
2.6 \& \({ }_{3} 9\) \& \({ }_{(8)}\) \& .7
1.9 \& \(\stackrel{.6}{3 .}\) \& \begin{tabular}{l}
1.6 \\
3.8 \\
\hline
\end{tabular} \& . 2 \& .9
2.4 \& .1 \& 13.6
29.1 \& 1.4 \& 2.0
5.7 \& 15.2
33.8 \& \begin{tabular}{l}
2.1 \\
5.8 \\
\hline 8
\end{tabular} \& 2.7
6.5 \& 20.0
46.0 \& 2448
2449 \\
\hline 11.6 \& \(\stackrel{.}{2}\) \& .1 \& 1.9 \& 16.9 \& (8) \& . 3 \& 1.3 \& 1.6 \& . 2 \& 2.4 \& . 1 \& 3.0 \& 1.3 \& -8.8 \& 24.9 \& 2.4 \& 1.7 \& 29.0 \& 2450 \\
\hline . 1 \& 2.0 \& . 4 \& 4.5 \& 17.7 \& 25.4 \& 3.4 \& 1.8 \& 6.1 \& 1.2 \& 5.3 \& . 1 \& 68.0 \& 3.6 \& -4.2 \& 60.2 \& 8.2 \& 8.4 \& 76.7 \& 2451 \\
\hline 37.9 \& 3.3 \& \({ }^{(8)} .9\) \& 11.2 \& \(\stackrel{(7)}{16.5}\) \& \({ }_{(7)}\) \& \({ }_{10} . \frac{1}{2}\) \& 11.3 \& 31.6 \& \({ }^{(7)} 5\) \& 17.4 \& (7) \& 4.1
14.5 \& 5. 1 \& -. \({ }^{4}\) \& 4.4
139.2 \& 25.5 \& 1.0
20.6 \& 6.2
185.4 \& \({ }_{2453}^{2452}\) \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline .7
6.6 \& 2.8
.5 \& .1 \& \({ }_{2.1}^{1.4}\) \& 2.5
4.7 \& (7) \& 1.0
8 \& 1.2
1.0 \& 1.4
2.9 \& .3
.5
. \& 1.6
2.0 \& (7) \& 13.1
215 \& . 7 \& (8) 9 \& 12.4 \& 2.9 \& 1.9
4
4 \& 17.2
30.9 \& \({ }_{2}^{2454}\) \\
\hline 7.1 \& 1.8 \& .2 \& 2.6 \& 1.7 \& (8) \& (7) \({ }^{\text {8 }}\) \& \(\stackrel{.}{ } 9\) \& 2.9 \& . 3 \& 1.6 \& (7) \& 23.6 \& .9 \& . 6 \& 23.3 \& 3.2 \& 3.0 \& 29.6 \& 2456 \\
\hline 5.5 \& 24.2 \& 36.5 \& 34.4 \& 12.4 \& .6 \& 17.0 \& 34.2 \& 27.2 \& 8.9 \& 23.4 \& . 5 \& 224.7 \& 9.9 \& -1.9 \& 212.9 \& 40.0 \& 30.0 \& 282.9 \& 2457 \\
\hline 1.8
9.9 \& 4.3
.7 \& \(\begin{array}{r}1.0 \\ .3 \\ \hline 8\end{array}\) \& 20.9
5.3
5. \& 4.2
3.1 \& \({ }^{(7)} 2.7\) \& 4.6
2.0 \& 7.7
2.8 \& 9.5
2.9 \& 2.4 \& \begin{tabular}{l}
8.7 \\
2.7 \\
\hline
\end{tabular} \& \({ }^{(7)} .2\) \& 65.4
33.3
3 \& 3.3
1.2 \& \(\begin{array}{r}3.5 \\ .3 \\ \hline\end{array}\) \& \begin{tabular}{l}
65.6 \\
32.4 \\
\\
\hline
\end{tabular} \& 15.1
5.3 \& 7.8
4.2 \& 88.5
42.0 \& 2458
2459 \\
\hline 7.2 \& .4 \& .4 \& 2.5 \& \(\stackrel{3}{ }\) \& 10.0 \& 5.2 \& 2.9 \& 5.7 \& . 9 \& 2.9 \& . 2 \& 38.5 \& 1.8 \& \(-2.7\) \& 34.0 \& 4.3 \& 2.5 \& 40.8 \& 2460 \\
\hline 7.0 \& 1.6 \& . 4 \& 6.2 \& 5.2 \& 12.9 \& 3.8 \& 7.5 \& 7.0 \& 1.2 \& 5.7 \& .2 \& 58.6 \& 2.9 \& -2.0 \& 53.7 \& 12.1 \& 5.4 \& 71.2 \& 2461 \\
\hline 6.4 \& . 5 \& . 2 \& 2.6 \& . 1 \& 2.5 \& 4.8 \& 5.3 \& 2.1 \& . 4 \& 1.9 \& . 1 \& 27.0 \& 1.1 \& -2.1 \& 23.8 \& 5.4 \& 2.6 \& 31.8 \& 2462 \\
\hline 5.3 \& . 6 \& . 1 \& 1.8 \& . 8 \& \({ }^{(7)}\) \& . 4 \& (7) \& . 8 \& (7) \& . 6 \& . 1 \& 12.4 \& . 4 \& . 3 \& 12.3 \& 2.3 \& 1.6 \& 16.2 \& 2463 \\
\hline 5.1 \& 3.2 \& . 8 \& 12.4 \& 3.9 \& 21.1 \& 6.8 \& 4.1 \& 11.3 \& 2.1 \& 7.7 \& 7. 4 \& 78.8 \& 4.1 \& \({ }^{(8)}\) \& 74.7 \& 13.0 \& 10.0 \& 97.8 \& 2464 \\
\hline 15.3 \& \(\cdot 8\) \& .3 \& 4.4 \& 2.3 \& \({ }^{(7)}\) \& 1.3 \& 1.5 \& 4.6 \& .9 \& \(\stackrel{2}{2}\) \& \({ }^{(7)}\) \& 34.5 \& 1.0 \& . 8 \& 34.3 \& 6. 6 \& 4.9 \& 45.8 \& 2465 \\
\hline 2.0
6.0 \& . 3 \& .1 \& 2.7
3.0 \& . 6 \& 1.8 \& 1.0
1.0 \& 1.4
.7 \& 1.9
1.9 \& . 4 \& 2.3
1.4 \& \({ }_{(8)}{ }^{1}\) \& 14.0
16.6 \& .\(^{6}\) \& \(-.1\) \& 13.6
16.0 \& 2.6
5.2 \& 3.0
2.6 \& 19.3
23.8 \& 2466
2467 \\
\hline 7.1 \& 1.5 \& . 2 \& 3.5 \& 1.8 \& \({ }^{(7)}\) \& (7) \& 3.5 \& 3.4 \& 6 \& 2.0 \& . 2 \& 31.4 \& 1.4 \& \(-.1\) \& 29.9 \& 6.8 \& 3.3 \& 40.0 \& 2468 \\
\hline 1.9 \& 7.4 \& 1.5 \& 24.8 \& 21.6 \& 30.4 \& 18.3 \& 18.0 \& 35.8 \& 9.5 \& 26.1 \& (8) 4 \& 195.6 \& 10.8 \& 5.4 \& 190.2 \& 39.9 \& 20.1 \& 250.2 \& 2469 \\
\hline 4.0 \& \& \(\cdot 1\) \& 1.2 \& \({ }_{8} .2\) \& \({ }^{(7)}\) \& . 5 \& \(\stackrel{.4}{4}\) \& 1.8 \& \(\stackrel{.}{1}\) \& \& \({ }^{(7)}\) \& 9.9 \& . 3 \& -1.2 \& 9.8 \& 2.5
114 \& 1.4 \& 13.6 \& 2470 \\
\hline 7.3
6.2 \& 4.4
1.1 \& .5 \& 7.8
2.5 \& \(\begin{array}{r}8.1 \\ .4 \\ \hline\end{array}\) \& \({ }_{\text {(7) }}{ }^{6.1}\) \& 4.9
.6 \& 3.4
1.7 \& 8.4
2.3 \& \(\stackrel{2.1}{.5}\) \& 10.8
1.2 \& \({ }_{(7)}{ }^{2}\) \& 64.1
19.4 \& \(\begin{array}{r}3.1 \\ \hline\end{array}\) \& -1.0 \& 60.0
18.6 \& \(\begin{array}{r}14.3 \\ 6.4 \\ \hline\end{array}\) \& 7.1
3.0 \& 81.4
28.1 \& \({ }_{2472}^{247}\) \\
\hline 7.1 \& 6.3 \& . 5 \& 6.9 \& 3.1 \& (7) \& 4.8 \& 3.9 \& 9.1 \& 2.3 \& 7.8 \& (7) \& 54.1 \& 2.6 \& -. 7 \& 52.2 \& 6.4
22.4 \& 11.6 \& 86.2 \& 2473 \\
\hline 5.0 \& . 7 \& . 3 \& 1.7 \& . 3 \& 1.2 \& 1.3 \& 1.8 \& 1.5 \& . 3 \& . 8 \& . 1 \& 14.9 \& . 6 \& -. 2 \& 14.1 \& 3.1 \& 1.1 \& 18.3 \& 2474 \\
\hline 4.8 \& 1.8 \& . 5 \& 7.6 \& 1.8 \& 22. 6 \& 22.2 \& 9.4 \& 9.5 \& 1.2 \& 6.7 \& \& 88.2 \& 4.9 \& -2.0 \& 81.3 \& 11.7 \& 7.3 \& 100.2 \& 2475 \\
\hline 1.4
4 \& 2.4 \& .1 \& \({ }_{5} .2\) \& . 9 \& (7) \& (7) \({ }^{2.6}\) \& \& 3.9 \& .6 \& 7.2 \& (7) \& 22.3 \& 1.1 \& \(-.2\) \& 21.0 \& 9.7 \& 1.9 \& 32.5 \& \({ }^{2476}\) \\
\hline 4.5 \& 6 \& . 2 \& 5.7 \& . 7 \& \({ }^{(7)}\) \& \({ }^{(7)}\) \& 4.3 \& 2.6 \& 4 \& 1.4 \& \({ }^{\text {(7) }}\) \& 22.1 \& . 9 \& 1.2 \& 22.4 \& 3.8 \& 3.5 \& 29.6 \& 2477 \\
\hline 7. \({ }^{6}\) \& 1.3
.6 \& .2 \& 3. \({ }^{1}\) \& 2.8 \& 1.0
3.5 \& 1.9
.8 \& (7) 2.0 \& 3.4 \& (9) \({ }^{7}\) \& 2.5
1.6 \& \({ }^{(8)}{ }^{2}\) \& 26.7
19.9 \& 1.0
.9 \& -. \({ }^{1}\) \& 25.6
19.5 \& 4.8
3.7 \& 2.8
2.5 \& 33.1
23.7 \& 2478
2479 \\
\hline \(-1.5\) \& 91.8 \& 299.1 \& 69.2 \& 63.4 \& 2.2 \& 80.0 \& 39.1 \& 104.2 \& 41.3 \& 119.8 \& 1.0 \& 909.6 \& 27.8 \& -3.2 \& 878.6 \& 135.5 \& 95.9 \& 1,109.9 \& 2480 \\
\hline 31.6 \& 358.5 \& 137.0 \& \({ }^{536.3}\) \& (7) \& 76.2 \& (7) \& 511.2 \& 1,114. 6 \& (7) \& 893.4 \& 12.4 \& 5, 628.1 \& 246.8 \& -38.4 \& 5, 342.9 \& 905.8 \& 547.9 \& 6, 796. 6 \& 2481 \\
\hline 3.3 \& 40.0 \& 2.8 \& 71.7 \& 104.9 \& . 1 \& 22.1 \& 29.0 \& 51.7 \& 13.3 \& 45.3 \& . 6 \& 384.8 \& 18.1 \& -8.2 \& 358.5 \& 61.3 \& 66.7 \& 486.4 \& 2482 \\
\hline 1.9 \& 1.1 \& (8) 2 \& 5.5 \& 1.0 \& (8) \& 1.3 \& 3.6 \& 5.3 \& 1.0 \& 4.7 \& \& 25.8 \& 1.1 \& 1.6 \& 26. 3 \& 5.0 \& 5.1 \& 36.3 \& 2483 \\
\hline . 1 \& .\(_{5}^{6}\) \& \({ }^{(8)}\) \& . 7 \& \& \({ }^{(8)}\) \& \& \({ }^{7}\) \& \& ( \({ }^{\text {( ) }}\) \& \& \& 4.2 \& .2 \& \& \& \& 1. 6 \& \& \\
\hline 6.1
5.3 \& .5
6.8
6.8 \& \(\stackrel{1}{.2}\) \& 1.9
2.0
2.0 \& \({ }^{(7)} .5\) \& \({ }_{(8)}^{(8)}\) \& . 3 \& . 5 \& 2.3
1.2 \& .
.3
.3 \& .9
.9 \& \({ }^{\text {(7) }} .2\) \& 13.1
18.0 \& .8
.7 \& 1.8
-.2
-.4 \& 13.0
16.9 \& 3.0
2.5 \& \begin{tabular}{l}
2.7 \\
3.7 \\
\hline
\end{tabular} \& 18.7
23.0 \& 2485
2486 \\
\hline 5.
.4
.4 \& 1.9 \& \(\stackrel{.}{2}\) \& 4.0 \& .\(^{.}\) \& \({ }^{(0)} 2\) \& 1.8 \& 2.5 \& 5.1 \& .7 \& 3.9 \& . 1 \& 21.1 \& 1.0 \& 5.7 \& 25.8 \& 7.4 \& 6.4 \& 39.7 \& 2487 \\
\hline 3.1 \& . 3 \& \({ }^{(8)}\) \& .9 \& (7) \& (8) \& (7) \& . 7 \& . 6 \& .2 \& . 5 \& (i) \& 6.4 \& . 2 \& -. 1 \& 6.1 \& 1.8 \& 1.0 \& 9.0 \& 2488 \\
\hline \({ }^{(8)} 8.1\) \& .3 \& \(\bigcirc\) \& 1.4 \& .\(^{4}\) \& \& 12.8 \& 1.4 \& 2.5 \& \& \({ }^{(7)}\) \& \& 28.0 \& 1.2 \& -1.8 \& 25.0 \& 2.9 \& 1.7 \& 29.5 \& 2489 \\
\hline 8.1 \& .\({ }^{4}\) \& .2 \& 2.0
1.0 \& (8) 1.0 \& (8) \(^{2}\) \& \({ }_{2}^{2}\) \& (7) \({ }^{\text {. }}\) \& 1.0
.4 \& (7) \({ }^{2}\) \& \(\begin{array}{r}1.3 \\ \hline\end{array}\) \& \({ }_{\text {(8) }} .2\) \& 15.2
2.7 \& .\(^{3}\) \& 1.0 \& 15.9 \& 1.3 \& 4.1 \& 21.2 \& 2490 \\
\hline 2.6 \& .2 \& .1 \& r

.9 \& ${ }^{(8)} 3$ \& (8) \& ${ }_{2}$ \& (). 2 \& . 7 \& (3) \& . 6 \& (7) \& 5. 9 \& $\because 2$ \& 1.5 \& 2.5 \& 1.5 \& 2.1 \& 10.7 \& 2492 <br>
\hline -. 8 \& 1 \& (8) \& . 4 \& () \& () \& 1 \& () \& . 2 \& ${ }^{(8)}$ \& . 1 \& \& . 3 \& . 1 \& . 5 \& \& . 8 \& . 7 \& 2.3 \& 2493 <br>
\hline 4. 6 \& 1.5 \& ${ }^{3} 3$ \& 3.7 \& 1.9 \& 4 \& 1.2 \& 1.0 \& 4.4 \& 1.2 \& 4.9 \& (8) 7 \& 25.8 \& . 9 \& 1.8 \& 26.7 \& 9.3 \& 10.9 \& 46.8 \& 2494 <br>
\hline 1.1
.6 \& ${ }^{(8)} 1.0$ \& ${ }^{(8)} .1$ \& 2. 5 \& ${ }_{1} 1.0$ \& ${ }_{3}{ }^{\text {(1) }} 3$ \& 3.1 \& 1.1 \& .5
4.0 \& . 1.9 \& .3
6.3 \& (3) \& 3.3 \& .1 \& . 2 \& 3. ${ }^{4}$ \& . 8 \& ${ }^{.8}$ \& 5.0 \& 2495 <br>
\hline . 6 \& 1.4 \& . 1 \& 1.1 \& 1.0 \& (\%) ${ }^{3}$ \& $\begin{array}{r}3.1 \\ .3 \\ \hline\end{array}$ \& 1.2 \& 4.0
.9 \& . 2 \& 6.3
.6 \& (7) ${ }^{2}$ \& $\begin{array}{r}24.2 \\ 5.2 \\ \hline\end{array}$ \& 1.1 \& 2.18 \& 23.9
7.1 \& 3.2 \& 2.3
1.6 \& 29.3
11.8 \& ${ }_{2497}^{2496}$ <br>
\hline 1.1 \& . 9 \& .5 \& 11. 0 \& 6.3 \& 3.1 \& 2.7 \& 2.7 \& 7.4 \& 1.3 \& 8.0 \& ${ }^{\text {( }} 4$ \& 45.4 \& 2.0 \& 5.8 \& 49.2 \& 13.8 \& 15.5 \& 78.5 \& 2498 <br>
\hline - 5 \& 2. 1 \& .3 \& 4.9 \& . 8 \& 5.4 \& 3.9 \& 2.5 \& 8.6 \& 1.5 \& 7.2 \& \& 38.1 \& 1.7 \& 3.1 \& 39.5 \& 12.3 \& 7.4 \& 59.2 \& 2499 <br>
\hline -. 2.0 \& 1.3
1.0 \& .1 \& 1.6
6.8 \& . 7 \& $\stackrel{(8)}{3.0}$ \& . 6 \& 1.3
.4 \& 2.4 ${ }_{3}$ \& .7
.6 \& 2.4
2.2 \& ${ }^{(8)} .1$ \& 11.0
20.4 \& 1.5
.9 \& -
-1.6

-1.2 \& 118.1 \& | 12.8 |
| :--- |
| 3.7 | \& $\begin{array}{r}1.7 \\ 2.3 \\ \hline\end{array}$ \& 15.6

24.3 \& 2500
2501 <br>
\hline -. 2 \& ${ }^{(8)}$ \& ${ }^{(8)}$ \& .1
.1 \& (7) \& ${ }^{(8)}$ \& (8) ${ }^{8}$ \& (7) ${ }^{-4}$ \& ${ }^{(7)}$ \& ${ }^{(8)}$ \& 2. \& ${ }^{(8)}$ \& 2.4 \& (8) ${ }^{\text {a }}$ \& ${ }_{(8)}$ \& $\begin{array}{r}18 \\ .1 \\ \hline 1\end{array}$ \& $\stackrel{1}{ }$ \& $\stackrel{1}{2}$ \& $\stackrel{3}{ }{ }^{1}$ \& 2502 <br>
\hline \& . 3 \& \& 2.0 \& . 3 \& (7) \& .2 \& .6 \& 2.0 \& .3 \& 1.8 \& (7) \& 8.7 \& . 4 \& . 8 \& 9.1 \& 3.5 \& 4.6 \& 17.1 \& $\stackrel{2503}{2503}$ <br>
\hline -2.3
6.8 \& .$_{2}$ \& (8) \& . 8 \& 1.0 \& (7) \& (7) ${ }^{3}$ \& $\cdot 1$ \& .7 \& .1 \& . 2 \& (7) \& 1.4
9.5 \& ${ }^{2}$ \& $-.5$ \& ${ }^{.} 7$ \& . 8 \& ${ }_{9}^{6}$ \& ${ }_{11}^{2.1}$ \& 2504 <br>
\hline 22.1 \& .6 \& ${ }^{\text {. }} 2$ \& 2.6 \& . \& ${ }^{2} .2$ \& ${ }^{\text {( }} .6$ \& . 4 \& 4.2 \& .6 \& 1.7 \& ${ }^{\text {(2) }} 3$ \& 33.7 \& .5 \& -. 1 \& 33.1 \& 5.0 \& 3.0 \& 41.0 \& 2506 <br>
\hline -. 2 \& .4 \& . 1 \& 2.8 \& . 1 \& 25.3 \& . 3 \& 1.7 \& 2.5 \& ${ }^{(7)}$ \& 1.5 \& (7) \& 34.9 \& 1.5 \& -6. 5 \& 26.9 \& 2.4 \& 2.1 \& 31.4 \& 2507 <br>
\hline 1.5 \& 4.3 \& $\cdot 4$ \& 8.6 \& 2.7 \& . 4 \& 2.5 \& 3.9 \& 8.4 \& 2.3 \& 9.1 \& . 3 \& 43.4 \& 2.0 \& . 7 \& 42.1 \& 11.6 \& 9.6 \& 63.4 \& ${ }_{2008}^{2508}$ <br>
\hline 11.4
-2.5 \& 10.8 \& 2.1 \& 70.9 \& 48.0 \& . 4 \& 25.3 \& 9.5 \& 44.5 \& 9.1 \& 33.5 \& . 9 \& 266.4 \& 12.1 \& 9.5 \& 263.8 \& 60.9 \& 41.3 \& 365.9 \& 2509 <br>
\hline -2.5
6.3 \& 1.4 \& $\cdot 3$ \& 6.7 \& $\cdot 4$ \& ${ }^{6} 5$ \& 2.7 \& 2.3 \& 4.4 \& ${ }^{.} 8$ \& 3.1 \& . 1 \& 26.3 \& 1.4 \& .3 \& 25.2 \& 6. 0 \& 10.9 \& 42.1 \& 2510 <br>
\hline 6.3
19.0 \& 1. 2 \& .4 \& 2.2
5.7 \& 6.0 \& ${ }^{(8)} 2.1$ \& 3.1 \& 3.9 \& 2.4
10.7 \& ${ }^{2} .2$ \& 88.9 \& .3 \& 63. 5 \& $\stackrel{.4}{4}$ \& (8) $^{(8)}$ \& 14.9
61.5 \& 13.8 \& 8.0 \& 83.4 \& 2512 <br>
\hline (8) 9.0 \& 9.4 \& ${ }_{\text {(8) }} 1.0$ \& $\begin{array}{r}25.3 \\ .4 \\ \hline\end{array}$ \& ${ }_{\text {(8) }}^{14.2}$ \& 4.0
1.7 \& 13.5 \& 14.5 \& 30.8 \& ${ }^{5} 5.2$ \& 26.8 \& ${ }_{\text {(8) }}{ }^{6}$ \& 154.4 \& 6.7 \& $\stackrel{(8)}{-}$ \& 147.7 \& 35. 2 \& 29.8 \& 212.8 \& ${ }_{2514}^{2513}$ <br>
\hline 4.1 \& . 9 \& ${ }^{(1)}$ \& .9
2.9 \& ${ }^{(6)}$ \& 1.7 \& $\stackrel{1}{1.1}$ \& ${ }_{1.9}{ }^{(8)}$ \& 3. 9 \& ${ }^{(5)} 5$ \& $\stackrel{2}{2.7}$ \& ${ }^{\text {(8) }} .1$ \& 21.2 \& . 8 \& -. ${ }^{1}$ \& $\begin{array}{r}2.2 \\ 20.5 \\ \hline\end{array}$ \& $1{ }^{10.5}$ \& $\begin{array}{r}.3 \\ 4.3 \\ \hline\end{array}$ \& 2.7
35.2 \& ${ }_{2515}^{2514}$ <br>
\hline 1.6 \& 2.2 \& . 2 \& 4.1 \& 2.8 \& . 2 \& 5.2 \& 1.6 \& 6.2 \& .9 \& 6.5 \& .4 \& 31.8 \& 1.3 \& . 5 \& 31.0 \& 5.1 \& 6.6 \& 42.8 \& 2516 <br>
\hline 7.3 \& 4.5 \& .3 \& 5.8 \& 1.3 \& 4.5 \& 2.7 \& 4.4 \& 6.1 \& 1.2 \& 4.3 \& . 5 \& 42.9 \& 1.7 \& 1.4 \& 42.6 \& 8.9 \& 8.5 \& 60.0 \& ${ }_{2517}^{2517}$ <br>
\hline $\stackrel{20.3}{8}$ \& 1. 3 \& . 4 \& 7.5 \& 7.5 \& \& 3.1 \& 3.7 \& 9.8 \& 2.1 \& 6.7 \& .9 \& 63.3 \& 1. 9 \& . 8 \& 62.2 \& 13.8 \& 9.2 \& 85.2 \& ${ }_{2518}^{2518}$ <br>
\hline $\begin{array}{r}8.1 \\ \hline 19\end{array}$ \& $\begin{array}{r}1.3 \\ .1 \\ \hline\end{array}$ \& (88) ${ }^{7}$ \& 7.5
.5

.1 \& (7) 8 \& (7) 5.2 \& ${ }_{(7)}^{1.6}$ \&	9.1
.1	
1	\& 10.8

.4 \& $\begin{array}{r}1.9 \\ .1 \\ \hline 1\end{array}$ \& $\begin{array}{r}8.1 \\ .3 \\ \hline 1\end{array}$ \& (7) \& 58.5
7.8 \& 2.3
.3
.3 \& 1.2
-.4
-1 \& 59.4
7.1 \& 11.3
.9 \& 11.8 \& 82.4
8.7 \& 2519
2520 <br>
\hline -1.0 \& . 5 \& (8) \& 1.1 \& (8) \& (\%) \& ${ }^{\text {. }} 3$ \& $\stackrel{.}{2}$ \& 6 \& .3 \& 1.5 \& (7) \& 3.6 \& .2 \& 1.5 \& 4.9 \& 1.3 \& 1.1 \& 7.2 \& 2521 <br>
\hline 7.8 \& . 3 \& . 1 \& 1.4 \& . 1 \& ${ }^{(8)}$ \& . 2 \& . 8 \& 2.0 \& . 3 \& 1.2 \& . 1 \& 14.2 \& . 3 \& . 3 \& 14.2 \& 4.8 \& 2.5 \& 21.5 \& 2522 <br>
\hline
\end{tabular}

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 ——Continued

Farm earnings	Millions of dollars																		Line
	Government labor earnings			Private nonfarm labor and proprietary earnings									Less personal contributions	Plus residence adjustment	Net earnings by place of residence	Plus property income	Plus transfer payments	Total personal income by place of residence	
	Federal civilian	Military	State and local	Manufacturing	Mining	Contract construction	Transportation, communications, and public utilities	Wholesale and retail trade	Finance, insurance, and real estate	Services	Other	Total earnings by place of work							
-1.0			21			46	13	8.	28	10.0	(7)	29	13	-4 6	23.4	9.6	1.4	34.5	2523
14.9	.7	.2	4.8	2. 1	(7)	1.0	1.9	6.6	1.0	3.7	(7)	37.3	1.1	(8)	36.2	7.1	6.3	49.7	2524
6.5	.3	. 1	2.6	2.2	1.8	. 9	1.1	1.8	. 5	2.2	(8)	18.2	. 6	-. 1	17.5	2.2	1.8	21.5	2525
10.0	1.5	.2	3.5	2.3	1	1.0	1.5	4.8	. 7	3.7	. 5	29.8	9	-. 2	28.7	5.4	5.3	39.4	2526
2.4	1.1	.1	2.5	2. 5	1. 6	3.0	1.4	3.0	1.3	4.4	.1	21.4	9	$-.2$	20.3	6.1	2.6	29.0	$\stackrel{2527}{ }$
5.2	(8) 3	(8) 1	1.5	(7)	(7)	${ }^{\text {(7) }} .2$		(7) 9	${ }^{1} 1$	. 7	. 1	9. 1	2	-. 3	9.2	1.4	1.9	12.6	${ }_{2528}$
${ }^{(8)} 1.9$	${ }^{(8)} .2$	${ }^{(8)}$	.5   .9	${ }^{(8)} 1.2$	2.3 .4	${ }^{(7)} .2$	${ }^{(8)} .2$	${ }^{(7)} .5$	${ }^{(7)}$	.1	(7)	3. 6	. 2	-1.1	2.3	.8	. 3	2.9 6.9	2529 2530
6.2	. 2	${ }^{+} 1$	1.5	1.0	(7) ${ }^{-4}$	$\stackrel{.}{ } \times$	1.3	2.0	(). 2	1.4	(7)	14.2	. 4	-. 3	13.5	2.9	1.5	18.0	2531
$\left.{ }^{8}\right)^{8}$	.2	. 1	1.2	.1	(7)	3.9	.1	1.9	(7)	2.6	(3)	11.4	. 5	-. 4	10.5	2.4	. 6	13.5	2532
14.3	. 6	1	2.0	1	()	2	. 9	1.6	2	. 9	(7)	21.2	3	. 3	21.2	4.7	2.4	28.1	2533
77.1	4.0	2.0	40.5	49.2	2.7	22.5	17.6	41.0	11.9	24.4	1.7	294.6	10.1	23.6	308.1	46.6	37.2	392.0	$\stackrel{2534}{2535}$
15.1	. 7	. 1	2.8	. 3	${ }^{(3)}$	. 5	. 8	3.3	. 4	2.4	. 3	26.8	. 5	$-.2$	26.1	7.6	4.0	37.7	2535
8.8	6.1	3.3	43.5	98.8	3.9	23.9	14.6	41.0	7.0	72.3	. 8	324.0	14.4	24.8	334.4	45. 1	47.0	426.4	2536
17.3	407.1	56.1	270.1	362.6	(7)	165.6	236.3	455.6	127.2	344.3	(7) ${ }^{\text {a }}$	2,526.2	133.4	-42.4	2,350. 4	385.7	295.5	3,031.5	2537
1.8	.4	. 1	1.3	. 3	(1)	8	2.5	1.1	(7)	. 8	. 1	10.4	4	(6)	10.0	1.7	2.1	13.7	2538
10.5	3.9	. 9	7.1	36. 4	(7)	4.3	2.0	8.5	1.2	7.2	(7)	82.2	3.8	6.2	84.6	11.8	10.5	106.9	2539
10.7	3.5	1.3	28.7	18.6	(8)	6.2	3.9	13.0	2.4	14.0	. 7	103.0	4.3	5.5	104.2	19.0	15.7	138.9	2540
. 5	1.9	${ }_{(8)}{ }^{3}$	6.2	1.1	13.6	1.3	5.0	6.6	1.0	4.6	. 1	41.9	2.1	. 4	40.2	6.2	8.3	54.7	2541
. 1	. 8	${ }^{(8)}$	. 5	(8)	${ }^{(7)}$	${ }^{(7)}$	.1	. 1	${ }^{(9)}$	(7)	${ }^{8} 8$	1.8	.1	-. 3	1.4	. 17	. 2	1.8	${ }_{2543}^{2542}$
2.1	1.5 .3	.1	2.7 1.9	. 1	8.3 5.7	1.2	.9 .5	3.1 1.1	$(7){ }^{.6}$	1.4 .7	(8)	22.5 17.3	1.1 .9	$-1.1$	11.3 15.4	2.7 1.2	2.7	26.7 18.9	2543 2544
. 4	. 8	. 1	1.5	1.5	(7)	. 7	(7)	. 7	. 1	1.3	(7)	7.7	. 4	$-.3$	7.0	. 9	1.5	9.4	2545
${ }^{(8)}$	. 6	. 3	2.3	1. 0	4.4	2. 5	1.8	3.2	${ }^{(7)}$	2.8	(7)	19.2	1.0	. 5	18.7	2.0	2.3	23.0	2546
4.0	2.0	. 5	6.7	1.9	2.9	3.0	2.4	6.7	1.0	4.1	${ }^{(8)}$	35.4	1.6	.1	33.9	5.2	4.5	43.6	2547
. 7	. 3	${ }^{\text {d }} 1$	1.8	3.2	(7)	. 3	. 5	1.8	. 1	. 8	(7)	10.8	5	-1.1	9.2	1.4	2.2	12.8	2548
. 4	. 5	${ }^{(8)}$	. 9	(7)	(7)	.4	(7)	1.1	.2	1.3	(7)	5.2	.2	1.0	6.0	1.1	1.1	8.2	2549
3.3	. 9		2.8		(7)	1.3		2.8	. 2	1.6	(7)	16.1	.6	. 3	15.8	2.7	3.2	21.6	2550
2.1	. 2	${ }^{8}{ }^{1}$	1.8	(7)	(8)	. 5	(8) .2	2.2	(7)	(7) 6	. 1	10.1	.4	3.8	13.5	2.6	1.4	17.5	2551
$\begin{array}{r}.7 \\ 2.3 \\ \hline 8\end{array}$	.1	${ }^{(8)} .1$	. 5	(7)	(7)	(7) 1	${ }_{(8)}^{(8)}$	$\begin{array}{r}.3 \\ .3 \\ .3 \\ \hline\end{array}$	(7)	${ }^{(7)}{ }^{1}$	.1 .1	2.1 4.2	. 1	${ }^{8}$ ) 2	2.2 4.1	. 4	. 7		2552 2553
2.1	.8	.4	3.1		${ }^{5} 5$	${ }_{1} 1.1$	${ }^{(7)} 1.3$	.3 1.8	(7)	2.1	(7) ${ }^{1}$	4.2 18.7	. 8	$\stackrel{(8)}{-.} 9$	17.0	2.0	3.9	22.9	2554
6.2	. 8	.2	3.7	5. 9	(7)	3.5	. 4	2.0	. 4	2.4	(7)	26.1	1.0	1.0	26.1	5.0	6.2	37.3	2555
3.9	1.7	.2	3.8	3.2	. 5	1. 4	1.7	5.2	. 6	2.1	. 4	24.8	1.1	. 4	24.1	4.4	5.1	33.7	2556
3.4	. 4	. 1	2.9	. 8	. 3	2.4	1.5	1.3	. 4	2.9	. 1	16.6	. 7	2.9	18.8	3.1	2.6	24.4	2557
2.3	2.3	. 2	3.6	1.8	9.2	2.5	2.8	6.3	(7)	4.6	(7)	36.4	1.9	$-.1$	34.4	4.1	4.1	42.6	2558
1.8	. 3	. 2	1.9	(7)	(7)	5.1	. 6	1.8	. 4	1.2	(8) 1	16.8	. 8	-1.2	14.8	3.3	2.8	20.9	2559
2.1	1.2	. 7	4.9	2.2	(7)	3.5	1.0	7.1	1.0	3.5	${ }^{(7)}$	27.6	1.3	. 7	27.0	7.2	6.9	41.2	2560
. 5	. 4	(8)	. 9	. 1	()	. 1		. 2	(7)	(7)	.1	2.5	. 1	. 2	2.6	.5	.7	3.7	2561
47.6	10.7	3.0	38.4	60.7	(7)	34.9	17.4	42.0	8.1	84.6	(7)	349.8	15.7	1.6	335.7	39.4	42.9	418.0	2562
22.4	202.6	52.3	669.3	1,341.0	5.1	296.3	513.8	1,058.4	380.5	852.1	19.3	5,413.1	274.2	-86.9	5,052,0	982.8	755.1	6,789.9	2563
20.0	44.2	47.6	113.9	139.8	1.9	71.5	90.9	205.5	58.1	173.2	2.2	968.7	44.8	-14.9	909.0	203.0	163.9	1,275.9	2564
10.2	103.0	214.4	161.5	222.7	1.4	66.8	71.0	191.5	57.9	160.3	4.1	1,264.9	52.9	61.3	1,273.3	185.4	238.2	1,696.9	2565
78.1	13.2	3.9	49.2	60.2	$\stackrel{.}{ } \cdot$	20.7	22.5	91.8	15.3	56.0	3.9	${ }^{1}$ 415.1	16.7	6.5	1, 404.9	78.1	87.6	570.5	2566
28.6	1.8	. 7	3.8	4.7	${ }^{(8)}$	2.9	2.5	7.6	. 8	2.6	. 5	56.4	1.4	-1.6	53.4	7.9	4.6	66.0	2567
1.5	. 4	.3	3.1	1.2	(8)	1.5	1.0	2.9	1. 0	6.7	.5	20.1	. 8	14.9	34. 2	8.0	7.8	50.0	2568
22.7	7.1	.9	21.4	26.3	(7)	7.7	7.2	33.1	5. 4	20.6	(7)	154.8	6.7	-14.4	133.7	32.8	27.1	193.7	2569
1.7	4.0	4.0	14.7	37.6	(7)	5.8	5.9	17.8	3.3	12.7	(7)	108.3	5.3	. 4	103.4	25.6	23.8	152.9	2570
8.3	+ ${ }^{6}$	. 1	1.7	(7)	(8)	1.3	. 7	1.5	$\stackrel{3}{ }$	1.2	(7)	18.2	. 5	$-.4$	17.3	3.2	2.6	23.0	2571
2.4	2.5	1.7	26.7	132.4	(7)	12.2	16.4	31.6	6. 0	24.1	(7)	256.8	13.2	-12.9	230.7	31.4	32.9	295.0	2572
14.6	1.4	. 3	6.0	()	(7)	5.2	1.9	2.9	.6	2.8	(7) 1.0	38.9	1.2	15.3	53.0	5.8	6. 9	65.6	2573 2574
-1.7 4.6	1.5	${ }^{(8)}{ }^{1}$	1.0 .9	(7) 3.0	(8)	14.18	.2 .2	.6 1.9	.3 .3 .3	.8 .7	(7)	7.0 24.1	1.4	-.1 -9.4	6.5 13.6	1.2 3.5	2.0 1.4	18.7 ${ }^{9.6}$	2574 2575
59.7	11.3	1.4	19.8	16.3	(7)	9.5	4.3	21.6	3. 5	10.7	(7)	159.9	5.1	1.5	156.3	17.3	19.9	193.4	2576
5. 5	3.6	2.8	22.0	78.7	(7)	10.6	11.5	29.6	4.5	22.9	(7)	193.3	9.5	$-.5$	183.3	35.3	34.7	253.2	2577
(8)	11.5	33.2	5.7	1.5	(7)	3.0	1.8	6.2	1.5	4.2	(7)	68.8	1.8	2.6	69.6	14.5	15.3	99.4	2578
.5 1.9	1.0 1463	.3 30.8	$\begin{array}{r}6.7 \\ 39.8 \\ \hline\end{array}$	9.9	(7) 6	11.3	${ }_{10} .9$	2.9	8.5	3.2	(7)	27.9	1.4	5.6	27.1 316.0	$\begin{array}{r}6.9 \\ 56.4 \\ \hline\end{array}$	7.8 76.4	41.8 448.8	2579 2580
1.1	146.3 1.9	30.8 .5	39.8 21.1	7.6	$\stackrel{.6}{.}$	11.6 2.5	10.0 4.7	36.0 10.9	8.0 1.8	33.3 7.3	1.2 .6	327.1 59.6	16.8 2.8	5.7 1.4	316.0 58.2	56.4 13.0	76.4 12.5	448.8 83.6	${ }_{2581}$
1.8	1.3	. 5	5.6	17.0	.1	2.5	2.8	3.8	1.8 .7	3. 4	.4	39.8	1.9	-. 1	37.8	7.4	6.7	52.0	2582
5.4	3.0	.9	19.3	45.4	(7)	12.7	8.2	25.5	3.8	15.7	(7) ${ }^{-1}$	145.6	7.2	2.7	141.1	28.7	27.0	196.9	2583
23.5	. 5	.2	4.3	1.9	(8)	12.8	1.1	4.4 4	3.8 .6	1.7 2.9	${ }^{\text {( })} 5$	40.8	. 8	1.0	41.0	12.3	5.4	58.6	2584
2.6	1. 4	. 5	12.0	20.6	(7)	2.9	1.4	7.1	1.7	5.0	(7) ${ }^{-5}$	56.4	2.8	4.2	57.8	12.2	13.8	83.8	2585 2568
15.9	5.4	. 6	10.6	14.0	. 2	15.3	1.9	11.4	1.4	6.0	1.5	84.3	3.6	-1.1	79.6	16.0	16.0	111.6	2586
2.7	. 6	. 9	7.1	18.4	(7)	1.6	2.6	6.2	. 8	5.1	(7)	46.9	2.2	2.9	47.6	8.9	9.9	66.3	2587
1.5	. 9	.1	3.1	2.7	(7)	. 1	. 4	1.5	.2	1.7	(7)	13.6	. 6	. 9	13.9	3.1	4.6	21.6	2588
$-{ }^{-1}$	$\stackrel{4}{4}$	. 1	1.9			1.0	- 9	1.5	. 4	2.2	(7)	8.4	. 4	. 1	8.1	7.3	3.3	18.7	2589
18.3	2.4	2.7	29.3 3.3	48.1		13.1	7.7	27.6	4.3	20.0	$1.3$	175.1	7.6	5.2	172.7	33.2	32.4 2.9	238.3 23.2	2590 2591
$\begin{array}{r}6.8 \\ \hline 8\end{array}$	2.3   3.0	. 3	3.3 6.4	8.3 10.3	${ }^{(7)} 1.3$	1.0 1.0	.7 1.5	1.2 5.7	. 2	3.9	${ }^{(7)} .6$	18.9 41.7	1.0 1.8	- 2.2	17.7 42.1	2.7 7.7	2.9 10.5	23.2 60.2	2591 2592
4.1	6.2	1.7	119.1	28.7		13.6	12.9	37.7	10.1	27.9	1.2	263.2	12.6	5.2	255.8	55.7	49.2	360.7	$\stackrel{2593}{ }$
2.1	. 2	1.1	1.8	5.5	(7)	${ }^{\text {8 }}$ )	1.2	. 7	. 1	. 7	(7) 7	12.7	. 6	. 2	12.3	1.6	1.6	15.6	2594
${ }_{23}^{21.6}$	12.9	2.2	17.8	19.4	(8)	5.3	7.9	21.4	4.6	23.7	(7) 7	137.6	5.6	. 5	132.5	${ }^{28.3}$	24.8	${ }_{365.7}^{185.6}$	2595 2596
23.6	7.6	2.9	36.6	72.1	(7)	27.2	19.2	41.8	7.5	33.8	(7)	275.3	12.4	. 8	263.7	57.5	44.6	365.7	2596
32.0	2.6	1.2	45.5	1.9	. 3	6.3	4.0	13.1	2.2	10.6	1.1	120.8	4.2	-2.5	114.1	22.4	15.3	151.8	2597

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, $1972{ }^{1}$ _Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{Millions of dollars} \& \multirow[b]{3}{*}{Line} \\
\hline \multirow[b]{2}{*}{\[
\underset{\text { earnings }}{\text { Farm }}
\]} \& \multicolumn{3}{|l|}{\(\xrightarrow{\text { Government labor }}\) earnings} \& \multicolumn{8}{|c|}{Private nonfarm labor and proprietary earnings} \& \multirow[b]{2}{*}{\[
\left|\begin{array}{c}
\text { Total } \\
\text { earnings } \\
\text { by place } \\
\text { of work }
\end{array}\right|
\]} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Less } \\
\text { personal } \\
\text { contiol } \\
\text { butions }
\end{gathered}
\]} \& \multirow[b]{2}{*}{Plus residence
adjustment} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Net } \\
\& \text { earnings } \\
\& \text { by place } \\
\& \text { of resi- } \\
\& \text { dence }
\end{aligned}
\]} \& \multirow[b]{2}{*}{\(\underset{\substack{\text { proporty } \\ \text { income }}}{\text { plas }}\)} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Plus } \\
\& \text { transfor } \\
\& \text { payt } \\
\& \text { ments }
\end{aligned}
\]} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Total } \\
\text { personal } \\
\text { income } \\
\text { by } \\
\text { pesee of } \\
\text { residence }
\end{gathered}
\]} \& \\
\hline \& Federal
civilian \& Military \& \[
\begin{gathered}
\text { State } \\
\text { Sand } \\
\text { local }
\end{gathered}
\] \& \begin{tabular}{l}
Manu- \\
facturing
\end{tabular} \& Mining \& \[
\begin{array}{|}
\text { Contract } \\
\text { construc- } \\
\text { tion }
\end{array}
\] \& \[
\begin{gathered}
\text { canspor- } \\
\text { cation } \\
\text { contioni- } \\
\text { oations } \\
\text { and pubichic } \\
\text { utilities }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Whole- } \\
\& \begin{array}{c}
\text { sale and } \\
\text { retati } \\
\text { tradad }
\end{array}
\end{aligned}
\] \&  \& Services \& Other \& \& \& \& \& \& \& \& \\
\hline 8.6
46.3 \& \({ }_{192.3}^{17.9}\) \& 4.1
22.5 \& \({ }^{95.7} 4\) \& \({ }_{9}^{2166.4}\) \& (2) \({ }^{3.1}\) \& 45.1
280.9 \& 50.0
386.7 \& \[
\begin{aligned}
\& 121.9 \\
\& 850.3
\end{aligned}
\] \& \[
\begin{array}{r}
21.3 \\
253.1 \\
\hline
\end{array}
\] \& 94.4
660.0
7.0 \& \({ }^{\text {(7) }}\) 2 3 \& 688.6
\(4,588.1\) \& 35.3
208.4 \& 8.8
-47.3 \& \({ }_{\text {a }}^{6554.1}\) \& \[
\begin{aligned}
\& 16.7 \\
\& 7 \\
\& 7
\end{aligned}
\] \& 573.1 \& \[
\begin{array}{r}
867.9 \\
5,08,98 \\
5,08
\end{array}
\] \& \({ }_{2598}^{2598}\) \\
\hline 42.5 \& 15.6 \& 3.3 \& \& 108.2 \& (9) \& 38.3 \& \& \& \& 70.7 \& (2) \& 4,566.1 \& \& \({ }^{17.9}\) \& \({ }^{3} 557.4\) \& 120.4 \& 107.4 \& \({ }^{5} 788.2\) \& 2600 \\
\hline 6.1
5.0 \& 3.7
9.3 \& 1.3
1.2 \& 4.8
43.3 \& \(\begin{array}{r}8.6 \\ 26.9 \\ \hline 8\end{array}\) \& \({ }^{(2)}{ }_{2}\) \& 6.6
6.9 \& \begin{tabular}{l}
3.8 \\
6.5 \\
\hline
\end{tabular} \& 7.1
18.4 \& \({ }_{3.9}^{1.4}\) \& 4.7.7 \& \({ }^{(7)}{ }_{\text {, }} 9\) \& 48.1
1472 \& \({ }_{7.0}^{2.2}\) \& - 3.8 \& 45.0
144.0 \& \({ }_{29.6}^{10.2}\) \& 8.6
19.9 \& 63.9
193 \& \({ }_{2602}^{2601}\) \\
\hline 1.3
1.4
1 \& 1.2 \& \(\begin{array}{r}1.6 \\ 2.5 \\ . \\ \hline\end{array}\) \& 13.9
7.5
7.5 \& 32.7
30.2 \& (3) \& 4.
1.
1. \& 7.7
3.7
3.2 \& 15.0
8.3
8. \& 2.
1.1
1.6
1.7 \& \begin{tabular}{c}
11.4 \\
4.8 \\
4.8 \\
\hline
\end{tabular} \& (1) \& \(\begin{array}{r}18.15 \\ 99.5 \\ 69.4 \\ \hline\end{array}\) \& 4. 4.6
3.7 \& \(\begin{array}{r}\text {-2.6 } \\ \hline 19.4\end{array}\) \& 86.3
85.3
8.1 \& 10.2
19.4
11.9 \& 16.5
13.2 \&  \& 2603
2604 \\
\hline 5.4 \({ }^{\text {5 }}\) \& 3.88 \& 3.8 \& \(\stackrel{70.9}{20.9}\) \& \begin{tabular}{l} 
30.2 \\
\hline 65.6 \\
\hline 15
\end{tabular} \& \({ }^{1}\) \& \({ }_{7}^{11.1}\) \& 21.4 \& 27.5 \& 4.6 \& ¢ 2.81 \& 1.0 \&  \& 9.2 \& \begin{tabular}{r}
19.4 \\
\hline .5 \\
-4
\end{tabular} \& 85.1
174.6 \& 11.9
24.4 \& 138.2 \& 110.2
272.2 \& \({ }_{2605}^{2604}\) \\
\hline 1.5 \& \({ }^{2.7}\) \& . 5 \& 3.0
4.7 \& 15.9
16.8 \& (8) \& \begin{tabular}{l}
1.0 \\
2.4 \\
\hline 1
\end{tabular} \& 1.5
1.0 \& ¢ 6.7 \& 1.7 \& \({ }^{3} 1{ }^{3}\) \& (7) \& 133.9
40.7 \& 1.8
2.0 \& --4 \& \begin{tabular}{l}
31.7 \\
38.3 \\
\hline
\end{tabular} \& \begin{tabular}{l}
5.7 \\
8.8 \\
\hline
\end{tabular} \& \({ }_{6}^{4.9}\) \& \({ }_{53.9}^{42.3}\) \& \({ }_{2606}^{2606}\) \\
\hline 1.0 \&  \& \(\stackrel{.4}{.4}\) \& -13.1 \& \({ }^{26.1}\) \& (2) \& 10.1. \& 8. 8 \& 19.6 \& ¢, 6.3 \& \({ }^{14.2}\) \& (2) \& - 10.98 \& \begin{tabular}{l} 
5. \\
\\
5. \\
1.8 \\
\hline
\end{tabular} \& 1.3 \& \(\underset{\substack{102.7 \\ 1026}}{\substack{\text { 10. }}}\) \& 21.3
21.
318 \& \({ }^{17.9}\) \& 1409 \& 2608 \\
\hline 1.1 \& \(\begin{array}{r}14.8 \\ .1 \\ \hline 1\end{array}\) \& 1.3
.6 \& \({ }^{2.5}\) \& \({ }_{\substack{\text { (7) }}}^{18.8}\) \& \({ }_{(8)}^{2.7}\) \& \(\stackrel{13.5}{.2}\) \& (7) \({ }^{11.3}\) \& 1.2 \& \(\begin{array}{r}\text { 5.0 } \\ \hline 1 \\ \hline\end{array}\) \& \(\stackrel{23.5}{ }{ }^{6}\) \& \({ }^{(7)}\) \& 243.3
6.2 \& \(\stackrel{13.0}{\text { : }}\) \& \({ }^{(8)}{ }^{-3}\) \& 226.6
6.0 \& 33.8
1.9 \& 1.1 \& \(\stackrel{294.7}{8.9}\) \& 260 \\
\hline - 2.2 \& \begin{tabular}{l}
3.2 \\
i. 2 \\
\hline
\end{tabular} \& 1.1 \& \begin{tabular}{l}
3.7 \\
3.5 \\
\hline
\end{tabular} \&  \& (8) \& . 5 \& 1.7 \& 2.7
2.9 \& .3
.8
8 \& \begin{tabular}{l}
1.4 \\
1.5 \\
\hline 1.5
\end{tabular} \& (1) \& 22.7
20.0 \& 1.1
1.1
1.1 \& - 1 \& 21.5
19.0 \& 3.6
4.3
4.3 \& \begin{tabular}{l}
3.6 \\
3.2 \\
\hline
\end{tabular} \& 28.6
26.4 \& \({ }_{2611}^{2612}\) \\
\hline 7.9
8.7 \& 1.2
12.6 \& \& 5
34.2
34.3 \& 10.6
76.8 \& \({ }^{(3)}{ }^{3}\) \& 1.8
17.1 \& 4.0.1 \& 7.5
55.8 \& 8.8 \& ¢6.0 \& 1.8 \& 45.4.
273.4 \& 1.9
14.1 \& 3.3 \& 43.8
263.0 \& 8.9
82.1 \& 6.9
54.7 \& \& \({ }_{2614}^{2613}\) \\
\hline 7.7 \& \({ }_{\substack{1.1 \\ 3 \\ \hline}}^{1}\) \& . 1 \& 3.0 \& 5.8 \& (i) \& (2) \& 1.7 \& 4.6 \& (7) \& 2.2 \& (\%) \& \({ }^{27.8}\) \& 1.0 \& 2 \& 27.0 \& 3.9 \& \({ }_{3} 3.7\) \& \({ }_{34.5}\) \& \({ }_{265}\) \\
\hline \({ }_{9.0}^{2.1}\) \& \begin{tabular}{l}
3.6 \\
9.0 \\
\\
\\
\hline
\end{tabular} \& \({ }^{\text {6. }} .8\) \& 12.1
18.4 \& \({ }_{47}^{30.1}\) \& () \& 5.1
9.4 \& 5.2
15.8 \& 19.0 \& 2.8
3.7 \& \({ }^{12.5}\) \& (1) \& 94.6

167.0 \& 4.8
8.0 \& $\stackrel{.}{2}$ \& 90.0
159.
159 \& ${ }_{27}^{25.3}$ \& ${ }_{21}^{28.6}$ \& ${ }^{143.9}$ \& ${ }_{2616}^{2616}$ <br>

\hline $\stackrel{5}{5}$ \& | 3.5 |
| :--- |
| 3.5 |
| .5 | \& $\stackrel{1}{6}$ \& 12.4 \& | 4.1 |
| :---: |
| 4.9 |
| 4 |
| 17.9 | \& (2) \& $\begin{array}{r}\text { 9. } \\ \\ 3 \\ 3 \\ \hline\end{array}$ \& ${ }^{8}$ \& 2.9 \& $\begin{array}{r}1.7 \\ \hline 1 \\ \hline\end{array}$ \& (7) \& (7) \& ${ }^{176.6}$ \& | 8. |
| :--- |
| 8 |
| 9 | \& $\cdots$ \& $\begin{array}{r}16.2 \\ 16.6 \\ \hline 1.5\end{array}$ \& 27.2

3.7

1.8 \& 3.7
3.2

1.2 \& -23.4 \& 2618 <br>
\hline 18.7 \& 5.9 \& 1. 1 \& ${ }_{20.7}^{10.9}$ \& 17.5
108.2 \& (9) ${ }^{6}$ \& $\begin{array}{r}3.8 \\ 13.2 \\ \hline\end{array}$ \& 4.0
12.7 \& 13.3
29.7 \& 1.9
5.1 \& 9.8
20.0 \& (7) ${ }^{9}$ \&  \& 3.3
11.6 \& -8. ${ }_{-8}$ \& 63.5
217.6 \& 16.8
32.5 \& 17.9
32.2 \& 98.2
28.4 \& ${ }_{2620}^{2619}$ <br>
\hline 25.6 \& 2.5 \& $\cdot{ }^{4}$ \& ${ }_{8}^{8.5}$ \& (7.7 \& ${ }^{8} .1$ \& 3.8 \& 4.1 \& ${ }_{15}^{15} 1.1$ \& 1.9 \& 8.0 \& 1.7 \& 81.4 \& 2.8 \& -4.4 \& ${ }_{74}{ }^{4} .2$ \& ${ }^{11} 2$ \& 9.8 \& 95.3
16.3 \& ${ }_{2622}^{2621}$ <br>
\hline 4.5 \& -8 \& ${ }^{(9)}$ \& 1.1 \& ${ }^{(8)}$ \& (8) \& ${ }^{(7)}$ \& 4 \& 1.0 \& (3) ${ }^{-3}$ \& .4 \& \& 9.2 \& .$_{3}$ \& . 2 \& 818.7 \& 2.1 \& 1.0 \& 11.8 \& 2623 <br>

\hline \% 28.0 \& ${ }_{12.4}^{1.4}$ \& $\stackrel{1.4}{9}$ \& -7.6 \& | 17.2 |
| :--- |
| 24.2 |
| 1 | \& (\%) \& ${ }_{7}^{1.4}$ \& $\begin{array}{r}1.7 \\ 11.4 \\ \hline 1\end{array}$ \& $\begin{array}{r}7.6 \\ 24.4 \\ \hline\end{array}$ \& 3.1 \& $\begin{array}{r}6.5 \\ 15.0 \\ \hline 1.4\end{array}$ \& (7) \& 53.7

150.9 \& 2.3
6.3
6. \& 1.2 \& $\begin{array}{r}51.5 \\ 145.8 \\ \hline 1.8\end{array}$ \& 9.8
20.7 \& ${ }_{23.6}^{10.0}$ \& 71.3
190.1 \& ${ }_{2625}^{2624}$ <br>
\hline 5.9 \& 1.7 \& 2 \& 9.0 \& 16.3 \& (3) \& 6.0 \& 6.7 \& 9.4 \& 1.3 \& 8. 6 \& (7) \& ${ }^{133.0}$ \& 3.0 \& $\bigcirc$ \&  \& 10.2 \& 10.2 \& 79.5 \& 2626 <br>
\hline 3.1
4.3 \& 1.3
4.4 \& 1 \& 2.5 7.6 \& 2.3
12.9 \& (8) \& $\stackrel{.9}{8.8}$ \& 4.5 \& ${ }_{9.9}^{2.3}$ \& ${ }_{1.6}{ }^{\text {a }}$ \& 8.8 \& \& 14.9
58.6 \& $\stackrel{\cdot 6}{ }{ }^{\text {8 }}$ \& ${ }_{2.1}^{1.1}$ \& $\begin{array}{r}15.4 \\ 57.9 \\ \hline\end{array}$ \& 4.0
12.7 \& $\begin{array}{r}3.6 \\ 10.8 \\ \hline\end{array}$ \& 23.0
81.4 \& ${ }_{2628}^{2627}$ <br>
\hline -8.9 \& 1.18 \& ${ }_{1.1}^{(9)}$ \& 1.1
10.1 \& - 32.9 \& (8) \& 4. ${ }^{1}$ \& 4.5 \& 14.23 \& 3. ${ }^{1}$ \& $\begin{array}{r}14.3 \\ 14 . \\ \hline\end{array}$ \& ${ }^{(7)} .7$ \& ${ }_{95.7}^{4.7}$ \& $\cdot 3$
4.3
4 \& 15.4 \& 3.7
106.8 \& 1.2
26.3 \& 2.7 \& 5.6
155.6 \& $\underset{2630}{2629}$ <br>
\hline 1.9
-.2 \& 51.6
23.8 \& 75.5
3.6 \& ${ }_{74.1}^{115.4}$ \& 48.5
36.7 \& 3.1 \& 111.1
61.9 \& 87.2
59.5 \& 111.2 \& 55.5
37.4 \& 502.2
188.8 \& 2.5 \& ${ }_{\text {1, } 220.8}^{601.3}$ \& 51.3
26.9 \& 50.6
-4.0 \& 1,2250.1 \& ${ }_{109.1}^{131.1}$ \& 120.1
64.7 \& 1,476.3 \& ${ }_{2632}^{2631}$ <br>
\hline 3.7 \& 3.1 \& ${ }_{6} 6$ \& ${ }_{3 .}^{5.3}$ \& ${ }_{3.1}^{1.1}$ \& \& 1.7 \& \& ${ }_{3}^{4.3}$ \& \& ${ }_{50}^{4.1}$ \& \& 31.9 \& 1.0 \& 1.6
-30.3 \& 32.5 \& 4.4 \& 5.8 \& 42.7 \& 2633 <br>
\hline 18.5 \&  \& (8) 3 \& 8.9 \& \& \& ${ }_{5}^{4.0}$ \& ${ }_{7}^{2.5}$ \& 8.4 \& ${ }^{2.1} 8$ \&  \& \& 71.2
67.6 \& 2.9 \& -30.
-2
-4 \& 38.0
65.4 \& 11.2
10.4 \& ${ }_{6.4}^{4.1}$ \& 53.2
82.2 \& ${ }_{2635}^{2634}$ <br>
\hline - $\begin{array}{r}-1.6 \\ 2.6\end{array}$ \& (8) \& ${ }^{(8)} .1$ \& $\cdot{ }^{3}$ \& (8) ${ }_{(0)}^{\text {(8) }}$ \& (1) \& ${ }_{(7)}^{(7)}$ \& \& $\stackrel{2}{2}$ \& (8) \& ${ }^{(8)} .3$ \& ${ }^{(7)}{ }^{1}$ \& 7.4 \& . 1 \& -. 4 \& - -1.6 \& ${ }^{-1}$ \& $\stackrel{3}{3}$ \& 7.4 \& ${ }_{2639}^{2636}$ <br>
\hline 6.1
1.9

1.9 \& 1.0 \& \& | 3.5 |
| :--- |
| 1.3 | \& \& \& \& \& \& \& 3.8 \& ${ }^{(7)}$ \& \& 9 \& \& \& .3

3.3
1.0 \& 2.9 \& 29.6 \& <br>

\hline | 1.9 |
| :--- |
| .3 | \& $\stackrel{.9}{2}$ \& (9) ${ }^{-1}$ \& | 1.3 |
| :--- |
| 2.2 |
| 3 |
| 2 | \& (8) \& ${ }^{(3)} \cdot 2$ \& ( ${ }_{(1)}$ \& . 8 \& 1.2 \& (7) ${ }^{2}$ \& 1.4 ${ }^{4}$ \& (2) ${ }^{1}$ \& $\begin{array}{r}12.1 \\ 6.0 \\ \hline 1\end{array}$ \& $\stackrel{5}{3}$ \& $\begin{array}{r}-.5 \\ \hline .5 \\ \hline\end{array}$ \& | 11.1 |
| :--- |
| 6.2 |
| 1 | \& \& $\begin{array}{r}1.9 \\ 1.5 \\ \hline 1\end{array}$ \& 13.1

8.8
3.8 \& ${ }_{2640}^{2639}$ <br>
\hline ${ }^{4.5}{ }^{4} 5$ \& 15.5 ${ }^{.}$ \& 2.15 \& 3.8
2.9
2.8 \& (7) ${ }^{2} .4$ \& ${ }^{(7)} .6$ \& - ${ }^{9}$ \& $\begin{array}{r}1.1 \\ \hline\end{array}$ \& 2.6
1.9 \& (7) ${ }^{3}$ \& 1.8
3.0 \& (8) \& 25.4
27.7 \& - 1.5 \& 1.9
-.2 \& 26.4.
26.0 \& 4.6

1.4 \& | 4. |
| :--- |
| 4.6 | \& 34.9

31.1 \& ${ }_{2642}^{2640}$ <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>

\hline . 4 \& 5.4 \& | 1.2 |
| :--- |
| .3 | \& 3. 3.3 \& 3. ${ }^{1}$ \& 3.7 \& 1.8

5.9 \& $\stackrel{1.3}{2.9}$ \& 8.0 \& ${ }_{1.8}{ }^{(7)}$ \& ${ }_{12.4}^{61.4}$ \& ${ }^{(2)}{ }^{1}$ \& 77.3

75.3 \& | 3.5 |
| :--- |
| 3.8 |
| 1 | \& -62.3

-1.3 \& 11.5
70.2 \& ${ }_{1}^{1.5}$ \& $\begin{array}{r}2.0 \\ 10.3 \\ \hline 1.4\end{array}$ \& 15.1 \& ${ }_{2644}^{2643}$ <br>
\hline ${ }^{5} 5.5$ \& \& \& 1.5 \& (\%) \& 1.4 \& \& \& 2.0 \& \& 1. 1.5 \& . 2 \& 14.7 \& 4 \& \& 14.4 \& 1.0 \& 1.4 \& 16.7 \& ${ }^{2645}$ <br>
\hline ${ }_{2}{ }_{2}{ }^{(8)}$ \& ${ }_{1.6}$ \& ${ }^{(8)} .2$ \& 4.4 \& (1) \& (\%) \& ${ }^{(2)} 2.4$ \& 2.2 \& 1.0
4.2 \& ${ }^{(8)} .4$ \& ${ }^{3} 3$ \& ${ }^{(8)} .1$ \& 28.9
38.4 \& 1.6 \& (8) $^{.2}$ \& 3.0
36.8 \& 3.0 \& 3.7 \& 4.0
43.6 \& ${ }_{2647}^{2646}$ <br>
\hline \& ${ }_{152}^{90.2}$ \& ${ }_{44}^{127.6}$ \& ${ }^{601.4}$ \& 1,480.4 \& ${ }_{725}^{35.6}$ \& \& ${ }_{189}^{181.2}$ \& 804.3 \& - 273.3 \& 811.2
11.8
0 \& 19.6
13.5 \& 4, 4800.5 \& 256.0
54.3 \& 786.0 \&  \& 1,014.8 \& 716.5
178.6 \& 7,061.8 \& ${ }_{2649}^{2648}$ <br>
\hline ${ }_{285}^{17.5}$ \& ${ }_{46.2}^{152.0}$ \& ${ }_{9}^{44.3}$ \& ${ }^{1946.8}$ \& cine 103.3 \& 72.9 \& ${ }_{83.9}^{47.0}$ \&  \& ${ }_{2615}^{160.7}$ \& ${ }^{391.6}$ \& 182.3 \& 13.6 \& 1, $1,220.5$ \&  \& ${ }_{-10.2}^{20.9}$ \& 1, $1,346.1$ \& ${ }_{\text {117. }}^{136}$ \& cinis \& 1, $1,868.0$ \& ${ }_{2650}^{2649}$ <br>
\hline - 63.2 \& ${ }_{823.9}^{82.9}$ \& ${ }^{357.1}$ \& 3, 525.0 \& 8 8,879, ${ }^{\text {8, }}$ \& 138.6 \& 1.497. 4 \& 2,2972.9 \& 5,690.9 \& 2, 0.3 .3 \& 6, ${ }^{138.4}$ \& 55.3 \& ${ }^{12} 5.58 .15$ \& 1,648.5 \& -1,192. 9 \& 28, 683.7 \& 5, 12.85 \& 4,22.5. \& 38.044.7 \& ${ }_{2651}^{2655}$ <br>
\hline 880.2 \& 138.8 \& 53.3 \& 156.4 \& ${ }_{146.4}$ \& 19.8 \& ${ }_{65.6}$ \& 46.7 \& 1863.0 \& ${ }_{33} 16.7$ \& 128.4 \& 10.2 \& 1,042.6 \& ${ }_{54.6}$ \& 182.6 \& 1,170.6 \& 181.9 \& 193.3 \& 1,545.9 \& ${ }_{2653}$ <br>
\hline ${ }^{1250.4}$ \& ${ }_{334.3}^{161.3}$ \& ${ }^{200.9}$ \& ${ }_{7}^{558.0}$ \& - 574.4 \& ${ }^{23.9}$ \& ${ }_{2202}^{208.2}$ \& ${ }_{\text {cher }}^{219.0}$ \& ${ }^{513.9}$ \& 115.7
125.0 \& 524.8
376.2 \& 19.1
8.8 \& (3,243.2 \& 167.0
161.6 \& ${ }_{-1.9}^{248}$ \&  \& 708.5
413.3 \& 765.9
56.0 \& 4,799.8 \& ${ }_{2655}^{2654}$ <br>
\hline ${ }_{19}^{19.6}$ \& 60.8 \& ${ }^{232.4}$ \& 97.1 \& 75.0 \& 7.5 \& 39.4 \& 436.6 \& 140.8 \& ${ }^{23.9}$ \& 107.3 \& 7.3 \& 1,029.6 \& 36.1 \& -1.6 \& ${ }^{\text {9931.9 }}$ \& 201.8 \& 145.4 \& 1,339.1 \& 2656 <br>
\hline 53.2 \& 379.2 \& 960.8 \& 613.4 \& 705.0 \& 7.5 \& 358.1 \& 264.0 \& 671.3 \& 244.5 \& 781.3 \& 21.9 \& 5,060. 1 \& 229.1 \& 1.0 \& 4,832.0 \& 1,041.2 \& 948.4 \& 6,821. 6 \& ${ }^{265}$ <br>
\hline ${ }^{74.6}$ \& 915.3 \& 323.8 \& 1,927. 1 \& 2,333.5 \& (7) \& 889.0 \& 1,728.8 \& 2,581.3 \& 1,176.7 \& 2, 511.3 \& (\%) \& 14,549. 5 \& 759.7 \& -265.0 \& 13,524.8 \& 2, 832.1 \& 2,053.7 \& \& 2658 <br>
\hline 31.3
37.9 \& ${ }_{44.9}^{126.1}$ \& 560.9 \& 501.7 \& 1, 1041.0 \& 9. ${ }^{6}$ \& ${ }^{266.6} 46$ \& ${ }_{3}^{223.3}$ \& 640.8
137.9 \& ${ }^{178.6}$ \&  \& (17) ${ }^{11.3}$ \& 4, 8741.8 \& ${ }_{4}^{232.4}$ \& ${ }_{-5.3}^{70.0}$ \& 4, 250.9 \& -624.1 \& 558.7 \&  \& ${ }_{2650}^{2659}$ <br>
\hline ${ }_{31} 31.3$ \& 3.6 \& 2.8 \& ${ }^{53.3}$ \& 58.1 \& 1.2 \& 27. 1 \& ${ }^{21.6}$ \& ${ }^{64.4}$ \& 12.3 \& ${ }_{57.4}^{57}$ \& 2.7 \& 335.7 \& 17.2 \& ${ }^{36} .8$ \& ${ }^{355.3}$ \& 103.4 \& 102.0 \& ${ }^{1}$, 565.7 \& ${ }_{2661}^{2665}$ <br>
\hline 14.0
159.5 \& ${ }_{72}^{11.7}$ \& \& 105.9
158.2 \& 73.1
187.1 \& ${ }^{3} \mathbf{3} 5$ \& 42.9
53.8 \& ${ }_{78.2}$ \& ${ }_{159.3} 10.2$ \& ${ }_{32.6}^{40.6}$ \& ${ }_{113.4}$ \& 7.8 \& \& 29.8
50.0 \& ${ }_{-4.7}$ \& - ${ }_{9}^{5888.8}$ \& 1651.8 \& ${ }^{1888.5}$ \& \& ${ }_{2663}^{2662}$ <br>
\hline 39.2 \& 166.9 \& 131.4 \& 134.2 \& 79.9 \& (7) \& 34.4 \& 40.9 \& ${ }_{97.3}$ \& 18.9 \& 93.4 \& ${ }^{(7)}$ \& 839.9 \& 40.3 \& 38.5 \& 838.1 \& 128.7 \& 181.6 \& 1,148.4 \& 2664 <br>
\hline \& \& $\mathrm{P}^{(8)}{ }_{3}$ \& ${ }^{11 .}{ }^{6}$ \& (1) 7.1 \& ${ }_{2.3}^{(7)}$ \& ${ }_{1.6}{ }^{(7)}$ \& ${ }^{(8)} 2.3$ \& ${ }^{(7)} 4.9$ \& ${ }^{(7)} .9$ \& 3. ${ }^{8}$ \& (7) 4 \& 1.8
35.5 \& 2.1 \& - 1 \& 1.8
32.5 \& 9.2 \& 10.4 \& 2.4
51.6 \& ${ }_{2668}^{2668}$ <br>
\hline ${ }^{43.4}$ \& 3. 5 \& 2.1 \& 59.2 \& 29.0. \& ${ }^{2} .1$ \& 12.9 \& 23.8 \& 50.2 \& 9. 9 \& 40.8 \& 1.8 \&  \& ${ }^{13.8}$ \& 2.3 \& ${ }_{\text {264. }}^{26.5}$ \& 68.7 \& 83.3 \& ${ }_{416.5}^{416.5}$ \& ${ }_{2667}^{2685}$ <br>
\hline ${ }_{45.0}$ \& .8 \& . 4 \& 6.4 \& ${ }_{2.2}^{6.8}$ \& (1) \& ${ }^{2} .5$ \& 2.2 \& 5.8 \& . 8 \& 2.8 \& (7) \& 31.5
67.8 \& 1.4 \& -1. 1 \& 30.8
66.3 \& 11.0 \& ${ }_{7}^{11.2}$ \& ${ }_{84.6} 8$ \& ${ }_{2669}^{2668}$ <br>
\hline ${ }_{2}^{1.4}$ \& 1.0
4.5 \& 1.8 \& ${ }^{7.1}$ \& 17.2

10.9 \& (1) \& $\begin{array}{r}1.2 \\ 12.8 \\ \hline 1\end{array}$ \& | 3.2 |
| :--- |
| 5.6 |
|  | \& 7.0

21.8 \& .8
6.4 \& ${ }^{6.1}$ \& (1) \& 47.8

106.7 \& 2.5 \& $-{ }^{-2}$ \& 45.1 \& $\begin{array}{r}6.5 \\ \\ \hline 8.7\end{array}$ \& 10.3 \& 61.9 \& ${ }_{2671}^{2670}$ <br>
\hline ${ }_{23.1}^{23.1}$ \& 3.0 \& ${ }^{1} 3$ \& 9.3 \& 5.4 \& ${ }^{\text {a }}$. 3 \& 1.8 \& $\stackrel{\text { 2.4 }}{2.4}$ \& 10.0 \& $\begin{array}{r}6 \\ \hline 9 \\ 8 \\ \hline\end{array}$ \& 5.3 \& 1.3 \& 103.0 \& ${ }_{2}^{2.4}$ \& ${ }_{2}{ }_{2} .0$ \& 146.9
62.6 \& ${ }_{10} 10.3$ \& 10.8 \& ${ }_{83}^{18.8}$ \& 2672 <br>
\hline 212.7
246.0 \& ${ }_{12.1}{ }^{7.4}$ \& 3.1 \& 51.5
43.8 \& 96.5
14.4 \& (3) \& 14.8
7.0 \& 24.8
11.2 \& 53.9
43.0 \& (7) ${ }^{8.5}$ \& 43.1
19.3 \& (\%) \& 319.8
413.8 \& 17.1
10.2 \& $\stackrel{(8)}{-.5}$ \& 302.7
403.1 \& ${ }_{29.5}^{50.1}$ \& 64.6
43.5 \& 417.5
476.0 \& ${ }_{2674}^{2673}$ <br>
\hline
\end{tabular}

Table 2.-Personal Income by Major Source for SMSA's and Non-SMSA Counties, 1972 1_Continued

Millions of dollars																			Line
$\underset{\text { earnings }}{\text { Farm }}$				Private nonfarm labor and proprietary earnings								Total by place of work	$\left\lvert\, \begin{gathered} \text { Less } \\ \text { persontal } \\ \text { conti- } \\ \text { butions } \end{gathered}\right.$	Plusresidenceadjustand ment	Netearningsby placeof resi-dence	Plus property income	$\underset{\substack{\text { Plansfer } \\ \text { pay- }}}{\substack{\text { Plus }}}$ ments	Totalpersonalincomenbyplace ofresidence	
	Federal	Military	$\begin{aligned} & \text { State } \\ & \text { and } \\ & \text { local } \end{aligned}$	Manufacturing	Mining	$\begin{aligned} & \text { Contract } \\ & \text { construc- } \\ & \text { tion } \end{aligned}$	Transpor- tation, communi- cations. and public utilities	Wholesale and retail trade		Services	Other								
3.7	2.4		11.6	${ }^{(7)}$	8.1	2.1	4.8	10.3	1.2	7.3	(7)	52.9	2.8		50.7	10.6	10.9	72.1	2675
13.3	7.5	29.8	22.8	24.5	(7)	3.9	7.7	24.7	3.5	14.2	(7)	156.3	6.7	$-2.7$	146.9	24.2	32.0	203.1	2676
5.6 -8	${ }^{15.9}$	3. ${ }^{\text {. }}$	$\begin{array}{r}8.2 \\ 12.1 \\ \hline\end{array}$	1.2 5.8	(7)	2.4	2.0	8.3 5.3	1.5	8.4   4.6	(7)	39.4	2.1	${ }_{\text {(8) }}^{1.4}$	38.7	20.6	24.6	83.8	${ }_{2677}^{2677}$
45.4	2.0	. 8	18.5	17.5	(7)	3.9	4.2	17.0	2.2	10.9	(7)	124.9	4.8	5.0	125.1	21.6	28.4	175.1	2679
1.6	3.5	$\stackrel{.}{ }$	4.1	(7)	(7)	(7)	. 2	(7)	(7)	7.6	(7)	20.3	1.1	$-.6$	18.6	4.0	5.0	27.6	2680
2.7 76.0	3.2	2.7 46	31.9   43	48.8	(7)	5.0	11.9	24.7	3.8	19.2	(7)	155.4	8.6	$-.3$	146.5	28.4	37.1	21.1	${ }_{2681}^{2682}$
76.0	9. 6	46.9	43.8	22.8	(7)	12.0	14.8	41.3	10.3	23.7	(7)	305.1	11.3	9.3	303.1	42.1	61.7	407.0	2682
.8 -.5	2.2 .7	$\stackrel{.}{ } 1$	2.6 4.6	(7)	(7)	$\begin{array}{r}.4 \\ 2.9 \\ \hline\end{array}$	$\begin{array}{r}2.3 \\ 2.5 \\ \hline\end{array}$	2.4   2.8   1	.5 .6	2.2 2.7	${ }^{(7)} .1$	17.1 16.7	1.0 1.0	.7 -.8	16.8 14.9	3.7 2.5 2.5	4.6 4.6 2.3	25.1 19.7	2683 2684
-1.0	3.5	. 7	13.2	7.2	(7)	7.3	4.5	13.1	1.6	10.6	(7)	61.1	3.7	5.3	62.7	25.6	25.9	114.2	2685
$-2.3$	3.3	.7	6.6	10.4	(7)	1.1	6.7	4.7	. 9	4.0	(7)	36.5	2.2	-1.0	33.3	6.8	9.2	49.2	2686
6.9	${ }^{.6}$	${ }^{3}$	7.1	16.0	${ }^{(7)}$	2.1	1.9	6.3	1.2	3.4	(7)	46.7	2.4	2.7	47.0	12.8	10.3	70.1	${ }_{2688}^{2688}$
-1.5	5.8	5. 4	76.4	$\stackrel{13.1}{ }$	1.3	33.7	25.5	45.8	8.4	40.9	2.3	260.2	15.4	14.6	259.4	73.7	76.7	409.7	${ }_{2689}^{2688}$
-3.2	10.3	${ }_{(8)}^{1.6}$	45.6	${ }_{\text {(7) }} 50.1$	(7)	16.0	20.8	42.8	6.7	34.8	${ }_{(8)}^{(8)}$	228.3 6.8	13.2	1.3	216.4 6.6	$\begin{array}{r}38.7 \\ 1.7 \\ \hline\end{array}$	56.5 3.6	311.6 11.8	2689
2.9	7.8	2.1	15.0	29.3	(7)	7.9	14.5	12.8	2.9	9.3	(7)	105.8	5.9	-3.4	96.5	18.0	20.4	134.9	2691
39.1	. 9	1.1	14.3	10.6	(7)	8.8	4.6	18.8	3.7	14.9	(7)	118.8	4.6	25.5	139.7	23.4	22.9	186.0	2692
2.8	3.2	1.8	15.3	24.6	(7)	4.1	5.7	10.0	1.6	9.5	(7)	79.3	4.4	1.3	76.2	16.1	18.8	111.2	${ }_{2693}$
${ }^{(8)}$	2.2	. 1	3.1	7.4	(7)	1.3	1.7	1.9	. 3	2.0	(7)	20.2	1.2	${ }^{(8)}$	19.0	3.4	5.5	27.9	2694
150.9	8.4	3.4	${ }^{90.8}$	${ }^{65.5}$	(7) 1.1	${ }_{\text {24. }}^{5} 5$	30.9 3	98.9	11.1	50.6	13.9	$\underset{53.9}{54.9}$	$\stackrel{23.3}{3}$	${ }_{\text {(8) }}^{14} 3$	532.9	${ }^{88} 8.6$	114.8 16.4	736.4 80	${ }_{2696}^{2695}$
21.3	8.8 10.0	52.4	11.3 17.2	11.5	${ }^{(7)} .1$	6.4 6.9	3.8 12.6	8.8 19.0	3.1	11.0	${ }^{(5)}$	53.5 165.7	3.0 5.4	-23.9	53.5 136.4	13.2 16.3	16.4 26.6	179.2	${ }_{2697}^{2696}$
(8)	115.4	114.7	123.0	16.2	13.0	86.1	73.9	107.2	31.8	83.3	2.6	767.3	35.4	$-5.0$	726.9	31.7	36.6	795.2	2698
																			2699
	8.6	27.0	2.7	5.4	. 3	5.1	(7)	2.9	(1)	1.4	1.0	55.1	1.6	. 1	53.6	8.4	2.2	64.3	2700
(8)	1.9	. 9	.9	${ }^{8} 8$	12.4	4.9	2.5	(7)	(1)	4.0	(8)	28.1	1.0	. 6	27.7	.2	1. 5	29.2	${ }_{2701}^{2701}$
(8)	5.1 2.5	1.1 4.0	2.6 2.1	${ }^{(7)} 2.6$	(7)	1.0 .5	1.6 1.0	1.2 .9	(7)	$\begin{array}{r}2.0 \\ .4 \\ \hline\end{array}$	${ }^{(8)} 1.1$	15.2 15.4	.9	${ }^{8} 8^{.4}$	14.7 14.8	.$_{1.1}^{2}$	2.5	19.4	${ }_{2703}^{2702}$
(8)	2.7	4.4	2.7	1.4	1.2	. 9	1.4	. 7	${ }^{\text {. } 2}$	. 3	1.15	12.5	$\stackrel{.}{4}$	${ }^{3}$.	12.4	1.6	2.6	13.7	2704
	30.0	54.6	24.2	3.5	(7)	24.3	30.3	25.4	6.0	26.5	(7)	228.6	10.0	3.1	221.7	14.3	12.5	248.4	2705
${ }^{(8)}$	. ${ }^{3}$	${ }^{2} .1$	2.5 59	1.4	(7)	$\stackrel{.}{9}$			(7)	.4 7	${ }^{15}$	5.7 113	. 3	- ${ }^{.2}$	5.6	${ }^{+6}$	${ }^{19} 4$	${ }^{7} 210$	${ }_{2707}^{2706}$
$-1$	1.7	4.2	5.8.8	12.5 7.2	8.4	9.9	().0	${ }_{5}{ }_{5.6}$	${ }^{1} 1.0$	7.3 4.7	1.0	${ }^{113.6}$	5.6 2.4	-1.4 -1.9	106.6 51.0	8. ${ }^{1}$	7.4 4.7	122.1 59.6	2707 2708
${ }^{8} 8$	2.2	1.8	10.9	15.0	. 1	${ }^{6} 6$	6.7	6.2	1.4	4.1	(8) 7	55.8	2.6	-3.5	49.7	4.5	5.7	60.0	2709
${ }^{(8)}$	3. 5	1.0	1.5	.$_{19}{ }^{2}$		(8)	1.7	. 6	(7)	(7)	${ }^{(8)}$	9.0	. 6	. 3	8.7	. 2	2.6	11.4	2710
(8)	3.5	4.2	3.9	10.4	(7)	2.2	4.1	3.1	(8)	1.8	8.7	42.7	1.6		41.5	1.7	3.0	46.2	${ }_{2712}^{2711}$
${ }^{(8)} 1$	1.6   1.4   1	2.0 .4	$\begin{array}{r}\text { 5. } \\ \hline 8\end{array}$	${ }^{(7)} 5$	${ }^{(3)} .4$	.8 2.4	.4 2.4	.2 3.4	${ }^{(8)} .9$	(7) 2.9	(8) ${ }^{2}$	6.2 21.2	.3 1.0	${ }^{(8)} 3.5$	5.9 23.7	4. 1	1.8 3.7	7.9 32.0	${ }_{2713}^{2712}$
${ }^{(8)}$	1.4 2.9	1.4	1.9	(9) ${ }^{\circ}$	.${ }^{4}$	1.4	1.3	1.2	.9	6.3	(7)	16.7	1.6	${ }^{(8)} 3$	16.1	$\begin{array}{r}4.6 \\ .4 \\ \hline\end{array}$	1.8 3.0	32.0 19.5	${ }_{2714}^{2713}$
(8)	1.1	1.1	. 5		${ }^{8}$	()	. 3	. 3	(7)	${ }^{2} 2$	. 2	5.1	.2	${ }^{(8)}$	4.9	. 2	1.2	6.3	2715
${ }^{(8)}$	.4	. 2	.7	6.8	(8)	( ${ }^{\text {( })}$	. 1	. 1	$\left.{ }^{8}\right)$	${ }^{(7)}$	. 2	8.8	.4	4.1	12.5	. 5	1.2	14.2	2716
(8)	5.1	1.8	1.0 2.3	1.1 5.9	${ }^{\text {(3) }} 1$	4.2	3.78	1.3	1.0	3.8	.7	6.9 31.6	1. 6	.$_{1}$	6.8 30.1	${ }_{2.3}^{1.2}$	2.2 2.8	10.2 35.2	2717 2718
							1.2	. 7		.2.7		9.0	. 3		8.7	6			2719
(8)	3.6	8.2	1.4	(7)	(7)	. 4	. 6	. 6		. 5	${ }^{(8)}$	15.3	. 5		15.3	4	1.5	17.2	2720
(8)	. 6	. 8		(8)		${ }^{(7)}$	3.6	.2	(7)	$\cdot 1$	(8)	6.0	. 3	. 3	6.0	$\stackrel{2}{2}$	1.7	7.9	${ }^{2721}$
(8)	1.1	1.2	1.1	(7)	${ }_{(8)}^{(8)}$	2.4	1.2	.7	${ }^{(8)} 1$	. 7	(8)	7.6	. 3	${ }^{(8)}{ }^{3}$	7.4	6.2	2. 2	15.8	${ }_{2722}^{2722}$
(8)	1.5	$\begin{array}{r}1.4 \\ \hline 6\end{array}$	1.3	5. ${ }^{4}$		3.3	3.1	$\stackrel{.4}{4.0}$		$\stackrel{.7}{2.3}$	${ }^{(8)} 1.9$	${ }^{6.2}{ }^{6.2}$	1.3 1.1		5.9 22.2	2.1	1.8 2.5	7.7 26.7	2723 2724
(8)	4.4	5. 6	1.6	${ }^{.} .1$	.1	3. 7	1.1	. 8	.2	2.3 .7	(8) 1.9	15.3	${ }^{1 .} 6$	$-2.5$	12.2	.8 .8	3. 2	16.1	2725
47.1	362.0	378.3	329.1	164.1	. 1	278.0	247.5	436.2	170.3	460.5	7.4	2,880. 5	144.8	6.3	2,742.0	425.3	281.8	3,449.2	2726
20.6	5.3	3.8	23.4	29.1		24.6	16.1	36. 8	6.7	34.6	(7)	204.3	10.6	-6.4	187.3	43.7	33.8	264.9	2727
16.0 23.4	3.2 1.9	2.1 2.3	15.7 27.7	11.9 18.5	(8)	4.9 15.2	9.0 11.8	12.2 21.1	2.3 4.5	18.8 25.4	${ }^{(7)} 1.9$	97.0 153.7	4.9 8.2	$\xrightarrow[-.1]{ }$	92.3 145.4	16.6 27.1	15.3 26.3	124.2 198.9	${ }_{2729}^{2728}$

## Appendix A.-List of State Agencies and Universities Receiving Bureau of Economic Analysis' Local Area Personal Income Estimates

Alabama	Georgia
Policy Studies Division	Georgia Department of Community Development
Alabama Development Office ${ }_{\text {Room }}$ 520-State Office Building	Sixth Floor-Trinity/W ashington Building
Room 520-State Office Building   Montgomery, Ala. 36104	P.O. Box 38097 Atlanta, Ga. 30334
Center for Business and Economic Research	Division of Research
The University of Alabama	University of Georgia
P.O. Box KK	208 New College
University, Ala. 35486	Athens, Ga. 30601
Alaska	Bureau of Business and Economic Research
Institute of Social, Economic and Government Research	Georgia State University
University of Alaska College, Alaska 99701	33 Gilmer Street, S.E. Atlanta, Ga. 30303
Alaska State Planning and Research Division	Hawaii
Office of the Governor-Pouch A	Hawaii Department of Planning and Economic Develop-
Juneau, Alaska 99801	$\begin{aligned} & \text { ment } \\ & \text { P.O. Box } 2359 \end{aligned}$
Department of Economic Development	Honolulu, Hawali 96804
Alaska Division of Economic Enterprise	
Pouch EE	Idaho
Juneau, Alaska 99801	Department of Economies The College of Idaho
Arizona	Caldwell, Idaho 83605
Bureau of Business and Economic Research	
Arizona State University	Center for Business and Economic Research
Tempe, Ariz. 85281	Boise State College 1907 Campus Drive
Arizona Department of Economic Planning and Development	Boise, Idaho 83707
Suite 1704-3003 North Central Avenue	Illinois
Phoenix, Ariz. 85012	Division of Research and Development   Department of Business and Economic Development
Division of Economic and Business Research	222 South College Street
University of Arizona Tucson, Ariz. 85721	Springfield, Ill. 62706
,	Bureau of Economic and Business Research
Arizona Department of Economic Security	University of Illinois
${ }_{1717}$ West Jefferson	Urbana, Ill. 61801
Phoenix, Ariz. 85005	
	Illinois State Development Planning Office
Arkansas	Bureau of the Budget
Arkansas Department of Planning	216 East Monroe Street-Third Floor
Capitol Hill Building   Little Rock, Ark. 72201	Springfield, Ill. 62706
	Indiana
Community and Government Affairs Section	Indiana State Manpower Planning Agency
Industrial Research and Extension Center	215 No. Senate Avenue
University of Arkansas P.O. Box 3017-1201 McAlmont Street	Indianapolis, Ind. 46204
Little Rock, Ark. 72203	Division of Research
	Indiana University
California ${ }^{\text {a }}$ (nstitute Business and	Bloomington, Ind. 47401
Institute of Business and Economic Research University of California-Berkeley	Iowa
156 Barrows Hall	Office of the Dean
Berkeley, Calif. 94720	College of Business Administration
Department of Finance	Iowa City, Iowa 52240
State of California	
Sacramento, Calif. 95814	Iowa Office for Planning and Programming 523 East 12 th Street
UCLA Business Forecasting Project	Des Moines, Iowa 50319
University of California-Los Angeles	
Los Angeles, Calif. 90024	Kansas   Kansas Economic Development Commission
Colorado	Department of Economic Development
Graduate School of Business Administration	State Office Building
University of Colorado Boulder, Colo. 80302	Topeka, Kans. 66612
	Kentucky f Busines Development and Government
Division of Employment	Office of Business Development and Government
Colorado Department of Labor and Employment 1210 Sherman Street	University of Kentucky
Denver, Colo. 80203	Lexington, Ky. 40506
Connecticut	Urban Studies Center
Planning and Budgeting Division	Economic Studies
Office of State Planning	University of Louisville
${ }_{340}^{\text {Department }}$ Capital Avenue ${ }^{\text {a }}$	Louisville, Kentucky 40205
Hartford, Conn. 06106	Department of Commerce
	Commonwealth of Kentucky
School of Business Administration	Frankfort, Ky. 40601
The University of Connecticut Storrs, Conn 06268	Louisiana
Storrs, Conn. 06268	Division of Business and Economic Research
Delaware	Louisiana State University-New Orleans Lake Front
Department of Business Administration	New Orleans, La. 70122
University of Delaware	
Newark, Del. 19711	Louisiana Office of State Planning
Delaware State Planning Office	Office of the Governor P.O. Box 3674
Executive Department	Baton Rouge, La. 70821
Thomas Collins Building	Baton Rouge, La. 7081
Dover, Del. 19901	Research Division
	College of Administration and Business
Florida	Louisiana Tech University
Division of Budget Florida Department of Administration	P.O. Box 5790-Tech Station
Florida Department of Administration Tallahassee, Fla. 32304	Ruston, La. 71270
	Maine
Bureau of Economic and Business Research	Technical Services
University of Florida	Maine State Planning Office
221 Matherly Hall   Gainesville, Flq. 32601	

Maine-Continued
Research and Public Services Division Cobiversity of Maine at Orono
Coburn Hall
Orono, Maine 04473
Maryland
Maryland Department of State Planning 301 Preston Street

Bureau of Business and Economic Research

> Bureau of Business and Univerity of Maryland

Tydings Hal
College Park, Md. 20742
Massachusetts
Massachusetts Bureau of Area Planning Department of Commerce and Development Leverett Saltonstall Building 00 Cambridge Street

Center for Business and Economic Research
University of Massachusetts
Amherst, Mass. 01002
Michigan
Business and Industry Services Division
Office of Economic Expansion
Michigan Department of Commerce
Lansing, Mich. 48913
Division of Research
Bureau of Business Research
Ane University of Michigan
Minnesota
Computer Systems
Minnesota Analysis and Planning System
Agricultural Extension Service
University of Minnesota
302 Coffey Hal
Bureau of Business and Economic Research
University of Minnesota, Duluth
Duluth, Minn. 55812
Research and Planning Branch
390 Nesota Department of Employment Services
390 North Robert Street
St. Paul, Minn. 55101
Mississippi
Division of Business Research
Mississippi State University
P.O. Drawer 5288
State College, Miss. 39762

Federal/State Programs
Governor's Office
510 LaMar Life Building
Reference Services
Information Services Division
P.O. Drawer 2470

Jackson, Miss. 39205
Missouri
Public Affairs Information Service
University of Missouri-Columbia
311 Middlebush

## Montana

State Information System
State Information System
Montana Department of Planning
Capitol Station
Helena, Mont 59601
Bureau of Business and Economic Research
University of Montana
Missoula, Mont 59801
Missoula, Mont. 59801

## Nebraska

Nebraska Department of Economic Development
P.O. Box 94666-State Capitol

Lincoln, Nebr. 68509
Bureau of Business Research
College of Business Administration
The University of Nebraska-Lincoln
Lincoln, Nebr. 68508
Nevad
Nevada Urban Planning Division
Legislative Building-Room 336
401 S. Carson Street
Carson City, Nev. 89701
Bureau of Business and Economic Research
University of Nevada-Reno
University of Ne
Reno, Nev. 89507

## Appendix A.-List of State Agencies and Universities Receiving Bureau of <br> \section*{Economic Analysis' Local Area Personal Income Estimates-Continued}

New Hampshire   The Whittemore School of Business and Economics University of New Hampshire   McConnell Hall   Durham, N.H. 03824	Ohio	Texas
	Division of Research	Bureau of Business Re
	The Ohio State University Columbus, Ohio 43210	The University of Texas at Austin P.o. Box 7459 , University Station
	Ohio Department of Economic and Community	Austin, Tex. 78712
	Development	Management Science Division
	${ }^{65}$ South Front Street	Texas Office of Information Service
	Columbus, Ohio 43215	P.O. Box 13224   Austin, Tex. 78711
New Jersey   Division of State and Regional Planning   New Jersey Department of Community Affairs 363 West State Street   P.O. Box 2768   Trenton, N.J. 08625	Oklahoma   Bureau for Business and Economic Research	Utah
	The University of oklahoma	Office of the State Planning Coordinator
	307 West Brooks Street, Room 4	118 State Capitol
	Norman, Okla. 73069	Salt Lake City, Utah 84114
	Oklahoma Office of Community Affairs and Planning 4901 North Lincoln Boulevard	Bureau of Economic and Business Research The University of Utah
Bureau of Economic Research Rutgers University	Oklahoma City, Okla. 73105	Room 401-Business Office Building Salt Lake City, Utah 84112
New Brunswick, N.J. 08903	College of Business Administration Oklahoma State University	Vermont
Office of Business	Stillwater, Okla. 74074	Vermont State Planning Office
P.O. Box 845, Room 708	Oregon	,pelier, V.
Trenton, N.J. 08625	Bureau of Business and Economic Research University of Oregon	Department of Economics and Business Administration The Economics Research Center
New Mexico New Mexico State Planning Office Executive-Legislative Building, Rm. 403 Santa Fe, N. Mex. 87501	140 Commonwealth Hall	The University of Vermont
	Eugene, Oreg. 97403	Burlington, Vt. 05401
	Budget Division	Virginia
	Oregon Executive Department 240 Cottage Street,	Division of State Planning and Community Affairs Finance Section
The University of New Mexico	Salem, Oreg. 97310	1010 Madison Building
Albuquerque, N. Mex. 87106	Research and Statistics	109 Governor Street
New York   Capital District Data Service   State University of New York at Albany   1400 Washington Avenue   Albany, N.Y. 12222	Employment Division	
	Oregon Department of Human Resources	Tayloe Murphy Institute
	Salem, Oreg. 97310	
	Pennsylvania	Charlottesville, Va. 22903
Business Research Institute	Pennsylvania Office of State Planning and Development	Department of Economics
Saint John's University   Jamaica, N.Y. 11432	Governor's Office-Box 1323   Harrisburg, Pa. 17120	Virginia Commonwealth University
Department of Policy Plannin	Center	Richmond, Va. 23220
Cornell University-Sibley Hal	tration	
Room I (taca, N. $109 . \mathrm{Y} .14850$	The Pennsylvania State University	Washinglon ${ }_{\text {Research }}$ and Information Division
	University Park, Pa. 16802	Washington Department of Revenue
New York Department of Commerce 99 Washington Avenue	Rhode island	Olympia, Wash. 98504
Albany, N.Y. 12210	College of Business University of Rhode Island	Graduate School of Business Administration and School of Business Administration
Data and Systems Bureau	Kingston, R.I. 02881	Office of the Dean
${ }_{488}^{\text {New }}$ Broadway ${ }^{\text {affice }}$ of Planning Services		Seattle, Wash. 98195
Albany, N.Y. 12207	South Caroina ${ }_{\text {Bureau of Business and Economic Research }}$	
North Carolina   Tax Research Division North Carolina Department of Revenue Raleigh, N. C. 27611	University of South Carolina	West Virginia
	Columbia, S.C. 2920	West Virginia Office of Federal/State Relations
	Department of Business Administration	Charleston, W. Va. 25305
	Baptist College at Charleston Charleston, S.C. 29411	
Institute of Applied Business and Economic Research		West Virginia University
University of North Carolina Chapel Hill, N.C. 27614	South Dakota	Morgantown, W. Va. 26506
School of Business   Western Carolina University   Cullowhee, N.C. 28723	The University of South Dakota	Wisconsin
	Vermillion, S. Dak. 57069	Bureau of Planning and Budget
	South Dakota State Planning Agency	Department of Administration Room B-215
	State Capitol Building	1 West Wilson Street
North Carolina Department of Administration Office of State Planning Raleigh, N.C. 27603	Pierre, s. Dak. 575	Madison, Wis. 53702.
Raleigh, N.C. 27603	Tennessee Center for Business and Economic Researc	Bureau of Business Research and Service
North Dakota   Department of Agricultural Economics   North Dakota State University of Agricultural and Applied Science   Fargo, N. Dak. 58102	The University of Tennessee	The University of Wisconsin
	Knoxville, Tenn. 37916	1155 Observatory Drive
	Bureau of Business and Economic Research   Memphis State University   Memphis, Tenn. 38111	Wyoming Water Resources Institute
North Dakota State Planning Division Fourth Floor, State Capitol   Bismarck, N. Dak. 58501	Tennessee State Planning Office   660 Capitol Hill Building   301 Seventh Avenue, North   Nashville, Tenn. 37219   Bureau of Business and Economic Research   Middle Tennessee State University   Murfresboro, Tenn. 37130	The University of Wyoming P.O. Box 3038, University Station
		Laramie, W yo. 82070
		Research and Statistics Division
Employment Security Bureau		Wyoming Department of Administration
Pismarck, 1537 Dak. 58501		${ }^{312}$ Cheypitol Building

Appendix B.-Classification of SMSA's
Abilene, Tex.
Callahan, Tex.
Jones, Tex.
Taylor, Tex.

Akron, Ohio
Portage, Ohio
Summit, Ohio
Albany, Ga.
Dougherty,
Ga. Dougherty
Lee, Ga.

Albany-Schenectady-Troy, N.Y.
Albany, N.Y.
Montgomery, N.Y.
Rensselaer, N.Y.
Rensselaer, N.Y
Saratoga, N.Y.
Schenectady,
N.Y.
Albuquerque, N. Mex.
Bernalillo, N. Mex
Sandoval, N. Mex.
Alexandria, La.
Grant, La.
Rapides, La.
Allentown-Bethlehem-Easton, Pa.-N.J. Carbon, Pa.
Northampton, Pa .
Warren, N.J.
Altoona, Pa.
Blair, Pa.
Amarillo, Tex. Potter, Tex.
Randall, Tex.

Anaheim-Santa Ans-Garden Grove, Calif. Orange, Calif.

Anchorage, Alaska Anchorage Census Division, Alaska

Anderson, Ind.
Madison, Ind.
Ann Arbor, Mich.
Washtenaw, Mich.
Anniston, Ala.
Calhoun, Ala.
Appleton-Oshkosh, Wis.
Calumet, Wis.
Outagamie, Wis.
Winnebago, Wis.
Asheville, N.C.
Buncombe, N.C.

Atlanta, Ga.
Butts, Ga.
Cherokee, Ga
Clayton, Ga.
Cobb, Ga.
Do Kalb, Ga.
Fayette, Ga.
Forsyth, Ga.
Fulton, Ga.
Gwinett, Ga.
Henry, Ga.
Newton, Ga.
Paulding, Ga.
Wackdan, Ga.
Atlantic City, N.J.
Atlantic, N.J.
Augusta, Ga.-S.C.
Columbia, Ga.
Aiken, S.C.
Austin, Ter.
Travis, Tex.
Bakersfield, Calif.
Kern, Calif.
Baltimore, Md.
Anne Arundel, Md
Baltimore-Independent City, Md.
Carroll, Md.
Harford, Md
Howard, Md.
Baton Rouge, La.
Ascension, La.
East Baton Rouge, La.
Livingston, La.
West Baton Rouge, La.
Battle Creek, Mich.
Calhoun, Mich

Bay City, Mich.
Beaumont-Port Arthur-Orange, Tex.
Jarferson Tex.
Jefferson, Tex.
Orange, Tex.
Billings, Mont
Yellowstone, Mont.
Biloxi-Gulfport, Miss.
Hancock, Miss.
Stone, Miss.
Binghamton, N.Y.-Pa.
Broome, N.Y.
Susquehanna, Pa.
Birmingham, Ala.
Jefferson, Ala.
St. Clair, Ala.
Shelby, Ala.
Walker, Ala.
Bloomington-Normal, IIl. McClean, II.

Boise City, Idaho

Boston-Lowell-Brockton-La wrence-Haverhill, Mass.-N.H. Essex, Mass.
Middilesex, Mass
Norfolk, Mass.
Plymouth, Mas
Suffolk, Mass. $\mathrm{Rockingham}, \mathrm{N.H}$.
Bridgeport-Stamford-Norwalk-Danbury, Conn. Fairfield, Conn.
Brownsville-Harlingen-San Benito, Tex. Cameron, Tex.
Bryan-College Station, Tex.
Brazos Tey

Buffalo, N.Y.
$\underset{\text { Niagara, N.Y. }}{\text { Erie, }}$
Burlington, N.C.
Alamance, N.C.
Burlington, $\mathbf{V t}$. Chittenden, Vt.

Canton, Ohio
Carroll, Oh Stark, Ohio
Cedar Rapids, Iowa Linn, Iowa

Champaign-Urbana-Rantoul, III Champaign, In.
Charleston, S.C. Berkeley, S.C. Dorchester, S.C.
Charleston, W. Va. Kanawha, W. Va.
Putnam, W. Va.
Charlotte-Gastonia, N.C Gaston, N.C.
Mecklenburg, N.C.
Union, N.C.
Chattanooga, Tenn.-Ga. Hamilton, Tenn
Marion, Tenn.
Sequatchie, Tenn.
Catoosa, Ga.
Walker, Ga
Cheyenne, Wyo.
Laramie, Wyo.
Chicago, III.
Du Page, Ill
Kane, Ill.
Lake, Ill.
Mchenry
Will, Ill.
Cincinnati, Ohio-Ky.-Ind.
Clermont, Ohio
Hamilton, Ohio
Warren, Ohio
Boone, Ky.
Campbell, Ky .
Kenton, Ky.
Cleveland, Ohio
Cuyahoga, Ohio
Geauga, Ohio
Lake, Ohio
Medina, Ohio

Colorado Springs, Colo. El Paso, Colo

Columbia Mo.
Boone, Mo.
Columbia, S.C. Lexington, S.C.
Richland, S.C.

Columbus, Ga.-Ala. Chattahoochee, Ga. Columbus, Ga. Russell, Ala.
Columbus, Ohio Delaware, Ohio Frairfield, Ohio Madison, Ohio Pickaway, Ohio

Corpus Christi, Tex
Nueces, Tex San Patricio, Tex.
Dallas-Fort Worth, Tex
Collin, Tex.
Denton, Tex.
Ellis, Tex.
Hood, Tex.
Johnson, Tex
Kaufman, Tex.
Parker, Tex.
Rockwall, Tex.
Wirant, Tex.
Davenport-Rock Island-Moline, Iows-III.
Henry, Ill
Rock Island, Ill.
Dayton, Ohio
Greene, Ohio
Miami, Ohio
Montgomery, Ohio
Preble, Ohio
Daytona Beach, Fla.
Volusia, Fla.
Decatur, III.
Macon, In
Denver-Boulder, Colo.
Adams, Colo.
Boulder, Colo.
Denver, Colo.
Douglas, Colo.
Gilpin, Colo.
Jefferson, Colo.
Des Moines, Iowa
Polk, Iowa
Warren, Iowa
Detroit, Mich.
Lapeer, Mich.
Macomb, Mich.
Oakland, Mich.
St. Clair, Mich
Wayne, Mich.
Dubuque, Iowa
Dubuque, Iowa
Duluth-Superior, Minn.-Wis. St. Louis, Minn. Douglas, Wis.
Elmira, N.Y. Chemung, N.Y.

El Paso, Tex.
El Paso, Tex.
Erie, Pa. Erie, Pa.

Eugene-Spring field, Oreg Lane, Oreg.
Evansville, Ind.-Ky. Gibson, Ind. Vanderburgh, Ind. Warrick, Ind.

Fargo-Moorhead, N. Dak.-Minn. Cass, N. Dak. Clay, Minn.
Fayetteville, N.C.
Cumberland, N.C.
Fayetteville-Springdale, Ark. Benton, Ark. Washington, Ark.
Flint, Mich.
Genesee, Mich.
Shiawassee, Mich.
Florence, Ala.
Colbert, Ala.
Lauderdale, Ala.

Fort Lauderdale-Hollywood, Fla. Broward, Fla.
Fort Myers, Fla.
Fort Smith, Ark.-Okla.
Crawford, Ark.
Sebastian, Ark.
Le Flore, Okla.
Fort Wayne, Ind.
Adams, Ind.
De Kalb, Ind
Wells, Ind.
Fresno, Calif.
Fresno, Calif.
Gadsden, Ala. Etowah, Ala.

Gainesville, Fla.

Galveston-Texas City, Tex. Galveston, Tex.

Gary-Hammond-East Chicago, Ind. Lake, Ind.
Porter, Ind.

Grand Rapids, Mich. Kent, Mich.

Great Falls, Mont.
Cascade, Mont
Green Bay, Wis. Brown, Wis.
Greensboro-Winston-Salem-High Point, N.C. Davidson, N.C.
Forsyth, N.C
Randolph, N.C.
Stokes, N.C.
Greenville-Spartanburg, S.C.
Greenville, S.C.
Spartanburg, S.C
Hamilton-Middletown, Ohio Butler, Ohio
Harrisburg, Pa. Cumberland, Pa . Perry, Pa.

Hartford-New Britain-Bristol, Conn. Hartford, Conn. Middlesex, Conn Tolland, Conn.
Honolulu, Hawaii
Honolulu, Hawa
Houston, Tex. Brazoria, Tex. Harris, Tex. Liberty, Tex Montgomery, Tex. waller, Tex.
Huntington-Ashland, W. Va.-Ky.-Ohio Wayell, W. Va. Boyd, Ky. Greenup, K Lawrence, Ohio
Huntsville, Ala. Limestone, Ala. Madison, Ala.
Marshall, Ala.
Indianapolis, Ind. Boone, Ind. Hancock, Ind. Hendricks, Ind Johnson, Ind. Marion, Ind. Morgan, Ind Shelby, Ind.
Jackson, Mich. Jackson, Mich.
Jackson, Miss. Rankin Miss.

```
Jacksonville, Fla.
 Baker, Fla.
 Duval, Fla
 Nassau, Fla.
 St. Johns, Fla.
```

Jersey City, N.J.
Hudson, N.J.
Johnstown, Pa
Cambria, Pa
Somerset, Pa.
Kalamazoo-Portage, Mich.
Kalamazoo, Mich.
Van Buren, Mich.
Kansas City, Mo.-Kans.
Cass, Mo
Jackson, Mo
Platte, Mo.
Ray, Mo.
Johnson, Kans.
Wyandotte, Kans.
Kenosha, Wis.
Kenosha, W is
Killeen-Temple, Tex.
Coryell, Tex
Kingsport-Bristol, Tenn.-Va.
Hawkins, Tenn
Sullivan, Tenn.
Bristol City, Va.
Scott, Va
Stind
Washington, Va

Knoxville, Tenn.
Anderson, Tenn.
Klount, Tenn.
Union, Tenn.
$\underset{\text { La Crosse, }}{\text { La }}$ Wis.
Lafayette, La.
Lafayette, La
Lafayette-West Lafayette, Ind. Tippecanoe, Ind.

Lake Charles, La.
Calcasieu, La.
Lakeland-Winter Haven, Fla. Polk, Fla.

Lancaster, Pa.
Lancaster, Pa.
Lansing-East Lansing, Mich. Clinton, Mich.
Ingham, Mich.
Ionia, Mich.
Laredo, Tex.
Webb, Tex
Las Vegas, Nev.
Clark,
Nev.
Lawton, Okla.
Comanche, Okla
Lewiston-Auburn, Maine Androscoggin, Maine

Lexington-Fayette, Ky. Bourbon, Ky Fayette, K
Jessamine, Ky.
Scott, Ky.
Woodford, Ky.
Lima, Ohio
Allen, Ohio.
Auglaize, Ohio
Van Wert, Ohio
Lincoln, Nebr.
Lancaster, Nebr
Little Rock-North Little Rock, Ark Pulaski ${ }^{\text {Ark }}$

Long Branch-Asbury Park, N.J. Mommouth, N.J.

Lorain-Elyria, Ohio

Los Angeles-Long Beach, Calif.
Louisville, Ky.-Ind.
Bullitt, Ky.
Oldham, Ky .
Clark, Ind.
Floyd, Ind.
Lubbock, Tex.
Lubbock, Tex.
Lynchburg, Va.
Amherst, Va.
Campbell, Lynchburg City, Va.
Macon, Ga.
Bibb, Ga.
Houston, Ga
Twiggs, Ga.
Madison, Wis.
Manchester-Nashua, N.H.
Hillsborough, N.H.
Mansfield, Ohie
Richland, Ohio
McAllen-Pharr-Edinburg, Tex.
Hidalgo, Tex.
Melbourne-Titusville-Cocoa, Fla. Brevard, Fla.

Memphis, Tenn.-Ark.-Miss.
Shelby, Tenn.
Crittenden, Ark.
De Soto, Miss.
Miami, Fla.
Dade, Fla.
Midland, Tex,
Midland, Tex
Milwaukee, Wis.
Milwaukee, Wis.
Washington. Wis
Waukesha, W is.
Minneapolis-St. Paul, Minn.-Wis.
Anoka, Minn.
Carver, Minn.
Dakota, Minn
Hennepin, Minn
Ramsey, Minn.
Scott, Minn.
Washington, Minn
Wright, Minn.
Mobile, Ala.
Baldwin, Ala
Modesto, Calif. Stanislaus, Calif.
Monroe, La.
Ouachita, La.
Montgomery, Ala.
Autauga, Ala.
Elmore, Ala.
Muncie, Ind.
Delaware, Ind.
Muskegon-Muskegon Heights, Mich.
Muskegon, Mich.
Nashville-Davidson, Tenn.
Cheatham, Tenn.
Davidson, Tenn. Dickson, Tenn. Robertson, Tenn. Rutherford, Tenn. Sumner, Tenn. Williamson, Tenn

Naseau-Suffolk, N.Y. Nassau, N.Y.
Suffolk, N.Y.
Newark, N.J.
Essex, N.J
Somerset, N.J
Union, N.J.
New Bedford-Fall River, Mass
Bristol, Mass.
New Brunswick-Perth Amboy-Sayreville, N.J Middlesex, N.J.

Appendix B.-Classification of SMSA's-Continued


"Weekly Retail Sales-Estimates of weekly retail sales for the United States for selected major kind-of-business groups, including figures for the comparable weeks in the previous year. Issued each Thursday.
*Monthly Retail Trade Report-Estimates of monthly retail sales for the United States by major kind-ofbusiness groups and selected individual kinds of business; separate figures shown, in more limited kind-of-business detail, for firms operating 11 or more retail stores. Summary sales data presented for geographic regions and divisions, and for 15 large States, the 20 large standard metropolitan statistical areas and the five largest cities. Also included are national estimates of end-of-month accounts receivable balances for retail stores.

## *Annual Retail Trade Report-

 Estimates of annual sales and purchases, and of year-end accounts receivable, balances and inventories held by retailers in the United States by major kind-of-business groups and selected individual kinds of business. Separate figures shown in more limited kind-of-business detail for firms operating 11 or more retail stores. Also shown are salesinventory ratios and per capitasales by kind-of-business for the United States, by major kind-of-business groups. Per capita sales estimates are also shown in limited kind-ofbusiness detail for geographic divisions, and for the larger States and standard metropoli$\tan$ statistical areas.
*Advance Monthly Retail Sales-Advance estimates of monthly retail sales for the United States (including data adjusted for seasonal variations and trading day differences) are compiled by major kind-ofbusiness groups about 10 days after the month covered.

Annual Subscription $\$ 30.10$
tMonthly Department Store Salos for Selected AreasMonthly dollar sales volume and the percent change in sales compared with the previous month and the same month in the previous year; cumula tive year-to-date comparisons with data for the previous year. The number of department stores in the current month is also shown. Data are collected in about 200 standard metropolitan statistical areas, cities, and other areas.

Annual Subscription $\$ 1.00$

tMonthly Selected Services Receipts-This report provides data on monthly receipts of six major kinctof-business groups of services: Hotels,
motels, tourist courts, trailer perks, and camps; personal services; business services; automotive services; miscellaneous repair services; and motion picture, amusement, and recreation services. Comparable data for the previous months and for the same month in the previous year are also shown, in addition to the percent changes. Data are shown both unadjusted and adjusted for seasonal variations and trading day differences.

Annual Subscription $\$ \mathbf{1 . 0 0}$

## Wholesale

## Trade

*Monthly Wholesale Trade Report-This report includes estimated dollar sales, end-ofmonth inventories, and stocksales ratios of merchant wholesalers, by kind of business for the current month, with comparisons for previous months. Dollar volume sales estimates are shown by geographic division in total and for durable and nondurable kind-ofbusiness subtotals. Sales and inventory trends (percent changes) are shown by detailed kinds-of-business at the national level and for selected kinds-of-businesses by geographic division. Measures of sampling variability are given. United States data are, shown adjusted for seasonal variations and in the case of sales, also for trading day differences.

Annual Subscription $\$ 5.15$
tCanned Food Report-This report is issued for five datesJanuary 1, April 1, June 1, July 1, and November 1 - to show total stocks of wholesale distributors and canners, including warehouses of retail multiunit organizations, of selected canned food items. In the January 1 report, sepe rate data are shown for the No. 10 can size as well as for warehouse stocks of retail multiunit organizations.

Annual Subscription $\$ 1.00$
tGreen Coffee Inventories and Roastings - This quarterly report provides eatimates of green coffee inventories held by roasters, importers, and dealers, the quantity of green coffee roasted, and the amount roasted for soluble use, by quarters, for the current and previous 3 years. Also included are quarterly imports of green coffee.

Annual Subscription $\$ \mathbf{1 . 0 0}$
*Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
†Available from the Publications Distribution Section, Social and Economic Statistics Administration, Washington, D.C. 20233

Publicstions Order Forms furnishing additional information of the various reports listed here are available free of charge from the Publications Distribution Section, Social and Economic Statistics Administration, Washington, D.C. 20233.

## U.S. DEPARTMENT OF COMMERCE

SOCIAL AND ECONOMIC STATISTICS ADMINISTRATION
BUREAU OF ECONOMIC ANALYSIS
WASHINGTON. D.C. 20230


Official Business
U.S. DEPARTMENT OF COMMERCE

Third-Class Mail
202

Directs you to the source for valuable information from Federal data files.


Now for the first time you can tell at a glance what's available in machine-readable data files, bases and related software from the Federal Government.

The 1974 NTIS Directory of Computerized Data Files \& Related Software Available from Federal Agencies tells you where and how to obtain the data you want to spot national, state and local trends . . . and to relate this information to your own organization.

Leads you to the information resources of the Federal Government. Reports on data available from 60 agencies. . . . Environmental Protection Agency . . . the Smithsonian Institution . . . Civil Aeronautics Board . . . NASA . . . the National Science Foundation . . . the Departments of Agriculture . . Labor . . . Commerce . . . Defense . . . Interior . . . Justice and Transportation.



[^0]:    1. The classification had to be estimated because actual sales data are not available by weight class; the finest published breakdown of sales is by nameplate-that is, an automobile line consisting of different series, models, and body styles. A standard car weight for each calendar year was defined. This weight was the average of the lightest cars carrying Chevrolet, Ford, and Plymouth nameplates. and (minus) 15 percent of that weight were defined as low medium weight cars, and nameplates with weights between the standard weight and (plus) 15 percent of that weight as high medium weight cars; high weight cars were defined as more than 15 percent above, and low weight cars as more than 15 percent below the standard weight. The Chevrolet, Ford, and Plymouth nameplates are always included in the low medium weight class. All weight determinations are axclusive of optional equipment.
    In 1973, the classification of nameplates was as follows:
    Low-weight class: Hornet, Nova, Comet, Dart, Valiant, iin, Pinto, Vega, Ventura, Matador, Challenger, Firebird, Coronet, Satellite, Corvette, Apollo, Omega.
    Low medium weight class: Chevrolet, Ford, Plymouth, Ambassador, Chevelle, Cougar, Montego, Torino, Monte Carlo, LeMans, Century, Cutlass, Polara, Club Wagon,
    Sportsman, Sportvan.

    High medium weight class: Buick, Chrysler, Mercury, Oldsmobile, Pontiac, Grand Prix, Riviera.
    High-weight class: Cadillac, Imperial, Lincoln, Thunderbird, Toronado, Eldorado, Mark IV.

[^1]:    1. Preliminary.
    2. Seasonally adjusted end-of-quarter book value inventories divided by seasonally adjusted average monthly sales for the quarter. Annual ratios are averages of quarterly ratios.
[^2]:    1. Includes IVA. Excludes profits originating in the rest of the world and profits on resi-
[^3]:    1. See notes to table 5 .
[^4]:    U.S. Depariment of Commerce, Bureau of Economic Analysis

[^5]:    1. MOFA's are foreign business enterprises in which U.S. ownership by a single consolidated U.S. enterprise is at least
    50 percent.
[^6]:    2. These and other data on the domestic and international operations of U.S. multinational companies were released by BEA in Special Survey of U.S. Multinational Companies, 1970. This publication can be purchased from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151. Price \$3.00. Mention accession number COM-72-11392 when ordering.
[^7]:    3. In a consolidated financial statement of affiliated companies, all intercompany items are eliminated, whereas in unconsolidated statements, they are not and sales and assets continue to reflect transactions or investments between the
    affiliated companies.
[^8]:    4. A firm's rate of return is weighted by its share of total assets or net worth of the industry in which it operates (table 1) or its share of total assets within the countryindustry cell in which it appears (table 2).
[^9]:    5. See page 143 of Money in the Multinational Enterprise by Sidney M. Robbins and Robert B. Stobaugh (New York: Basic Books, Inc., 1973).
[^10]:    7. Preferred stock, another source of funds bearing a fixed return, is not included in this study due to the unavailability of 1970 data and its very small size.
    8. A more refined measure of leverage ( $L$ ') takes into a portion of a company's assets with funds bearing a fixed return. It can be written

    $$
    L^{\prime}=\mathrm{L}\left(1-\frac{\mathrm{I}}{\mathrm{Y}}\right)
    $$

    where $Y$ is income before interest and taxes. Since data on interest paid were not available from the 1970 special survey, the leverage ratios in table 1 (column E) could not be computed in this manner.

[^11]:    9. Income taxes are generally after deduction of tax credits allowed.
    10. The latter case generally resulted from net refunds or credits for the overpayment of prior years' taxes.
[^12]:    12. A U.S. corporation receiving a dividend on common stock from a foreign corporation in which it holds at least 10 percent of the voting stock is deemed by the IRS to have indirectly paid a portion of that corporation's foreign income taxes.
[^13]:    13. The treatment of Subpart $F$ income of controlled foreign corporations is an exception. See Sections 951-964 of the 1962 IRS Code.
[^14]:    14. See Internal Revenue Service, Statistics of Income, 1966 and 1969 issues.
[^15]:    15. Such a split of the provision for State and local income taxes is also common when State and local income taxes are taxes is also comm
    shown separately.
[^16]:    $\stackrel{\text { revised. }}{ } \quad$ Preliminary. ${ }^{1}$ Advance estimate; totals for mfrs. new and unfilled orders or Includes data for refems not shown separately. components. ${ }^{2}$ Based on unadjusted data. and products, paper and allied products, and printing and publishing industries, unfilled orders for other nondurable goods are zero. If For these industries (food and kindred prod-
    ucts, tobacco manufactures, apparel and other textile products, petroleum and coal products, $\begin{array}{ll}\text { chemicals and allied products, and rubber and plastics products) sales are considered equal } \\ \text { to new orders. } & \odot \text { Compiled by Dun } \& \text { Bradstreet, Inc. (failures data for } 48 \text { States and }\end{array}$ Dist. of Col.). $\quad$ Revised back to Mar. 1971 to reflect new seas. factors; revisions prior to Feb. 1973 will be shown later.

[^17]:    prises lumber yards, building materials dealers and paint plumbing and electrical stores

[^18]:    TEffective May 1973 Survey, prices are in terms of dollars per short ton.

[^19]:    ${ }_{1}{ }_{1}$ Revised.
    Average for May and June.

[^20]:    ${ }^{2}$ Reported annual total; revisions not allocated to the months.
    2 Reported annual total; revisions not allo
    ${ }^{3}$ Sept. price; other months not available.

[^21]:    1. Beginning with 1972, the exemption of some firms from
    UI coverage because of the small number of employees has been abolished. However, for earlier years, the addition of data.
[^22]:    See footnotes at end of table.

[^23]:    See footnotes at end of table.

[^24]:    See footnotes at end of table.

[^25]:    See footnotes at end of table.

[^26]:    See footnotes at end of table.

[^27]:    See footnotes at end of table.

[^28]:    See footnotes at end of table.

[^29]:    See footnotes at end of table

[^30]:    1. Detail may not add to higher level totals because of rounding.
    income series (August 1973
    SURVEY) because revisions in the latter series for that year have not been carried to the county series.
    2. See SMSA classification in text on page 5 .
    3. Excludes counties included in SMSA's of contiguous States.
